NONLINEAR MAPPING 1

e Nonlinear problems (regression, classification,
..) may be dealt with linearly by embedding the
data in a higher-dimension space:
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KERNELS AND NONLINEAR MAPPINGS 2

e A kernel i1s a function xsuch that for all x, z € X,
K(X, Z) = <i(X), Az)>
X—> @#X) e F
F a vector space with an equipped with an inner
product

e The “kernel trick” allows one to compute scalar
products In a high or even infinite dimensional
space with a limited number of computations.
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AN EXAMPLE 3

e With X = R? F = R3,

B:x= (31, %) > H(X) = (7, x5, 2xpx,)
<9, 9(2) >=< (. X3, 2x,), (21,25, 22125) >
= x12 212 + x% Z% +2X1X2125
= (0 +X025)° =< X,Z >°= k(X, Z)

Hence «{.,.) Is a kernel function.
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ANOTHER EXAMPLE! 4

e \With X consisting of all subsets of some set D, F
= R, consider the kernel:

k(Ay, A,) = 2|A10A2|
l.e. the number of common subsets 4, and A, have.

e This kernel corresponds to a map to the vector
space of dimension 2Pl indexed by the subsets of

D, with: b 1 ifU < 4
= <
0; otherwise
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GRAM MATRIX 5

e For a finite set of Iinput vectors {x,, X, ..., Xy},
all information on the mapping can be
summarized in the Gram matrix K defined by:

K, = x(X;, X;)
e |f xIs used as a measure of similarity between
vectors, the two extremes:

- only diagonal entries of K non zero
- All entries of K similar
are to be avoided.
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CHARACTERIZATION OF KERNELS 6

e A function x: XxX — R either continuous or
with a finite domain can be decomposed as

K(X, 2) = <i(X), Az)>
If and only If all Gram matrices formed with finite
subsets of X are positive semi-definite.

e Note that If k1s a kernel, for all Gram matrices:
K =®dDT with @ = [@(X,), HX,), ..., AX\)]T
And are thus positive semi-definite.
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CHARACTERIZATION OF KERNELS 7

e For the “If” part, If x satisfies the positive
semi-definite property then it is possible to
build a set of functions:

M
— {Zai;c(xl- ), M any integer}
i=1

e | Is a vector space, and It can be equipped
with an inner product. For:

700 = Zoel, ) and g0 = X (2 9
i= J=
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CHARACTERIZATION OF KERNELS 8

one defines:
<f,g>= ZlZlaﬁ K(X;,Z;)= Zag(X) Zﬁ Sf(Z;)
i=1j=

If indeed all Gram matrices are posmve semi-
definite:

M M
<f,g>:ZZaiajK(Xi,Xj)zaTKOLZO
i=1j=1

SO < e, > |S INneed an inner product.
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CHARACTERIZATION OF KERNELS 9

e Reproducing property of the kernel:

M
< fr(X,e) >= 2 0;x(X;,X) = f(X)
i=1
e Mapping:
p:XeX>dX)=K(Xe) €F
® Mercer’s theorem. For any valid kernel:

K(%,2) = Y 0, (X)94 (2)
k=1
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CONSTRUCTION OF KERNELS 10

e Kernel normalization:

AX)

>
)|

(X 2) = < A H2)
o) [l I )]
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CONSTRUCTION OF KERNELS

11

® SOMme recipes:
K(X, 2) = k,(X, Z) + k,(X, 2)
K(X,2)=ax,X,z) a>0
K(X, 2) = k,(X, Z)x,(X, Z)
k(X z) = fAX) AZ)

K(X, 2) = P(x,(X, 2)) P polynomial with
positive coefficients

K(X, ) = exp(x,(X, 2))
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A SPECIAL KERNEL 12

e This kernel Is expressed as (X must be a
vector space with an inner product):

K(X, z) = exp(—||X — z||#/(252))

Since <x,z> Is a kernel, exp(<x,z>/c?) Is a
kernel. If the latter 1s normalized:

exp( X,z > /02) B
J 2, 2 2, 2\
exp(||x[|” /o”)exp(l|z]|" /o7)

<X,Z> <XX> <Z,Z2> |IX=2||
oX > o2 o2 TR
o 20 20 20

2

N—

Signal Processing Institute .(Pﬂ.
~ "4 Swiss Federal Institute of Technology, Lausanne AT L



A SPECIAL KERNEL 13

e Note that for this gaussian kernel the function
from X to R:

f, i X = «(X, )

IS a radial basis function.

e The no
kernel

nlinear mapping corresponding to that

space ¢

maps X to an infinite-dimensional
ue to: o
X
exp(x) = 2, ——
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KERNEL PROBABILITY DENSITY ESTIMATION 14

e Classical probability density estimation presents
several problems:

- selection of the bins
- non smooth nature

¢ [n a univariate context, the kernel density estimate
of a set of data points {x,, x,, ..., x,} IS:

- 1 Y (x—x,
=1 ZIK( |
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KERNEL PROBABILITY DENSITY ESTIMATION 15

where K(.) Is called the kernel function (no
Immediate connection with the previous
slides to start with, but see later) and % Is a
bandwidth parameter defining the horizontal
size of the scaled kernel function.

e Some popular kernels are the Epanechnikov,
biweight, and triweight ones. But, do not be
surprised, the most widely used is the
Gaussian kernel.
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KERNEL PROBABILITY DENSITY ESTIMATION 16

e Of course the kernel must be normalized so
that the integral of the estimate Is one.

e Principle:
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KERNEL PROBABILITY DENSITY ESTIMATION 17

¢ |n the one-dimensional case, an appropriate
choice for the bandwidth parameter Is:

h =1.06sN02

With N the number of samples and s the sample
standard deviation.

¢ |n the multi-dimensional case, one can use a
multi-dimensional Gaussian kernel with a
bandwidth parameter as defined above for
each coordinate.
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KERNEL PROBABILITY DENSITY ESTIMATION 18

e Example: log of the lynx time series
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ENTROPY ESTIMATION 19

e The a-order Renyi’s entropy for a probability
density function p(x) Is defined as:

1 1

H,(p)=_ " log p"“(x)dx=_~ logE]p“"(x)]

e Taking the limit ¢ — 1gives the Shannon
entropy. The value o = 2 gives:

H,(p)=—log| p®(x)dx
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ENTROPY ESTIMATION 20

e Using the Gaussian kernel pdf estimate with
bandwidth 4:

V() =Jp2(x>dx=1(]1v iy (5,

1 NN
= N2 2 )

e The integral of a product of Gaussians being a
Gaussian. Note the change In the bandwitdh.
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ENTROPY ESTIMATION 21

e Another approach consists in approximating
the expected value by the sample mean in the
definition of Renyli’s entropy. One gets:

a-1
Hoto) =1 * oy 2, 2 Sty

— U N¢ j=1\i=1

e And for Shannon’s entropy:

1N 1N i
H,(p) Y leog Nzl’fh(xj —X;)
]: l: ]
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APPLICATION: BLIND DECONVOLUTION 22

e The problem is illustrated as:

/

so)—] wm) PO W) — )
/

where the source s(»n) Is a sequence of I.1.d.
samples with unkown non-Gaussian pdf and
the linear filter response is unknown.
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APPLICATION: BLIND DECONVOLUTION 23

e One tries to adapt w(#) so as to deconvolve
h(n), so that the pdf of y(n) becomes as close
as possible to that of s(n).

e Principle: the pdf of the output x(rn) of the
linear filter becomes closer to Gaussian due
to the Central Limit effect. The Gaussian
distribution has the largest entropy for a
given variance. One tries to find w(n) that
minimizes the entropy of y(n).
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APPLICATION: BLIND DECONVOLUTION 24

e To have a scale-Invariant criterion, one uses
actually the criterion:

J(w)
e |f a gradient sc

criterion, the Ic
estimate as in t

= Hy(y) - log|var(y)]

neme 1S used to minimize this
ea IS to use an Instantaneous

ne LMS, so one replaces the

entropy E[-log f{y)] at time £ by —log f(y,).

e Of course, since the pdf £{.) iIs unknown, one
uses a kernel estimate.
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APPLICATION: BLIND DECONVOLUTION 25

e On a window of length L this estimate Is:
1 k-1

f(yk)— 2 Kn (Vi — i)

l k—L
e This leads to the entropy estimate gradient:

b K;,(yk—yi)(ayk 6”)

SRy (k) oW ow
OW k-1
2K A (Vi — i)
i=k—L
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APPLICATION: BLIND DECONVOLUTION

26

e Finally, since y, = w'x, :

k-1

3 2K,k = yi) (X =X,
oH (k) _ ies” I x0)
oW k-1
2K, (Ve = »i)
i=k—L

e For =1 and a Gaussian kernel one gets:

oty (k) 1
X, —X
W k= Vr0) (X =X 1)

/\ Signal Processing Institute
- 1" Swiss Federal Institute of Technology, Lausanne

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



GENERALIZED CORRELATION FUNCTION 27

e With {X } a multivariate time series, it Is possible
to define through the kernel formulation a

generalized correlation function (GCF). It Is
defined by:

Vp.q) = Elx(X, - X,)]

e Due to the nonlinearity induced by the kernel,
V(p,q) Involves higher-order moments of the time
series. When the kernel is Gaussian, all even-
order moments are involved.
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GENERALIZED CORRELATION FUNCTION 28

e Note that If x,(X - V) Is a kernel, then:
Kh(Xp - Xq) — <¢(Xp)’ ﬂxq)>

SO x;,(X, - X,) compares the two vectors by
computing the inner product of their two
Images by 4.

e |f additionally this kernel is normalized, then

K,(X, - X ) corresponds to the cosine of the
angle between those two Images.
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GENERALIZED CORRELATION FUNCTION 29

e |f the time series is strictly stationary, the
GCF becomes a function of the time
difference only:

Vim) = E[x,(X, = X,_,,)]
e |n practice, with only a finite sample set

{X}, n=1, ..., N, onecan obtain the
estimate:

V (m) =

1 N
ZKh (Xn - Xn—m)
N —m n=m+1
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GENERALIZED CORRELATION FUNCTION 30

e The Toeplitz matrix:
Vo v - V(D

v V:(1) 1/.(.0) V(p:— 2)

Vp=D) V(p=2) - V(O |

IS positive definite as a sum of Gram matrices.
This makes It possible to define a generalized
power spectral density:

P(f)= SV (k)exp(j2nfk)

k=—o0
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