INTRODUCTION (1) :

e We are going to deal 1n this chapter with chaotic
dynamical systems, and more specifically with the
estimation of some parameters characterizing these
systems.

e As a matter of fact, 1f the search for real-life chaotic
systems 1s a bit outdated, these parameters present a
specific interest in many applications (physics,
biomedical data analysis, finance, ...).
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INTRODUCTION (2) 2

e Estimation of these parameters aims at:
— Detecting the presence of chaotic dynamics

— Determining the dimension of the underlying
mechanism

— Quantifying the complexity of this dynamics

— Obtaining features for classification purposes.

/\ Signal Processing Laboratory .(Pﬂ.
~es Swiss Federal Institute of Technology, Lausanne o e

 LAUSANN



A BRIEF PRESENTATION OF CHAOS (1) 3

e There 1s no global definition of chaos. One
sometimes speaks of the apparently stochastic
evolution of a deterministic system, with an
exponential sensitivity to mitial conditions.

dX ()
dt
® One speaks also of a bounded dynamics 1n

equilibrium regime, which corresponds neither to
a fixed point nor a limit cycle.

=Gl X@O]  X(m)=FrlX(n-1)]
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A BRIEF PRESENTATION OF CHAQOS (2) 4

e One cannot have a chaotic dynamics with a linear
system. The linear AR model:

x(n)=ax(n—1)---+a,x(n— p)+&(n)

e Can be cast in a Markov (state-space) representation:

x(n) a a, - a,|x(n=-1)] [en)
x(n—1) 1 0 - 0| x(n-2) 0

x(n—-p+)| [0 0 1 O |x(n—p) 0
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A BRIEF PRESENTATION OF CHAQOS (3) 5

® [0 sum up:
X(n) =AX(n-1) + En)
e [f there 1s no excitation £{n) three cases are
possible:

— Modul1 of the eigenvalues of A are all < 1, (< pole
modul1 < 1): ||X(n)|| converges towards 0.

— Some eigenvalues of A have a modulus >1, (< pole
moduli > 1): ||X(n)|| grows without bound.

— Neutrally stable case (atypical): limit cycle.
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A BRIEF PRESENTATION OF CHAQOS (4) 6

e |n broad terms there are two cases:

N/ N/
/N 7N\

e But if the dynamics 1s nonlinear, 1t can “fold” the
trajectories, so that 1t remains bounded:

X/
Z4RN
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A BRIEF PRESENTATION OF CHAQOS (5) 7

e this succession of expansions/contractions
coupled with the sensitivity to mitial conditions
1s responsible for this aperiodic evolution.

e Example: Henon’s Map:

Cx(m) | [ 1-14x(n=1)> +0.3(x(n-2) _ F:X(Fl—l)_\>

x(n-1) x(n—1) [ x(n—2)
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x(n)

A BRIEF PRESENTATION OF CHAQOS (6)

N5+

x(n-1)
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STRANGE ATTRACTOR 9

e Chaotic systems evolve generically towards a
strange attractor characterized by:

— A null volume

— An exponentially fast separation of trajectories
initially close

— A dimension often fractal

— An 1mvariant measure p which enables the
definition of mean values.
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INVARIANT MEASURE (1) 10

e This concept 1s linked to ergodicity: for an infinite
number of 1nitial conditions 1n the basin of attraction,
the characteristics of the trajectories (such as point
density 1n a region) are independent of the former.

e This 1s illustrated by applying Hénon’s map
simultaneously to a large number of points for
several 1terations. Successive images fill the attractor
the same way a single trajectory would.
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1.4

INVARIANT MEASURE (2)
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SEPARATION OF CLOSE TRAJECTORIES 12

e Sensitivity to mitial conditions

x(n)

modification by 104 | ' ' |
of one component | ‘

signal difference
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FRACTAL DIMENSION (1) 13

e Exact definition: a fractal 1s a geometrical object,
the Hausdorff dimension of which 1s strictly larger
than 1its topological dimension.

e Without entering into details, this definition
cannot be used 1n practice because 1t implies
examining all possible covers of the object by sets
of finite radius.

e In practice, the estimation of Hausdortf dimension
1s restircted to the study of covers of the object by
balls of various radi.
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FRACTAL DIMENSION (2) 14

e For a “normal’ curve:

e [f radius 7 1s 2 times smaller, the number N of
balls 1s 2 times large: N oc 2, with D = 1
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FRACTAL DIMENSION (3) 15

e Koch’s snowflake 1s a fractal obtained iteratively:

. _/1\_

Well, you’ve _/\j/\?_/\_

oot the idea .... *=

e The limit object 1s of infinite length (factor 4/3 on the
length at each 1teration), but i1t 1s bounded and has
null volume. It 1s “more than a curve but less than a
surface.”
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FRACTAL DIMENSION (4) 16

e But 1f the following cover 1s used:

r1—1 @ @ r2—1/3

® Thus, if N, =C r">:

_D
N, /,,2\ /]\[2\/10g/,,1\:10g4z1.26

—= =] = = D =log —
Ny \n, ALY 7y ) log3
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FRACTAL DIMENSION (5) 17

e This value indeed indicates that Koch’s
snowflake 1s less than a surface, but more than a
curve. The fractal dimension quantifies the
occupation of the space containing the object.

e Fractal objects are characterized by scale
invariance: 1f one observes a part of a fractal at a
smaller scale, the strcture 1s the same as for the
whole fractal.
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FRACTAL DIMENSION (6) 18

e Equivalently, one may study the evolution of
some quantity (= mass) with respect to radius.
For a homogeneous object:

o [f the radius 1s 2 times larger, the surface 1s 4
times larger, thus M oc ¥, with D = 2.

/\ Signal Processing Laboratory .(Pﬂ.
~ita Swiss Federal Institute of Technology, Lausanne e oL

 LAUSANN



FRACTAL DIMENSION (7) 19

e For the following fractal object:

O
® O
r, =1 o r,=4
M, =73 @ O M,=9
o So,1f M, =Crp:
D

M, () (M, (1) log3

|2 S D=log %]/ log 212982079

My \h M, )/ \n) logd
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FRACTAL DIMENSION (8) 20

e The two approaches give the same value for the
fractal dimension for “perfect” (obtained
iteratively) fractals.

e Of course, for non regular fractals (such as
Hénon’s map attractor), they must be obtained
through an averaging process.

e By all means, in practical situations, only a finite
number of points will be available.
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LYAPUNOV EXPONENTS (1) 21

e [yapunov exponents will be introduced 1n the
continuous time context, but extension to the discrete
time case 1s immediate.

dX (1) _
dt

Gl X(1)] — X(1)=G,[X(0)]

e For a close 1nitial condition:
G[X(0)+¢]=G[X(O)]+Je+O(£°|)

0G,(X)
oX  x—x(0)
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LYAPUNOV EXPONENTS (2) 22

® One can show that the limit matrix:

Ay =limlT7, ]

[—>0

ex1sts and does not depend on X(0)

o [ogarithms {4} of the eigenvalues of this matrix are
called Lyapunov exponents.

e For an attractor with null volume, one must have:

> 4. <0
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LYAPUNOV EXPONENTS (3) 23

e A chaotic dynamics 1s characterized by at least
one positive Lyapunov exponent.

e [yapunov exponents quantify the expansion or
contraction rates 1n the eigendirections of flow.

‘ >
B

—

—Cr

—

 —

A<0
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ATTRACTOR RECONSTRUCTION (1) 24

e Most of the time, only one time series 1s available.
How 1s 1t possible to estimate the time evolution of
state vectors?

¢ Imbedding theorem:

One can reconstruct the attractor up to a diffeomorphism
from a scalar time series {x(n)} using the vectors:

X(n) =[x(n),x(n+17),x(n+27), - x(n+(m—-1)7)]'
with m > 2D and 7 almost arbitrary. But this suppose an
infinite number of noiseless samples.
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ATTRACTOR RECONSTRUCTION (2) 25

e Equivalence up to a diffeomorphism implies that
such as fractal dimension and Lyapunov exponents
are not modified.

e With a finite number of samples, one starts by

determining an appropriate value forz, then for the
embedding dimension m, since fractal dimension D
1s of course not known 1n advance.

e Condition m > 2D can often be slacken to m > D.

= e Olgnal Processing Laboratory .(Pﬂ.
Swiss Federal Institute of Technology, Lausanne O oL IECRIO:



ATTRACTOR RECONSTRUCTION (3)

e Example: reconstruction of Lorenz attractor
defined by:

(d’;(f) — 100 (1) — x(0)]
<dydf)—x(r>[28 2(0)] - v(0)
dff’) = (0¥ () ——z(t)

26

e The attractor 1s reconstructed from samples of (7).
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ATTRACTOR RECONSTRUCTION (4)

50 30

27

Lorenz attractor reconstructed attractor
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DETERMINATION OF DELAY 7 (1) 28

e Components of the reconstructed vectors must
not be:

— Too close, because then the reconstructed
attractor 1s on the diagonal.

— Too far apart (independent), because the
structure of the original attractor 1s lost.

e The first method proposed consisted in choosing

r as the position of the first zero crossing of the
autocovariance function of the signal.
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DETERMINATION OF DELAY 7 (2) 29

But this approach typically gives too large values.

e [t was also proposed to selectr as the position of
the first minimum of mutual information between
samples.

e |n practice, a good solution consists 1n taking z as
the position where the autocovariance 1s (1-1/¢)
times 1ts maximum value.
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DETERMINATION OF EMBEDDING DIMENSION (1) 30

¢ First method proposed: analysis of the evolution
with respect to the embedding dimension m of the
effective dimension of the space generated by the
vectors of the reconstructed attractor.

e This can be done by computing the SVD of the
matrix built by line stacking of the reconstructed
vectors, which amounts to compute the
eigenvalues of their covariance matrix. Then, a
test can be performed on the singular values to
extract the effective dimension.
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DETERMINATION OF EMBEDDING DIMENSION (2) 31

e False neighbor method

One 1increases the immersion dimension until vectors that
were previously neighbors do not separate anymore.

For vector X(k) and X _ (k) 1ts nearest neighbor at a
distance d_(k) for dimension m, one measures:

B \x(k +m7)— Xpy (k + mr)\
) d,, (k)

Vi)

If £ 1s above some threshold (typically between 10 and
50), then X(k) et X (k) are ““false neighbors™ for
dimension m.
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DETERMINATION OF EMBEDDING DIMENSION (3) 32

e But a simple and efficient approach consists 1n
applying a method for fractal dimension
estimation for increasing values of m and observe
when the estimate saturates.

estimate
R A
dim.
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ATTRACTOR DIMENSION ESTIMATION (1) 33

e Estimation by cover

It 1s simpler to use a cover by cubes.

e Estimation of point dimension

One increases the radius of a sphere centered on a
point, and the “mass” computed 1s the number of
points 1n this sphere for all radii. This 1s repeated
on all points and the evolutions of mass versus
radius are averaged.
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ATTRACTOR DIMENSION ESTIMATION (2) 34

¢ Unfortunately these methods are not robust. A more
efficient approach, introduced by Grassberger and
Procaccia, consists 1n using for the “mass” the square
of point density 1n a sphere. This corresponds to what
1s called correlation dimension. One computes:

2 . .
M(r)_N(N—l)k;-fv(r_uX(Z)_X(])H)

[% ]

with O(u)=0, u<0, O(u)=1, u>0.
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ATTRACTOR DIMENSION ESTIMATION (3) 35

e In practice, if M(r) = c.r’, one estimates the slope of
log[M(7)] with respect to log(7).

lo g(r)>

e Of course this must be done in the linear part. When 7 1s
too small, there are only few pairs of points closer than
r, and when r 1s too large, all pairs of points are closer
than 7.
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ATTRACTOR DIMENSION ESTIMATION (4) 36

e [ ocal Intrinsic Dimension (LID)

A different approach consists in interpreting the
fact that the fractal dimension quantifies the
occupation of embedding space by the attractor.
For a point and its closest neighbors:

. .
P 2 S
o Ja
local dimension = 1 local dimension = 2
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ATTRACTOR DIMENSION ESTIMATION (5) 37

e Obviously 1n practice points will not be pertectly
aligned. In fact, on selects randomly a vector X and
1ts k (k>m) nearest neighbors {X, }. Then the matrix:

A=|X - X, X - X, Xy - X|

1s built and 1ts effective rank 1s computed using SVD.
The process 1s iterated on a suitable number of
randomly chosen vectors and the LID 1s the average of
the effective ranks.
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ATTRACTOR DIMENSION ESTIMATION (6) 38

e Unfortunately, the presence of additive noise
“blows up” the attractor, which loses 1ts fractal
aspect
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LYAPUNOV EXPONENT ESTIMATION (1) 39

e Estimation of all the exponents

One picks up a vector X(n) at random, and determines
its k nearest neighbors {X(i,)}. One has:

X(i

n

- X(n+1)=8G, +1)~J 5 )

The Jacobian J , 1s estimated by minimizing:

k
;Hé(iﬁl)—Jﬁ(in)Hz
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LYAPUNOV EXPONENT ESTIMATION (2)

This operation 1s repeated on X(n+1), (determination of
the k nearest neighbors ...), up to an index n+N-1.

The exponents are estimated using:

1
A, = Y log(A )
with A, the pth eigenvalue of the matrix product I 1J
=0, ..., N-1.

e [t is necessary 1n practice to average the results on
many trajectories.

n—|—j )

40
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LYAPUNOV EXPONENT ESTIMATION (3) 41

e Estimation of the largest exponent

By all means, 1t 1s usually the most interesting
value, and a robust estimation algorithm has been
proposed.

It 1s based on the fact that the largest exponent A
dictates trajectory separation, with the distance
evolving as:

d(?) = c.exp(Ar)
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LYAPUNOV EXPONENT ESTIMATION (4) 42

One picks at random a vector X(n), and 1ts closest
neighbor X(m) 1s determined. One has:

d,(0) = || X(n) - X(m)||
d,(k) = || X(n+k) - X(m+k)|| = d,(0) exp(1k)

thus:
log[d, (k)] = Ak + log[d,(0)]
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LYAPUNOV EXPONENT ESTIMATION (5) 43

This operation 1s repeated on a sufficiently large number of
randomly chosen vectors, the evolution of log-distances
with respect to k are averaged, and then the slope 1s
estimated 1n the linear part:

/
4 /
/

k

>

Saturation of course takes place as soon as the distance
between vector pairs 1s of the order of attractor diameter.
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CONSTRAINTS ON DATA SIZE 44

e T0 estimate attractor dimension D, the number of
samples must be 1n the order 10” to 40°.

e To estimate Lyapunov exponents, the number of
samples must be larger than 407,

e [f only the largest exponent 1s estimated, around 57
to 10? samples 1s enough.

e Note that if D 1s large and the number of samples
1s too small, one does not “see’ the structure of the
attractor.
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DETERMINISTIC PREDICTION (1) 45

e This type of prediction, suited to a chaotic
dynamics, 1s beased on the following simple 1dea:

Of course, a chaotic dynamics implies an
exponentially fast separation of trajectories. But
this dynamics 1s deterministic, and on the short
term, to close vectors will correspond close

SUCCESSOTS.
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DETERMINISTIC PREDICTION (2) 46

e Thus, 1f two vectors X(n) et X(p) are close, the
first components x(n+m 1) and x(p+m7) of their
successor will be close too.

e To test if a dynamics can be predicted efficiently
in this way, one splits the samples 1nto two
groups (which gives the same partition for the

reconstructed vectors).

e The test part 1s used to assess prediction
performance, the reference part to find

neighboring vectors.
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DETERMINISTIC PREDICTION (3) 47

e Principle: o
N 2. prediction with

SUCCEeSSOor
reference If V. \I test
— J
1. determining closest
neighbor

e One can also use several neighbors, and define
the prediction as a sum of successors weighted by
the inverses of the distances.
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SURROGATE DATA (1) 48

e Surrogate data can be used to:
— Test the presence of nonlinear dynamics

— Test the significance level of the characteristics
(fractal dimension, Lyapunov exponents,
predictibility...) obtained.

e To build these surrogates, one uses the fact that
linear relationships between samples imply only
2nd-order statistics, 1.e. the autocorrelation
function, which 1s even and doest not carry any
phase information.
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SURROGATE DATA (2)

e Principle of surrogate generation:

signal | ==

gaussianization | == | DFT

Inverse DFT

!

!

4==_| phase randomization

de-gaussianization
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SURROGATE DATA (3) 50

e To “Gaussianize® the samples, one feeds them
through an instantaneous nonlinearity which 1s the
distribution of the samples.

e Phase randomization on the discrete Fourier
transform (phases uniformly drawn between 0 and
27), destroys any potential nonlinear structure.

e Dec-Gaussianization consist 1n applying the inverse
of the instantaneous linear transtorm.
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SURROGATE DATA (4)

e Example: surrogate signal for Hénon

signal inital
2 T T T T T T T T
"| |- 1
1k —
2 l l l l l l l l l
a 20 Al ] 80 100 120 140 160 180 200
signal de remplacement
2 | | | | | |
N | i
1k —
2 l l l l l l l l l
a 20 Al ] 80 100 120 140 160 180 200
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SURROGATE DATA (5)

Estimated probability density functions:

0.1a

signal inital

016

014

012

0.1

0.0s

0.06

0.04

0.02
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0.1a

signal de remplacement
T T

016

014

012

0.1

0.0s

0.06

0.04

0.02
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SURROGATE DATA (6) 53

Estimated power spectra

signal inital signal de remplacement
T

281 k . 281

w W M

I:l 1 | 1 | |:|
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
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SURROGATE DATA (7) 54

But for the attractors...
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3

e No surprise: the chaotic dynamics 1s responsible for
attractor structure. If 1t 1s suppressed, then the structure

disappears.
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