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1NONLINEAR MAPPING 

• Nonlinear problems (regression, classification, 
…) may be dealt with linearly by embedding the 
data in a higher-dimension space:
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2KERNELS AND NONLINEAR MAPPINGS

• A kernel is a function κ such that for all x, z ∈ X,
κ(x, z) = <φ(x), φ(z)>

x → φ(x) ∈ F
F a vector space with an equipped with an inner 

product
• The “kernel trick” allows one to compute scalar 

products in a high or even infinite dimensional 
space with a limited number of computations.
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3AN EXAMPLE

• With X = R2, F = R3,

Hence κ(.,.) is a kernel function.
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4ANOTHER EXAMPLE!

• With X consisting of all subsets of some set D, F 
= R, consider the kernel:

i.e. the number of common subsets A1 and A2 have.
• This kernel corresponds to a map to the vector 

space of dimension 2|D| indexed by the subsets of 
D, with:
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5GRAM MATRIX

• For a finite set of input vectors {x1, x2, …, xN}, 
all information on the mapping can be 
summarized in the Gram matrix K defined by:

Kij = κ(xi, xj)
• If κ is used as a measure of similarity between

vectors, the two extremes:
- only diagonal entries of K non zero
- All entries of K similar
are to be avoided.
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6CHARACTERIZATION OF KERNELS

• A function κ : X×X  → R either continuous or 
with a finite domain can be decomposed as

κ(x, z) = <φ(x), φ(z)>
if and only if all Gram matrices formed with finite 

subsets of X are positive semi-definite.
• Note that if κ is a kernel, for all Gram matrices:

K = ΦΦT with Φ = [φ(x1), φ(x2), …, φ(xN)]T

And are thus positive semi-definite.
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7CHARACTERIZATION OF KERNELS

• For the “if” part, if κ satisfies the positive 
semi-definite property then it is possible to 
build a set of functions:

• F is a vector space, and it can be equipped 
with an inner product. For:
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8CHARACTERIZATION OF KERNELS

one defines:

If indeed all Gram matrices are positive semi-
definite:

so < • , •> is ineed an inner product.
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9CHARACTERIZATION OF KERNELS

• Reproducing property of the kernel:

• Mapping:
φ : x ∈ X → φ(x) = κ(x,•) ∈ F

• Mercer’s theorem. For any valid kernel:
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10CONSTRUCTION OF KERNELS

• Kernel normalization:
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11CONSTRUCTION OF KERNELS

• Some recipes:
κ(x, z) = κ1(x, z) + κ2(x, z) 
κ(x, z) = a κ1(x, z)    a > 0
κ(x, z) = κ1(x, z)κ2(x, z) 
κ(x, z) = f(x) f(z) 
κ(x, z) = P(κ1(x, z))    P polynomial with 
positive coefficients
κ(x, z) = exp(κ1(x, z)) 
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12A SPECIAL KERNEL

• This kernel is expressed as (X must be a 
vector space with an inner product):

κ(x, z) = exp(−||x – z||2/(2σ2))
Since <x,z> is a kernel, exp(<x,z>/σ2) is a 

kernel. If the latter is normalized:
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13A SPECIAL KERNEL

• Note that for this gaussian kernel the function
from X to R:

fz : x → κ(x, z)
is a radial basis function.
• The nonlinear mapping corresponding to that 

kernel maps X to an infinite-dimensional 
space due to:
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14KERNEL PROBABILITY DENSITY ESTIMATION

• Classical probability density estimation presents 
several problems:
- selection of the bins
- non smooth nature

• In a univariate context, the kernel density estimate 
of a set of data points {x1, x2, …, xN} is:
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15KERNEL PROBABILITY DENSITY ESTIMATION

where K(.) is called the kernel function (no 
immediate connection with the previous 
slides to start with, but see later) and h is a 
bandwidth parameter defining the horizontal 
size of the scaled kernel function.

• Some popular kernels are the Epanechnikov, 
biweight, and triweight ones. But, do not be 
surprised, the most widely used is the 
Gaussian kernel.
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16KERNEL PROBABILITY DENSITY ESTIMATION

• Of course the kernel must be normalized so
that the integral of the estimate is one.

• Principle:
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17KERNEL PROBABILITY DENSITY ESTIMATION

• In the one-dimensional case, an appropriate 
choice for the bandwidth parameter is:

h = 1.06sN-0.2

With N the number of samples and s the sample 
standard deviation.

• In the multi-dimensional case, one can use a 
multi-dimensional Gaussian kernel with a 
bandwidth parameter as defined above for 
each coordinate.  
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18KERNEL PROBABILITY DENSITY ESTIMATION

• Example: log of the lynx time series
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19ENTROPY ESTIMATION 

• The α-order Renyi’s entropy for a probability 
density function p(x) is defined as:

• Taking the limit α → 1gives the Shannon 
entropy. The value α = 2 gives:
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20ENTROPY ESTIMATION

• Using the Gaussian kernel pdf estimate with
bandwidth h:

• The integral of a product of Gaussians being a 
Gaussian. Note the change in the bandwitdh.
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21ENTROPY ESTIMATION

• Another approach consists in approximating 
the expected value by the sample mean in the 
definition of Renyi’s entropy. One gets:

• And for Shannon’s entropy:
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22APPLICATION: BLIND DECONVOLUTION

• The problem is illustrated as:

where the source s(n) is a sequence of i.i.d. 
samples with unkown non-Gaussian pdf and 
the linear filter response is unknown.

x(n) w(n)s(n) h(n) y(n)
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23APPLICATION: BLIND DECONVOLUTION

• One tries to adapt w(n) so as to deconvolve
h(n), so that the pdf of y(n) becomes as close 
as possible to that of s(n).

• Principle: the pdf of the output x(n) of the 
linear filter becomes closer to Gaussian due 
to the Central Limit effect. The Gaussian 
distribution has the largest entropy for a 
given variance. One tries to find w(n) that 
minimizes the entropy of y(n). 
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24APPLICATION: BLIND DECONVOLUTION

• To have a scale-invariant criterion, one uses 
actually the criterion:

J(w) = H1(y) – log[var(y)]
• If a gradient scheme is used to minimize this 

criterion, the idea is to use an instantaneous 
estimate as in the LMS, so one replaces the 
entropy E[-log f(y)] at time k by –log f(yk).

• Of course, since the pdf f(.) is unknown, one 
uses a kernel estimate.
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25APPLICATION: BLIND DECONVOLUTION

• On a window of length L this estimate is:

• This leads to the entropy estimate gradient:
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26APPLICATION: BLIND DECONVOLUTION

• Finally, since yk = wTxk :

• For L=1 and a Gaussian kernel one gets:

( )

∑

∑
−

−=

−

−=

−

−−
−=

∂
∂

1

1 ,

1

)(

)(
)(ˆ

k

Lki
ikh

k

Lki
ikikh

yy

yy
kH

κ

κ xx

w

( )112
1 )(1)(ˆ

−− −−−=
∂

∂
kkkk yy

h
kH xx

w



Signal Processing Institute 
Swiss Federal Institute of Technology, Lausanne

27GENERALIZED CORRELATION FUNCTION

• With {xn} a multivariate time series, it is possible 
to define through the kernel formulation a 
generalized correlation function (GCF). It is 
defined by:

V(p,q) = E[κh(xp - xq)]
• Due to the nonlinearity induced by the kernel, 

V(p,q) involves higher-order moments of the time 
series. When the kernel is Gaussian, all even-
order moments are involved.
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28GENERALIZED CORRELATION FUNCTION

• Note that if κh(x - y) is a kernel, then:
κh(xp - xq) = <φ(xp), φ(xq)>

so κh(xp - xq) compares the two vectors by 
computing the inner product of their two 
images by φ.

• If additionally this kernel is normalized, then 
κh(xp - xq) corresponds to the cosine of the 
angle between those two images.
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29GENERALIZED CORRELATION FUNCTION

• If the time series is strictly stationary, the 
GCF becomes a function of the time 
difference only:

V(m) = E[κh(xn – xn-m)]
• In practice, with only a finite sample set 

{xn},    n = 1, …, N, one can obtain the 
estimate:
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30GENERALIZED CORRELATION FUNCTION

• The Toeplitz matrix:

is positive definite as a sum of Gram matrices. 
This makes it possible to define a generalized 
power spectral density:
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