INTRODUCTION 1

e Forecasting means using the nonlinear model
estimated on samples {x },n=1, ..., N, to
perform out-of-sample (true) prediction.

e (Questions arising are:

— What 1s the quality of the prediction
performed?

— What happens when multi-step ahead
prediction 1s to be made?
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MULTI-STEP AHEAD FORECASTING (1) 2

e We have already seen that the optimal
predictor of x, ., at time » 1n the least-squares

sense 1S: A

xn+h\n — E[xn+h ‘ Qn]

where () sums up all the information available
up to time #n. In the nonlinear case, 1t 1s
generally impossible to know 1n advance
whether 1t 1s better to directly estimate this

predictor or to iterate the 1-step ahead one.
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MULTI-STEP AHEAD FORECASTING (2) 3

e For a linear AR model, multi-step forecasting
1s easy. If the model 1s:

X,=aX, T ...7Tax, t¢&

n

Then the 1-step ahead forecast 1s:

xn+1|n = apX, T alxn—p+1

And the forecast error 1s ¢, . ;. The 2-step ahead
forecast 1s:

Xptodn = O Xpsqn T AX,,

n+lln —p+2
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MULTI-STEP AHEAD FORECASTING (3) 4

e And so on. It can be shown by recursion that
the mean-square prediction error MSPE(/)
for h-step ahead prediction 1s given by:

h—1
MSPE(h) =0 b/
=0

With &2 the variance of {¢ }, and {c,} the
impulse response of the AR filter. Basically,
all goes well because the linear operator and
the expectation commute.
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MULTI-STEP AHEAD FORECASTING (4) 5

e When the model 1s NAR:
X, =g(x,) t &,

the optimal 1-step ahead forecast 1s:
n+1|n_E X, 1€2,1=g(x,)

e But the optimal 2-step ahead predictor 1s:

n+2| E[ +2‘g2n E[g( +1)‘g2n

and alas:
E[g(x,.)[€,]1# gE]x,; 192, =2g(%,,1,)
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MULTI-STEP AHEAD FORECASTING (5) 6

e This means that iterating the NAR function
to produce successive forecasts 1s not a good
1dea. It can be shown to produce biased
values.

e The right relation between 1- and 2-step
ahead prediction i1s:

jen+2|n — E[g(g(xn) T gn+l) ‘ Qn]
— E[g()%n+1|n T gn+1) ‘ Qn]
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MULTI-STEP AHEAD FORECASTING (6) 7

® The problem comes of course from the term
g, .1- A possible solution 1s to compute:

j(\"n+2\n = _EOOO g (j(\“n+l\n TE )f (5 )dé‘

where f(.) 1s the probability density of the

innovations {¢&, }. Two problems: f(.) 1s
generally only impertectly known, and this
integral may be hard to compute analytically.
One resorts to numerical methods.
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MULTI-STEP AHEAD FORECASTING (7) 8

e An approximate way to compute this forecast
1s using a Monte Carlo approach:

1 &
xn+2|n = E Z g(xn+1|n T Vk)
k=1

With the random variables {v,} drawn having
the presumed probability density f(.).

e The difficulty of course 1s the state of
knowledge about f£(.).
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MULTI-STEP AHEAD FORECASTING (8) 9

e A solution to this 1s to use a bootstrap approach,
1.¢. build an estimate:

K
5(\:]93—)2|n — [ng(jénﬂn T ék)
k=1
where the {e,} are innovations {¢ } obtained with
the model on the N available samples, and are
drawn from this set of innovations at random
with replacement. The bootstrap 1s a bit poorer 1n

performance, but no assumption on innovation
distribution has to be made.
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MULTI-STEP AHEAD FORECASTING (9) 10

e |t is to be noted that both Monte Carlo and
bootstrap approaches allow one to compute
interval forecasts.

¢ Indeed, instead of computing only the
average as shown before, 1t 1s possible to
estimate the probability density of the
forecasts.

e This 1s particularly appealing since for
nonlinear models this density can be
asymmetrical and even multimodal.
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