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1INTRODUCTION

• Forecasting means using the nonlinear model 
estimated on samples {xn}, n = 1, …, N, to 
perform out-of-sample (true) prediction.

• Questions arising are:
– What is the quality of the prediction 

performed?
– What happens when multi-step ahead 

prediction is to be made?
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2MULTI-STEP AHEAD FORECASTING (1)

• We have already seen that the optimal 
predictor of xn+h at time n in the least-squares 
sense is:

where Ωn sums up all the information available 
up to time n. In the nonlinear case, it is 
generally impossible to know in advance 
whether it is better to directly estimate this 
predictor or to iterate the 1-step ahead one.
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3MULTI-STEP AHEAD FORECASTING (2)

• For a linear AR model, multi-step forecasting 
is easy.  If the model is:

xn = a1xn-1 + … + apxn-p + εn

Then the 1-step ahead forecast is:

And the forecast error is εn+1. The 2-step ahead 
forecast is:
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4MULTI-STEP AHEAD FORECASTING (3)

• And so on. It can be shown by recursion that 
the mean-square prediction error MSPE(h) 
for h-step ahead prediction is given by:

With σ2 the variance of {εn}, and {ci} the 
impulse response of the AR filter. Basically, 
all goes well because the linear operator and 
the expectation commute.
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5MULTI-STEP AHEAD FORECASTING (4)

• When the model is NAR:
xn = g(xn-1) + εn

the optimal 1-step ahead forecast is:

• But the optimal 2-step ahead predictor is:

and alas:
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6MULTI-STEP AHEAD FORECASTING (5)

• This means that iterating the NAR function 
to produce successive forecasts is not a good 
idea. It can be shown to produce biased 
values.

• The right relation between 1- and 2-step 
ahead prediction is:
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7MULTI-STEP AHEAD FORECASTING (6)

• The problem comes of course from the term 
εn+1. A possible solution is to compute:

where f(.) is the probability density of the 
innovations {εn}. Two problems: f(.) is 
generally only imperfectly known, and this 
integral may be hard to compute analytically. 
One resorts to numerical methods.
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8MULTI-STEP AHEAD FORECASTING (7)

• An approximate way to compute this forecast 
is using a Monte Carlo approach:

With the random variables {νk} drawn having 
the presumed probability density f(.).

• The difficulty of course is the state of 
knowledge about f(.).
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9MULTI-STEP AHEAD FORECASTING (8)

• A solution to this is to use a bootstrap approach, 
i.e. build an estimate:

where the {ek} are innovations {εn} obtained with 
the model on the N available samples, and are 
drawn from this set of innovations at random 
with replacement. The bootstrap is a bit poorer in 
performance, but no assumption on innovation 
distribution has to be made. 
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10MULTI-STEP AHEAD FORECASTING (9)

• It is to be noted that both Monte Carlo and 
bootstrap approaches allow one to compute 
interval forecasts.

• Indeed, instead of computing only the 
average as shown before, it is possible to 
estimate the probability density of the 
forecasts. 

• This is particularly appealing since for 
nonlinear models this density can be 
asymmetrical and even multimodal. 
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