EMBEDDING (1) 1

e |t was suggested first in [1] that nothing really
Imposed that the vectors of the reconstructed
attractor should be composed of equally spaced
samples. Actually, what matters Is the time span

(m-1) z covered by the vectors.

e But the approach proposed consists in selecting
terms In a linear AR model and retaining those as
vector components in the embedding.
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EMBEDDING (2) 2

e |n [2] this idea was somewhat amplified. Let us
consider now embedded vectors

Xna = [X(N=10), X(N-13), ooy X(N-150)IT
with all 1, < d, d chosen beforehand, and one tries to
predict sample x(n) using some G[X_,].
e Selection of the indices amounts to selecting a bit
string a of length d.

e The idea Is to select the best possible G and a using
an MDL approach.
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EMBEDDING (3) 3

e Recall that the coding length of data + model Is:
L(x,6,a) = - log P(x|6a) + L(&) + L(a)
where @ 1s the model parameter vector.

e The log likelihood of the data {x(n)}, n=1
N, must include the log likelihood of the initial
conditions X© = [x(d), x(2), ..., Xx(D]:

- log P(x|6,a) = - log P(x|6,a,X®) - log P(X©)
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EMBEDDING (4) 4

e |f It IS assumed that the errors and the Initial
conditions are independent and normally
distributed, one gets:

L(x,6,a) = - log P(X|N(0,52)) - log P(X@|N(0,5,2))
+L(6) + L(a)

e Now, In addition to determining the best set of
Indices, one must also select the best model.
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EMBEDDING (5) 5

e The idea proposed In [2] consists In using the
deterministic prediction scheme as the model.
Any imbedded vector can be used for prediction.

e This approach is simple to implement, and it Is
robust.

e |t does not require any parameter, thus L(6) = 0.

e But it is only a pseudo-model, since prediction of
X(n) may imply X,, with k > n.
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EMBEDDING (6) 6

e After some manipulations, and suppression of
constant or negligible terms, the MDL criterion Is:

I\/IDL(a)z%IOQ %Zd:(x(i)_)_()2 « initial

conditions

NG ogl L Seiy [+d

2 N - d i=d+1
— '
T model
errors

Signal Processing Laboratory .(I)ﬂ-
~ies  Swiss Federal Institute of Technology, Lausanne BCoLE POLYIECHNIQUE



EMBEDDING (7) 7

e Examining all possible combinations of indices up
to a maximum value d means estimating 2¢ models.
This Is not feasible.

e \What Is proposed In [2] IS a sequential selection
procedure, I.e.:

- the first term Is the one giving the smallest MDL
and kept.

- All possible 2nd terms are tested and the best one
kept if the MDL is smaller ...
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EMBEDDING (8) 5

e Unfortunately, this sequential selection does not
work as well as for term selection in pseudo-
linear models, which amounts to defining the best
subspace to project to.

e \Why not apply a genetic algorithm? Each
possible embedding Is coded as a bit string, with
a ‘1’ 1If the component is selected, ‘0’ otherwise.
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EMBEDDING (9) 5

e |orenz system, X coordinate
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EMBEDDING (10) 10

e Sunspot time series

Blue gIHdpdt
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EMBEDDING (11) 11

e Surrogate on sunspot time series

Blue: sign IHdpdt
200

Indices fe guiguilf% m: M‘Wu ‘MM“ W&M
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EMBEDDING (12) 12

e RR Intervals (between heartbeats), sampling 2 Hz.

Blue: signal. Fed: prediction errar
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EMBEDDING (13) 13

e |ncrease In model size with noise (Henon map, 300
samples)

snr (dB) terms

20 1, 2,3

15 1, 2,3

10 1,2,3,8

5 1,2,3,4,7,8,12, 15

0 1,2,3,5,7,9,10,11, 13, 14
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INTERDEPENDENCE (1) 14

e A technique to assess the interdependence between
two multivariate time series, related to deterministic
prediction, has been proposed [3,4].

e Of course, those multivariate time series X = {X }
and Y ={Y_ } may result from the embedding of
two signals {x(k)} and {y(k)}.

e The idea Is to look for the possible existence of
(well behaved) functions G(.) and F(.) such that

X, =G(Y,) and Y, =F(X)
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INTERDEPENDENCE (2) 15

e |t Is to be noted that interdependence does not imply
causation. The relationship between the two series may
be due to the influence of a third one on both of them.

e The principle of the test is simple and robust: If indeed
G(.) and F(.) exist and are reasonably continuous, then
If Y 1sclosetoY,, then X = G(Y,) should be close to
X, = G(Y)).

e Closeness Is quantified with respect to a deterministic
prediction of X using closest neighbors in {X,}.
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INTERDEPENDENCE (3) 16

e letr;ands,;, J=1, ..., Kk denote the indices of
the k nearest neighbors of X_and Y, respectively.

e The mean squared distance between X and Its
closest neighbors Is:

1 K
RV = Xl X=X, ;I
j=1

This quantity should be small for close enough
neighbors.
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INTERDEPENDENCE (4) 17

e The conditional mean squared distance with respect
to {Y, }Is:

i

n, ]

1 K
RV = D1 Xn=Xs
j=1

e One can define the same quantities for Y, :

1 k 1 k
RV = Y, 1P ROYI= %Yy IF
j=1 j=1
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INTERDEPENDENCE (5) 18

e If the point set {Y,} has an average squared radius
R(X):

R (X)/R(X) = (k/N)2™ <<1 fork << N

with m the dimension and N the number of vectors.

e If X and Y are indeed interdependent, then the same
relationship should hold for the conditional mean
square distance.
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INTERDEPENDENCE (6) 19

e A measure of local interdependence Is:
RE ()

RE(XY)

e And the global measure Is:

st (X|Y) = 0< st (x) <1

1 N
sWXIM=1 Esix1Y) - 0<sWxvst
=1

e This global measure should be close to 0 when
there 1s no Interdependence, and close to 1 for
strong interdependence
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INTERDEPENDENCE (7) 20

e To assess the significance of S®W(X|Y), one can
generate several surrogate data Y for Y, compute
SW(X|YW), and perform a rank test.

e |f there Is indeed a significant interdependence, it Is
possible to test If it is linked to phase only by
generating bivariate surrogated data {X®,Y®},
compute SO(X®|Y®), and perform a rank test.

e Those bivariate surrogate data are generated by
applying the same phase randomization to both signals.
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RECURRENCE PLOT (1) 21

e Recurrence plots (RP) were initially introduced to
display the recurrence of patterns and possible

non stationarities in imbedo
e Apart from producing nice

ed time series [5,6].
pictures, several

parameters can be extractec

from RP to

characterize dynamical processes.

e RP have also been generalized to the analysis of
the interdependence between two time series.
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RECURRENCE PLOT (2) 22

e The principle of RP Is quite simple: given a
multivariate time series {X } n=1, ..., N, possibly
obtained through the embedding of a signal, an RP
IS an NxN array in which a dot is placed at location
(1)) If |[X; - X|| < 6, & a predetermined small number.

e Typically, o Is a fraction of the sum of standard
deviations of the vector components (sstd).

e Of course, RPs are symmetrical with respect to the
main diagonal.
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RECURRENCE PLOT (3) 23

e Periodicities (recurrences) are expressed by
diagonal lines in RPs. RP-based analysis Is
mostly based on the characterization of these
lines.

e Of course, an RP Is dependent upon the threshold
9, but It 1s also quite dependent upon vector
dimension m.

e \What matters Is to conserve these values through
the various experiments performed.
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RECURRENCE PLOT (4)

e Example: sinusoid with period 20, m =1,

= 0.05 sstd.
KR
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RECURRENCE PLOT (5)

e Example: sinusoid with period 20, m = 2,
o = 0.05 sstd.

/

/
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RECURRENCE PLOT (6)

e Example: Lorenz, [xy z], 6 = 0.05 sstd.

udlé
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RECURRENCE PLOT (7) 27

Parameters extracted:

e REC proportion of recurrence (black) points.
Higher for periodic dynamics.

e DET proportion of recurrence points in diagonal
lines of length at least 2. Higher for deterministic
dynamics.

e ENT entropy of line lengths on the diagonal.
Higher for more complex dynamics
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RECURRENCE PLOT (8) 28

e DIV inverse of the length of the longest diagonal
line. Higher for larger maximum Lyapunov
exponent.

e TREND slope a of the regression line:
Ri=b+ad + &
with R; the proportion of recurrence points on
diagonal at distance d; from the main diagonal.

Quantifies the decrease in recurrence with respect
to time difference.
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RECURRENCE PLOT (9) 29

e Clearly, significance of the values of these parameters
In terms of determinism or nonlinearity must be
assessed using surrogate data.

R T S

enon

surrogate

REC=0.03 DET=0.86 DIV=0.09 trend=-1.5e-5 REC=0.008 DET=0.24 DIVV=0.33 trend=-1.7e-5
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RECURRENCE PLOT (10) 30

e |t Is also possible to generate RP with two time
series (same range, same dimension).

e Example: x and y of Lorenz
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