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1EMBEDDING (1)

• It was suggested first in [1] that nothing really 
imposed that the vectors of the reconstructed 
attractor should be composed of equally spaced 
samples. Actually, what matters is the time span 
(m-1)τ covered by the vectors.

• But the approach proposed consists in selecting 
terms in a linear AR model and retaining those as 
vector components in the embedding.
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2EMBEDDING (2)

• In [2] this idea was somewhat amplified. Let us 
consider now embedded vectors 

Xn-1 = [x(n-i1), x(n-i2), …, x(n-imax)]T

with all ik < d, d chosen beforehand, and one tries to 
predict sample x(n) using some G[Xn-1]. 

• Selection of the indices amounts to selecting a bit 
string a of length d.

• The idea is to select the best possible G and a using 
an MDL approach.
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3EMBEDDING (3)

• Recall that the coding length of data + model is:
L(x,θ,a) = - log P(x|θ,a) + L(θ) + L(a)

where θ is the model parameter vector.

• The log likelihood of the data {x(n)}, n = 1, …, 
N, must include the log likelihood of the initial 
conditions X(0) = [x(d), x(2), …, x(1)]T:

- log P(x|θ,a) = - log P(x|θ,a,X(0)) - log P(X(0))
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4EMBEDDING (4)

• If it is assumed that the errors and the initial 
conditions are independent and normally 
distributed, one gets: 

L(x,θ,a) = - log P(x|N(0,σ2)) - log P(X(0)|N(0,σX
2))

+ L(θ) + L(a)
• Now, in addition to determining the best set of 

indices, one must also select the best model.



Signal Processing Laboratory
Swiss Federal Institute of Technology, Lausanne

5EMBEDDING (5)

• The idea proposed in [2] consists in using the 
deterministic prediction scheme as the model. 
Any imbedded vector can be used for prediction.

• This approach is simple to implement, and it is 
robust.

• It does not require any parameter, thus L(θ) = 0.
• But it is only a pseudo-model, since prediction of 

x(n) may imply Xk, with k > n.
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6EMBEDDING (6)

• After some manipulations, and suppression of 
constant or negligible terms, the MDL criterion is:
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7EMBEDDING (7)

• Examining all possible combinations of indices up 
to a maximum value d means estimating 2d models. 
This is not feasible. 

• What is proposed in [2] is a sequential selection
procedure, i.e.:

- the first term is the one giving the smallest MDL 
and kept.

- All possible 2nd terms are tested and the best one 
kept if the MDL is smaller …
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8EMBEDDING (8)

• Unfortunately, this sequential selection does not 
work as well as for term selection in pseudo-
linear models, which amounts to defining the best 
subspace to project to.

• Why not apply a genetic algorithm? Each 
possible embedding is coded as a bit string, with 
a ‘1’ if the component is selected, ‘0’ otherwise.
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9EMBEDDING (9)

• Lorenz system, x coordinate

Sequential and GA:
Same model
Indices 1, 2
(maximum 15)
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10EMBEDDING (10)

• Sunspot time series

Sequential
Indices 1, 2, 5
MDL: 839.02

GA
Indices 1, 2, 3, 5, 11

MDL: 837.5

(maximum 15)
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11EMBEDDING (11)

• Surrogate on sunspot time series

Sequential
Indices 1, 3, 12, 13

MDL: 931.62

GA
Indices 1, 3, 12, 13

MDL: 931.62

(maximum 15)
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12EMBEDDING (12)

• RR Intervals (between heartbeats), sampling 2 Hz.

Sequential
Indices 1, 3, 6
MDL: 1623.8

GA
Indices 1, 3, 12, 15

MDL: 1597.8

(maximum 15)
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13EMBEDDING (13)

• Increase in model size with noise (Henon map, 300 
samples)

snr (dB)              terms
20                       1, 2, 3
15                       1, 2, 3
10                       1, 2, 3, 8
5                        1, 2, 3, 4, 7, 8, 12, 15
0                        1, 2, 3, 5, 7, 9, 10, 11, 13, 14
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14INTERDEPENDENCE (1)

• A technique to assess the interdependence between 
two multivariate time series, related to deterministic 
prediction, has been proposed [3,4].

• Of course, those multivariate time series X = {Xn} 
and  Y = {Yn} may result from the embedding of 
two signals {x(k)} and {y(k)}.

• The idea is to look for the possible existence of 
(well behaved) functions G(.) and F(.) such that 

Xn = G(Yn)  and  Yn = F(Xn) 
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15INTERDEPENDENCE (2)

• It is to be noted that interdependence does not imply 
causation. The relationship between the two series may 
be due to the influence of a third one on both of them.

• The principle of the test is simple and robust: if indeed 
G(.) and F(.) exist and are reasonably continuous, then 
if Yn is close to Yk, then Xn = G(Yn) should be close to 
Xk = G(Yk).

• Closeness is quantified with respect to a deterministic 
prediction of Xn using closest neighbors in {Xk}.
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16INTERDEPENDENCE (3)

• Let rn,j and sn,j, j = 1, …, k, denote the indices of 
the k nearest neighbors of Xn and Yn respectively.

• The mean squared distance between Xn and its 
closest neighbors is:

This quantity should be small for close enough 
neighbors.
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17INTERDEPENDENCE (4)

• The conditional mean squared distance with respect 
to {Yk} is:

• One can define the same quantities for Yn : 
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18INTERDEPENDENCE (5)

• If the point set {Yk} has an average squared radius 
R(X): 

with m the dimension and N the number of vectors.
• If X and Y are indeed interdependent, then the same 

relationship should hold for  the conditional mean 
square distance.
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19INTERDEPENDENCE (6)

• A measure of local interdependence is:

• And the global measure is:

• This global measure should be close to 0 when 
there is no interdependence, and close to 1 for 
strong interdependence
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20INTERDEPENDENCE (7)

• To assess the significance of S(k)(X|Y), one can 
generate several surrogate data Y(u) for Y, compute 
S(k)(X|Y(u)), and perform a rank test.

• If there is indeed a significant interdependence, it is 
possible to test if it is linked to phase only by 
generating bivariate surrogated data {X(b),Y(b)}, 
compute S(k)(X(b)|Y(b)), and perform a rank test.

• Those bivariate surrogate data are generated by 
applying the same phase randomization to both signals.
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21RECURRENCE PLOT (1)

• Recurrence plots (RP) were initially introduced to 
display the recurrence of patterns and possible 
non stationarities in imbedded time series [5,6].

• Apart from producing nice pictures, several 
parameters can be extracted from RP to 
characterize dynamical processes.

• RP have also been generalized to the analysis of 
the interdependence between two time series. 
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22RECURRENCE PLOT (2)

• The principle of RP is quite simple: given a 
multivariate time series {Xn} n = 1, …, N, possibly 
obtained through the embedding of a signal, an RP 
is an N×N array in which a dot is placed at location 
(i,j) if ||Xi - Xj|| < δ, δ a predetermined small number.

• Typically, δ is a fraction of the sum of standard 
deviations of the vector components (sstd).

• Of course, RPs are symmetrical with respect to the 
main diagonal.
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23RECURRENCE PLOT (3)

• Periodicities (recurrences) are expressed by 
diagonal lines in RPs. RP-based analysis is 
mostly based on the characterization of these 
lines.

• Of course, an RP is dependent upon the threshold 
δ, but it is also quite dependent upon vector 
dimension m.

• What matters is to conserve these values through 
the various experiments performed.
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24RECURRENCE PLOT (4)

• Example: sinusoid with period 20, m = 1,                     
δ = 0.05 sstd.
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25RECURRENCE PLOT (5)

• Example: sinusoid with period 20, m = 2,                     
δ = 0.05 sstd.
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26RECURRENCE PLOT (6)

• Example: Lorenz, [x y z], δ = 0.05 sstd.
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27RECURRENCE PLOT (7)

Parameters extracted:
• REC proportion of recurrence (black) points. 

Higher for periodic dynamics.
• DET proportion of recurrence points in diagonal 

lines of length at least 2. Higher for deterministic 
dynamics.

• ENT entropy of line lengths on the diagonal. 
Higher for more complex dynamics
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28RECURRENCE PLOT (8)

• DIV inverse of the length of the longest diagonal 
line. Higher for larger maximum Lyapunov
exponent.

• TREND slope a of the regression line:
Rj = b + adj + εj

with Rj the proportion of recurrence points on 
diagonal at distance dj from the main diagonal. 
Quantifies the decrease in recurrence with respect 
to time difference.
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29RECURRENCE PLOT (9)

• Clearly, significance of the values of these parameters 
in terms of determinism or nonlinearity must be 
assessed using surrogate data.
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30RECURRENCE PLOT (10)

• It is also possible to generate RP with two time 
series (same range, same dimension).

• Example: x and y of Lorenz
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