• We are going to deal in this chapter with chaotic dynamical systems, and more specifically with the estimation of some parameters characterizing these systems.

• As a matter of fact, if the search for real-life chaotic systems is a bit outdated, these parameters present a specific interest in many applications (physics, biomedical data analysis, finance, ...).
• Estimation of these parameters aims at:
 – Detecting the presence of chaotic dynamics
 – Determining the dimension of the underlying mechanism
 – Quantifying the complexity of this dynamics
 – Obtaining features for classification purposes.
• There is no global definition of chaos. One sometimes speaks of the apparently stochastic evolution of a deterministic system, with an exponential sensitivity to initial conditions.

\[\frac{dX(t)}{dt} = G[X(t)] \quad X(n) = F[X(n-1)] \]

• One speaks also of a bounded dynamics in equilibrium regime, which corresponds neither to a fixed point nor a limit cycle.
A BRIEF PRESENTATION OF CHAOS (2)

- One cannot have a chaotic dynamics with a linear system. The linear AR model:

\[x(n) = a_1 x(n-1) + \cdots + a_p x(n-p) + \varepsilon(n) \]

- Can be cast in a Markov (state-space) representation:

\[
\begin{bmatrix}
 x(n) \\
 x(n-1) \\
 \vdots \\
 x(n-p+1)
\end{bmatrix} =
\begin{bmatrix}
 a_1 & a_2 & \cdots & a_p \\
 1 & 0 & \cdots & 0 \\
 \cdot & \cdot & \ddots & \cdot \\
 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 x(n-1) \\
 x(n-2) \\
 \vdots \\
 x(n-p)
\end{bmatrix} +
\begin{bmatrix}
 \varepsilon(n) \\
 0 \\
 \vdots \\
 0
\end{bmatrix}
\]
• To sum up:

\[X(n) = AX(n-1) + E(n) \]

• If there is no excitation \(E(n) \) three cases are possible:

 – Moduli of the eigenvalues of \(A \) are all < 1, (\(\Leftrightarrow \) pole moduli < 1): \(||X(n)|| \) converges towards 0.

 – Some eigenvalues of \(A \) have a modulus > 1, (\(\Leftrightarrow \) pole moduli > 1): \(||X(n)|| \) grows without bound.

In broad terms there are two cases:

But if the dynamics is nonlinear, it can “fold” the trajectories, so that it remains bounded:
• this succession of expansions/contractions coupled with the sensitivity to initial conditions is responsible for this aperiodic evolution.

• Example: Hénon’s Map:

\[
\begin{bmatrix}
 x(n) \\
 x(n-1)
\end{bmatrix} = \begin{bmatrix}
 1-1.4x(n-1)^2 + 0.3(x(n-2)) \\
 x(n-1)
\end{bmatrix} = F\left\{\begin{bmatrix}
 x(n-1) \\
 x(n-2)
\end{bmatrix}\right\}
\]
A BRIEF PRESENTATION OF CHAOS (6)

\[x(n) \]

\[x(n-1) \]

zoom
• Chaotic systems evolve generically towards a *strange attractor* characterized by:

 – A null volume

 – An exponentially fast separation of trajectories initially close

 – A dimension often fractal

 – An invariant measure ρ which enables the definition of mean values.
• This concept is linked to ergodicity: for an infinite number of initial conditions in the basin of attraction, the characteristics of the trajectories (such as point density in a region) are independent of the former.

• This is illustrated by applying Hénon’s map simultaneously to a large number of points for several iterations. Successive images fill the attractor the same way a single trajectory would.
• Example: iteration of 100 points on a circle
• Sensitivity to initial conditions

\[x(n) \]

modification by \(10^{-6}\) of one component

signal difference
FRACTAL DIMENSION (1)

• Exact definition: a fractal is a geometrical object, the Hausdorff dimension of which is strictly larger than its topological dimension.

• Without entering into details, this definition cannot be used in practice because it implies examining all possible covers of the object by sets of finite radius.

• In practice, the estimation of Hausdorff dimension is restricted to the study of covers of the object by balls of various radii.
FRACTAL DIMENSION (2)

- For a “normal” curve:

- If radius r is 2 times smaller, the number N of balls is 2 times large: $N \propto r^{-D}$, with $D = 1$
• Koch’s snowflake is a fractal obtained iteratively:

Well, you’ve got the idea ….

• The limit object is of infinite length (factor $4/3$ on the length at each iteration), but it is bounded and has null volume. It is “more than a curve but less than a surface.”
FRACTAL DIMENSION (4)

But if the following cover is used:

\[r_1 = 1 \]
\[N_1 = 1 \]
\[r_2 = 1/3 \]
\[N_2 = 4 \]

Thus, if \(N_k = C r_k^{-D} \):

\[
\frac{N_2}{N_1} = \left(\frac{r_2}{r_1} \right)^{-D} \implies D = \log \left(\frac{N_2}{N_1} \right) / \log \left(\frac{r_1}{r_2} \right) = \frac{\log 4}{\log 3} \approx 1.26
\]
• This value indeed indicates that Koch’s snowflake is less than a surface, but more than a curve. The fractal dimension quantifies the *occupation of the space* containing the object.

• Fractal objects are characterized by *scale invariance*: if one observes a part of a fractal at a smaller scale, the structure is the same as for the whole fractal.
• Equivalently, one may study the evolution of some quantity (≈ mass) with respect to radius. For a homogeneous object:

\[M \propto r^D, \]

with \(D = 2 \).

• If the radius is 2 times larger, the surface is 4 times larger, thus \(M \propto r^D \), with \(D = 2 \).
FRACTAL DIMENSION (7)

- For the following fractal object:

\[r_1 = 1 \]
\[M_1 = 3 \]
\[r_2 = 4 \]
\[M_2 = 9 \]

- So, if \(M_k = C \ r_k^D \):

\[
\frac{M_2}{M_1} = \left(\frac{r_2}{r_1} \right)^D
\]

\[
D = \frac{\log \left(\frac{M_2}{M_1} \right)}{\log \left(\frac{r_2}{r_1} \right)} = \frac{\log 3}{\log 4} \approx 0.79
\]
The two approaches give the same value for the fractal dimension for “perfect” (obtained iteratively) fractals.

Of course, for non regular fractals (such as Hénon’s map attractor), they must be obtained through an averaging process.

By all means, in practical situations, only a finite number of points will be available.
Lyapunov exponents will be introduced in the continuous time context, but extension to the discrete time case is immediate.

\[
\frac{dX(t)}{dt} = G[X(t)] \rightarrow X(t) = G_t[X(0)]
\]

For a close initial condition:

\[
G_t[X(0) + \epsilon] = G_t[X(0)] + J_t \epsilon + O(||\epsilon^2||)
\]

with \(J_t \) the Jacobian: \(J_t = \left. \frac{\partial G_t(X)}{\partial X} \right|_{X=X(0)} \)
• One can show that the limit matrix:

\[\Lambda_{X(0)} = \lim_{t \to \infty} \left[J_t^T J_t \right]^{1/2t} \]

exists and does not depend on \(X(0) \)

• Logarithms \(\{\lambda_i\} \) of the eigenvalues of this matrix are called Lyapunov exponents.

• For an attractor with null volume, one must have:

\[\sum \lambda_i < 0 \]
• A chaotic dynamics is characterized by at least one positive Lyapunov exponent.

• Lyapunov exponents quantify the expansion or contraction rates in the eigendirections of flow.
Most of the time, only one time series is available. How is it possible to estimate the time evolution of state vectors?

Imbedding theorem:

One can reconstruct the attractor up to a diffeomorphism from a scalar time series \(\{x(n)\} \) using the vectors:

\[
X(n) = [x(n), x(n+\tau), x(n+2\tau), \cdots, x(n+(m-1)\tau)]^T
\]

with \(m > 2D \) and \(\tau \) almost arbitrary. But this suppose an infinite number of noiseless samples.
• Equivalence up to a diffeomorphism implies that such as fractal dimension and Lyapunov exponents are not modified.

• With a finite number of samples, one starts by determining an appropriate value for τ, then for the embedding dimension m, since fractal dimension D is of course not known in advance.

• Condition $m > 2D$ can often be slacken to $m > D$.
Example: reconstruction of Lorenz attractor defined by:

\[
\begin{align*}
\frac{dx(t)}{dt} &= 10[y(t) - x(t)] \\
\frac{dy(t)}{dt} &= x(t)[28 - z(t)] - y(t) \\
\frac{dz(t)}{dt} &= x(t)y(t) - \frac{8}{3}z(t)
\end{align*}
\]

The attractor is reconstructed from samples of \(y(t)\).
ATTRACTION RECONSTRUCTION (4)

Lorenz attractor reconstructed attractor
• Components of the reconstructed vectors must not be:
 – Too close, because then the reconstructed attractor is on the diagonal.
 – Too far apart (independent), because the structure of the original attractor is lost.

• The first method proposed consisted in choosing \(\tau \) as the position of the first zero crossing of the autocovariance function of the signal.
But this approach typically gives too large values.

- It was also proposed to select τ as the position of the first minimum of mutual information between samples.
- In practice, a good solution consists in taking τ as the position where the autocovariance is $(1-1/e)$ times its maximum value.
• First method proposed: analysis of the evolution with respect to the embedding dimension m of the effective dimension of the space generated by the vectors of the reconstructed attractor.

• This can be done by computing the SVD of the matrix built by line stacking of the reconstructed vectors, which amounts to compute the eigenvalues of their covariance matrix. Then, a test can be performed on the singular values to extract the effective dimension.
• **False neighbor method**

One increases the immersion dimension until vectors that were previously neighbors do not separate anymore. For vector \(X(k) \) and \(X_{nn}(k) \) its nearest neighbor at a distance \(d_m(k) \) for dimension \(m \), one measures:

\[
E = \frac{|x(k + m\tau) - x_{pv}(k + m\tau)|}{d_m(k)}
\]

If \(E \) is above some threshold (typically between 10 and 50), then \(X(k) \) et \(X_{pv}(k) \) are “false neighbors” for dimension \(m \).
• But a simple and efficient approach consists in applying a method for fractal dimension estimation for increasing values of m and observe when the estimate saturates.
• Estimation by cover

It is simpler to use a cover by cubes.

• Estimation of point dimension

One increases the radius of a sphere centered on a point, and the “mass” computed is the number of points in this sphere for all radii. This is repeated on all points and the evolutions of mass versus radius are averaged.
• Unfortunately these methods are not robust. A more efficient approach, introduced by Grassberger and Procaccia, consists in using for the “mass” the square of point density in a sphere. This corresponds to what is called correlation dimension. One computes:

\[
M(r) = \frac{2}{N(N-1)} \sum_{1<i,j<N, i\neq j} \theta(r - \|X(i) - X(j)\|)
\]

with \(\theta(u) = 0, \; u < 0\), \(\theta(u) = 1, \; u > 0\).
• In practice, if \(M(r) = c.r^D \), one estimates the slope of \(\log[M(r)] \) with respect to \(\log(r) \).

\[
\begin{align*}
\text{log}(r) \\
\text{log}(r)
\end{align*}
\]

• Of course this must be done in the linear part. When \(r \) is too small, there are only few pairs of points closer than \(r \), and when \(r \) is too large, all pairs of points are closer than \(r \).
• **Local Intrinsic Dimension (LID)**

A different approach consists in interpreting the fact that the fractal dimension quantifies the occupation of embedding space by the attractor. For a point and its closest neighbors:

![Diagram showing two cases of local dimension, one with local dimension = 1 and another with local dimension = 2.]

local dimension = 1
local dimension = 2
Obviously in practice points will not be perfectly aligned. In fact, one selects randomly a vector X and its $k \ (k>m)$ nearest neighbors $\{X(i)\}$. Then the matrix:

$$A = [X_{(1)} - X, X_{(2)} - X, \ldots, X_{(k)} - X]$$

is built and its effective rank is computed using SVD. The process is iterated on a suitable number of randomly chosen vectors and the LID is the average of the effective ranks.
Unfortunately, the presence of additive noise “blows up” the attractor, which loses its fractal aspect.

original attractor attractor + noise (snr 40 dB)
• Estimation of all the exponents

One picks up a vector $X(n)$ at random, and determines its k nearest neighbors $\{X(i_n)\}$. One has:

$$X(i_n + 1) - X(n + 1) = \delta(i_n + 1) \approx J_n \delta(i_n)$$

The Jacobian J_n is estimated by minimizing:

$$\sum_{i=1}^{k} \| \delta(i_n + 1) - J_n \delta(i_n) \|^2$$
This operation is repeated on $X(n+1)$, (determination of the k nearest neighbors ...), up to an index $n+N-1$.

The exponents are estimated using:

$$\lambda_p = \frac{1}{N} \log(\Lambda_p)$$

with Λ_p the pth eigenvalue of the matrix product $\Pi \mathbf{J}_{n+j}$, $j=0, \ldots, N-1$.

- It is necessary in practice to average the results on many trajectories.
• Estimation of the largest exponent

By all means, it is usually the most interesting value, and a robust estimation algorithm has been proposed.

It is based on the fact that the largest exponent λ dictates trajectory separation, with the distance evolving as:

$$d(t) = c \exp(\lambda t)$$
One picks at random a vector $X(n)$, and its closest neighbor $X(m)$ is determined. One has:

$$d_n(0) = \| X(n) - X(m) \|$$
$$d_n(k) = \| X(n+k) - X(m+k) \| \approx d_n(0) \exp(\lambda k)$$

thus:

$$\log[d_n(k)] \approx \lambda k + \log[d_n(0)]$$
This operation is repeated on a sufficiently large number of randomly chosen vectors, the evolution of log-distances with respect to k are averaged, and then the slope is estimated in the linear part:

![Graph showing the evolution of log-distances with respect to k.]

Saturation of course takes place as soon as the distance between vector pairs is of the order of attractor diameter.
CONTRAINTS ON DATA SIZE

- To estimate attractor dimension D, the number of samples must be in the order 10^D to 40^D.
- To estimate Lyapunov exponents, the number of samples must be larger than 40^D.
- If only the largest exponent is estimated, around 5^D to 10^D samples is enough.
- Note that if D is large and the number of samples is too small, one does not “see” the structure of the attractor.
This type of prediction, suited to a chaotic dynamics, is based on the following simple idea:

Of course, a chaotic dynamics implies an exponentially fast separation of trajectories. But this dynamics is deterministic, and on the short term, *to close vectors will correspond close successors.*
• Thus, if two vectors $X(n)$ et $X(p)$ are close, the first components $x(n+m\tau)$ and $x(p+m\tau)$ of their successor will be close too.

• To test if a dynamics can be predicted efficiently in this way, one splits the samples into two groups (which gives the same partition for the reconstructed vectors).

• The test part is used to assess prediction performance, the reference part to find neighboring vectors.
• Principle:

1. determining closest neighbor
2. prediction with successor

• One can also use several neighbors, and define the prediction as a sum of successors weighted by the inverses of the distances.
• Surrogate data can be used to:
 – Test the presence of nonlinear dynamics
 – Test the significance level of the characteristics (fractal dimension, Lyapunov exponents, predictibility…) obtained.

• To build these surrogates, one uses the fact that linear relationships between samples imply only 2nd-order statistics, i.e. the autocorrelation function, which is even and doesn't carry any phase information.
• Principle of surrogate generation:

signal → gaussianization → DFT

Inverse DFT ← phase randomization

de-gaussianization
• To “Gaussianize“ the samples, one feeds them through an instantaneous nonlinearity which is the distribution of the samples.

• Phase randomization on the discrete Fourier transform (phases uniformly drawn between 0 and 2π), destroys any potential nonlinear structure.

• De-Gaussianization consist in applying the inverse of the instantaneous linear transform.
• Example: surrogate signal for Hénon
SURROGATE DATA (5)

Estimated probability density functions:
Estimated power spectra
But for the attractors…

- No surprise: the chaotic dynamics is responsible for attractor structure. If it is suppressed, then the structure disappears.
REFERENCES

