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1INTRODUCTION (1)

• We are going to deal in this chapter with chaotic 
dynamical systems, and more specifically with the 
estimation of some parameters characterizing these 
systems.

• As a matter of fact, if the search for real-life chaotic 
systems is a bit outdated, these parameters present a 
specific interest in many applications (physics, 
biomedical data analysis, finance, …).
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2INTRODUCTION (2)

• Estimation of these parameters aims at:
– Detecting the presence of chaotic dynamics
– Determining the dimension of the underlying 

mechanism
– Quantifying the complexity of this dynamics
– Obtaining features for classification purposes.
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3A BRIEF PRESENTATION OF CHAOS (1)

• There is no global definition of chaos. One 
sometimes speaks of the apparently stochastic 
evolution of  a deterministic system, with an 
exponential sensitivity to initial conditions.

• One speaks also of a bounded dynamics in 
equilibrium regime, which corresponds neither to 
a fixed point nor a limit cycle.
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4A BRIEF PRESENTATION OF CHAOS (2)

• One cannot have a chaotic dynamics with a linear 
system. The linear AR model:

• Can be cast in a Markov (state-space) representation:
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5A BRIEF PRESENTATION OF CHAOS (3)

• To sum up:      
X(n) = AX(n-1) + Ε(n)

• If there is no excitation Ε(n) three cases are 
possible:
– Moduli of the eigenvalues of A are all < 1, (⇔ pole 

moduli < 1): ||X(n)|| converges towards 0.
– Some eigenvalues of A have a modulus >1, (⇔ pole 

moduli > 1): ||X(n)|| grows without bound.
– Neutrally stable case (atypical): limit cycle.
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6A BRIEF PRESENTATION OF CHAOS (4)

• In broad terms there are two cases:

• But if the dynamics is nonlinear, it can “fold” the 
trajectories, so that it remains bounded:
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7A BRIEF PRESENTATION OF CHAOS (5)

• this succession of expansions/contractions 
coupled with the sensitivity to initial conditions 
is responsible for this aperiodic evolution.

• Example: Hénon’s Map:
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8A BRIEF PRESENTATION OF CHAOS (6)
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9STRANGE ATTRACTOR

• Chaotic systems evolve generically towards a 
strange attractor characterized by:
– A null volume
– An exponentially fast separation of trajectories 

initially close
– A dimension often fractal
– An invariant measure ρ which enables the 

definition of mean values.
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10INVARIANT MEASURE (1)

• This concept is linked to ergodicity: for an infinite 
number of initial conditions in the basin of attraction, 
the characteristics of the trajectories (such as point 
density in a region) are independent of the former.

• This is illustrated by applying Hénon’s map 
simultaneously to a large number of points for 
several iterations. Successive images fill the attractor 
the same way a single trajectory would.
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11INVARIANT MEASURE (2)

• Example: iteration of 100 points on a circle

1 2 3 4

8765
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12SEPARATION OF CLOSE TRAJECTORIES

• Sensitivity to initial conditions

x(n)

modification by 10-6

of one component

signal difference
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13FRACTAL DIMENSION (1)

• Exact definition: a fractal is a geometrical object, 
the Hausdorff dimension of which is strictly larger 
than its topological dimension.

• Without entering into details, this definition 
cannot be used in practice because it implies 
examining all possible covers of the object by sets 
of finite radius.

• In practice, the estimation of Hausdorff dimension 
is restircted to the study of covers of the object by 
balls of various radii. 
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14FRACTAL DIMENSION (2)

• For a “normal” curve:

• If radius r is 2 times smaller, the number N of 
balls is 2 times large: N ∝ r-D, with D = 1
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15FRACTAL DIMENSION (3)

• Koch’s snowflake is a fractal obtained iteratively:

• The limit object is of infinite length (factor 4/3 on the 
length at each iteration), but it is bounded and has 
null volume. It is “more than a curve but less than a 
surface.”

Well, you’ve
got the idea ….
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16FRACTAL DIMENSION (4)

• But if the following cover is used:

• Thus, if Nk = C rk
-D:

r1 = 1
N1 = 1

r2 = 1/3
N2 = 4
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17FRACTAL DIMENSION (5)

• This value indeed indicates that Koch’s 
snowflake is less than a surface, but more than a 
curve. The fractal dimension quantifies the 
occupation of the space containing the object.

• Fractal objects are characterized by scale 
invariance: if one observes a part of a fractal at a 
smaller scale, the strcture is the same as for the 
whole fractal.
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18FRACTAL DIMENSION (6)

• Equivalently, one may study the evolution of 
some quantity (≈ mass) with respect to radius. 
For a homogeneous object:

• If the radius is 2 times larger, the surface is 4 
times larger, thus M ∝ rD, with D = 2.
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19FRACTAL DIMENSION (7)

• For the following fractal object:

• So, if Mk = C rk
D:

r2 = 4
M2 = 9

r1 = 1
M1 = 3
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20FRACTAL DIMENSION (8)

• The two approaches give the same value for the 
fractal dimension for “perfect” (obtained 
iteratively) fractals.

• Of course, for non regular fractals (such as 
Hénon’s map attractor), they must be obtained 
through an averaging process.

• By all means, in practical situations, only a finite 
number of points will be available.
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21LYAPUNOV EXPONENTS (1)

• Lyapunov exponents will be introduced in the 
continuous time context, but extension to the discrete 
time case is immediate.

• For a close initial condition:

with Jt the Jacobian:
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22LYAPUNOV EXPONENTS (2)

• One can show that the limit matrix:

exists and does not depend on X(0)
• Logarithms {λi} of the eigenvalues of this matrix are 

called Lyapunov exponents.
• For an attractor with null volume, one must have:
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23LYAPUNOV EXPONENTS (3)

• A chaotic dynamics is characterized by at least 
one positive Lyapunov exponent.

• Lyapunov exponents quantify the expansion or 
contraction rates in the eigendirections of flow.

λ > 0

λ < 0



Signal Processing Laboratory
Swiss Federal Institute of Technology, Lausanne

24ATTRACTOR RECONSTRUCTION (1)

• Most of the time, only one time series is available. 
How is it possible to estimate the time evolution of 
state vectors?

• Imbedding theorem:
One can reconstruct the attractor up to a diffeomorphism

from a scalar time series {x(n)} using the vectors:

with m > 2D and τ almost arbitrary. But this suppose an 
infinite number of noiseless samples.
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25ATTRACTOR RECONSTRUCTION (2)

• Equivalence up to a diffeomorphism implies that  
such as fractal dimension and Lyapunov exponents 
are not modified.

• With a finite number of samples, one starts by 
determining an appropriate value forτ, then for the 
embedding dimension m, since fractal dimension D 
is of course not known in advance.

• Condition m > 2D can often be slacken to m > D.
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26ATTRACTOR RECONSTRUCTION (3)

• Example: reconstruction of Lorenz attractor 
defined by:

• The attractor is reconstructed from samples of y(t).
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27ATTRACTOR RECONSTRUCTION (4)

Lorenz attractor reconstructed attractor
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28DETERMINATION OF DELAY τ (1)

• Components of the reconstructed vectors must 
not be:
– Too close, because then the reconstructed 

attractor is on the diagonal.
– Too far apart (independent), because the 

structure of the original attractor is lost.
• The first method proposed consisted in choosing 

τ as the position of the first zero crossing of the 
autocovariance function of the signal.
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29DETERMINATION OF DELAY τ (2)

But this approach typically gives too large values.

• It was also proposed to selectτ as the position of 
the first minimum of mutual information between 
samples.

• In practice, a good solution consists in takingτ as 
the position where the autocovariance is (1-1/e) 
times its maximum value.
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30DETERMINATION OF EMBEDDING DIMENSION (1)

• First method proposed: analysis of the evolution 
with respect to the embedding dimension m of the 
effective dimension of the space generated by the 
vectors of the reconstructed attractor.

• This can be done by computing the SVD of the 
matrix built by line stacking of the reconstructed 
vectors, which amounts to compute the 
eigenvalues of their covariance matrix. Then, a 
test can be performed on the singular values to 
extract the effective dimension.
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31DETERMINATION OF EMBEDDING DIMENSION (2)

• False neighbor method
One increases the immersion dimension until vectors that 

were previously neighbors do not separate anymore. 
For vector X(k) and Xnn(k) its nearest neighbor at a 
distance dm(k) for dimension m, one measures:

If E is above some threshold (typically between 10 and 
50), then X(k) et Xpv(k) are “false neighbors” for 
dimension m.
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32DETERMINATION OF EMBEDDING DIMENSION (3)

• But a simple and efficient approach consists in 
applying a method for fractal dimension 
estimation for increasing values of m and observe 
when the estimate saturates. 

m

estimate
dim.
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33ATTRACTOR DIMENSION ESTIMATION (1)

• Estimation by cover
It is simpler to use a cover by cubes.
• Estimation of point dimension
One increases the radius of a sphere centered on a 

point, and the “mass” computed is the number of 
points in this sphere for all radii. This is repeated 
on all points and the evolutions of mass versus 
radius are averaged. 
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34ATTRACTOR DIMENSION ESTIMATION (2)

• Unfortunately these methods are not robust. A more 
efficient approach, introduced by Grassberger and 
Procaccia, consists in using for the “mass” the square 
of point density in a sphere. This corresponds to what 
is called correlation dimension. One computes:

with θ(u)=0, u<0, θ(u)=1, u>0.
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35ATTRACTOR DIMENSION ESTIMATION (3)

• In practice, if M(r) = c.rD, one estimates the slope of 
log[M(r)] with respect to log(r).

• Of course this must be done in the linear part. When r is 
too small, there are only few pairs of points closer than 
r, and when r is too large, all pairs of points are closer 
than r.

log(r)
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36ATTRACTOR DIMENSION ESTIMATION (4)

• Local Intrinsic Dimension (LID)
A different approach consists in interpreting the 

fact that the fractal dimension quantifies the 
occupation of embedding space by the attractor. 
For a point and its closest neighbors:

local dimension = 1 local dimension = 2
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37ATTRACTOR DIMENSION ESTIMATION (5)

• Obviously in practice points will not be perfectly 
aligned.  In fact, on selects randomly a vector X and 
its k (k>m) nearest neighbors {X(i)}. Then the matrix:

is built and its effective rank is computed using SVD. 
The process is iterated on a suitable number of 
randomly chosen vectors and the LID is the average of 
the effective ranks.
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38ATTRACTOR DIMENSION ESTIMATION (6)

• Unfortunately, the presence of additive noise 
“blows up” the attractor, which loses its fractal 
aspect

original attractor attractor + noise (snr 40 dB)
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39LYAPUNOV EXPONENT ESTIMATION (1)

• Estimation of all the exponents
One picks up a vector X(n) at random, and determines 

its k nearest neighbors {X(in)}. One has:

The Jacobian Jn is estimated by minimizing:
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40LYAPUNOV EXPONENT ESTIMATION (2)

This operation is repeated on  X(n+1), (determination of 
the k nearest neighbors …), up to an index n+N-1.

The exponents are estimated using:

with Λp the pth eigenvalue of the matrix product ΠJn+j , 
j=0, …, N-1.

• It is necessary in practice to average the results on 
many trajectories.

)log(1
pp N

Λ=λ



Signal Processing Laboratory
Swiss Federal Institute of Technology, Lausanne

41LYAPUNOV EXPONENT ESTIMATION (3)

• Estimation of the largest exponent
By all means, it is usually the most interesting 

value, and a robust estimation algorithm has been 
proposed.

It is based on the fact that the largest exponent λ
dictates trajectory separation, with the distance 
evolving as:

d(t) = c.exp(λt)
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42LYAPUNOV EXPONENT ESTIMATION (4)

One picks at random a vector X(n), and its closest 
neighbor X(m) is determined. One has:

dn(0) = || X(n) - X(m)||
dn(k) = || X(n+k) - X(m+k)|| ≈ dn(0) exp(λk)

thus:
log[dn(k)] ≈ λk + log[dn(0)]
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43LYAPUNOV EXPONENT ESTIMATION (5)

This operation is repeated on a sufficiently large number of 
randomly chosen vectors, the evolution of log-distances 
with respect to k are averaged, and then the slope is 
estimated in the linear part:

Saturation of course takes place as soon as the distance 
between vector pairs is of the order of attractor diameter.

k
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44CONSTRAINTS ON DATA SIZE

• To estimate attractor dimension D, the number of 
samples must be in the order 10D to 40D.

• To estimate Lyapunov exponents, the number of 
samples must be larger than 40D.

• If only the largest exponent is estimated, around 5D

to 10D samples is enough.
• Note that if D is large and the number of samples 

is too small, one does not “see” the structure of the 
attractor.
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45DETERMINISTIC PREDICTION (1)

• This type of prediction, suited to a chaotic 
dynamics, is beased on the following simple idea:

Of course, a chaotic dynamics implies an 
exponentially fast separation of trajectories. But 
this dynamics is deterministic, and on the short 
term, to close vectors will correspond close 
successors.
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46DETERMINISTIC PREDICTION (2)

• Thus, if two vectors X(n) et X(p) are close, the 
first components x(n+mτ) and x(p+mτ) of their 
successor will be close too.

• To test if a dynamics can be predicted efficiently 
in this way, one splits the samples into two 
groups (which gives the same partition for the 
reconstructed vectors).

• The test part is used to assess prediction 
performance, the reference part to find 
neighboring vectors.
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47DETERMINISTIC PREDICTION (3)

• Principle:

• One can also use several neighbors, and define
the prediction as a sum of successors weighted by 
the inverses of the distances.

reference test

1. determining closest
neighbor

2. prediction with
successor
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48SURROGATE DATA (1)

• Surrogate data can be used to:
– Test the presence of nonlinear dynamics
– Test the significance level of the characteristics

(fractal dimension, Lyapunov exponents, 
predictibility…) obtained.

• To build these surrogates, one uses the fact that
linear relationships between samples imply only
2nd-order statistics, i.e. the autocorrelation
function, which is even and doest not carry any
phase information.
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49SURROGATE DATA (2)

• Principle of surrogate generation:

signal gaussianization DFT

phase randomizationInverse DFT

de-gaussianization
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50SURROGATE DATA (3)

• To “Gaussianize“ the samples, one feeds them 
through an instantaneous nonlinearity which is the 
distribution of the samples.

• Phase randomization on the discrete Fourier 
transform (phases uniformly drawn between 0 and
2π), destroys any potential nonlinear structure.

• De-Gaussianization consist in applying the inverse 
of the instantaneous linear transform.
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51SURROGATE DATA (4)

• Example: surrogate signal for Hénon
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52SURROGATE DATA (5)

Estimated probability density functions:
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53SURROGATE DATA (6)

Estimated power spectra



Signal Processing Laboratory
Swiss Federal Institute of Technology, Lausanne

54SURROGATE DATA (7)

But for the attractors…

• No surprise: the chaotic dynamics is responsible for 
attractor structure. If it is suppressed, then the structure 
disappears.
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