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1INTRODUCTION (1)

• ARMA models have enjoyed (and still enjoy) a wide 
popularity.

• Recent developments on ARMA models concern their 
extension to long-range dependence with fractionally 
integrated ARMA (FARIMA) models, and multivariate 
ARMA models.

• However, it was observed early on that some effects 
such as the regime one (different behaviors of residuals 
for different ranges of signal samples) cannot be dealt 
with using linear models.
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2INTRODUCTION (2)

• There are two main possibilities to model 
these types of effects:
– Use non-Gaussian probability density

functions (pdf)
– Use non-linear models

• The first approach is usually intractable (it is
usually hard to define the appropriate pdf), 
and most research has been centered on the 
second approach.
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3FRAMEWORK FOR MODEL DESCRIPTION (1)

• We will focus now on mimimum mean square 
error (MMSE) prediction. That is, if the sample
xn+m, m ≥ 0, is to be predicted using the vector Xn-1
= [xn-1, xn-2,…, x1]T of past samples, one looks for 
a function f(Xn-1) that minimizes:

E[{xn+m - f(Xn-1)}2]
• The MMSE predictor is the mean of xn+m

conditioned on the past, i.e. f(Xn-1) = E[xn+m|Xn-1].
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4FRAMEWORK FOR MODEL DESCRIPTION (2)

• Demonstration: for any predictor function g(.):

E[{xn+m - g(Xn-1)}2] = E[{xn+m - E[xn+m|Xn-1]}2] +
E[{E[xn+m|Xn-1] - g(Xn-1)}2] + 2C

with

C = E[{xn+m - E[xn+m|Xn-1]}{E[xn+m|Xn-1] - g(Xn-1)}] 

= E(E[{xn+m - E[xn+m|Xn-1]}{E[xn+m|Xn-1] - g(Xn-1)}]|Xn-1)
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5FRAMEWORK FOR MODEL DESCRIPTION (3)

C = E({E[xn+m|Xn-1] - g(Xn-1)}E{xn+m - E[xn+m|Xn-1]|Xn-1})
= E({E[xn+m|Xn-1] - g(Xn-1)}{E[xn+m|Xn-1] - E[xn+m|Xn-1]})
= 0.
Thus E[{xn+m - g(Xn-1)}2] ≥ E[{xn+m - E[xn+m|Xn-1]}2] 

• With εn+m = xn+m - E[xn+m|Xn-1], one can show that:
E[εn+m|Xn-1] = 0          Cov(εs , εt) = 0
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6FRAMEWORK FOR MODEL DESCRIPTION (4)

• In the mean square sense, a sample can be
written as:

xn+m = E[xn+m|Xn-1]} + εn+m

that is, as the sum of the component predictible from
the past, and the non-predictible part 
(innovation).

• It can be proven [1] that, if the signal samples
{xn} are Gaussian, then the MMSE predictor is
linear.
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7FRAMEWORK FOR MODEL DESCRIPTION (5)

• In the light of the discussion above, we will focus 
now on nonlinear predictors/models described by:

xn = g(xn-1,…, xn-p) + σ(xn-1,…, xn-p)εn

with g(.) and σ(.) well behaved functions and {εn} an 
independent identically distributed sequence with
unit variance.

• In almost all cases, σ(.) will be constant, except
when we consider models with conditional
heteroscedasticity.
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8FRAMEWORK FOR MODEL DESCRIPTION (6)

• The models with σ(.) constant are called nonlinear
autoregressive models (NAR).

• As for the linear AR models (which constitute a 
subset of NAR), one tries to have as small an order
p as possible.

• Of course, what is desirable is that g(xn-1,…, xn-p) 
approximates E[xn|Xn-1]} as well as possible. The 
choice of g(.) may be suggested by some a priori 
knowledge about the dynamics, or because it is in a 
set of functions with universal approximation 
capability.
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9PARAMETER ESTIMATION (1)

• Minimum variance criterion
Let us examine the case of a single model 

parameter θ and an estimator   . A natural 
optimality criterion for the estimator is the 
mean square error (MSE):
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10PARAMETER ESTIMATION (2)

• Unfortunately, the minimum MSE estimator 
cannot be obtained in most cases. A feasible 
approach consists in constraining the bias to 
be zero and find the estimator with the 
minimum variance. This estimator is the 
minimum variance unbiased (MVU) 
estimator. 

• Note that the variance of the MVU estimator 
should be the smallest for all possible values
of θ.
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11PARAMETER ESTIMATION (3)

• There is no general procedure to find the MVU 
estimator. One possible way to find it is establish 
the Cramer-Rao lower bound (CRLB). 

• The CRLB is the lower bound on the variance of 
any unbiased estimator. If indeed an estimator 
variance reaches this bound, then it is the MVU 
one.

• It may happen that no estimator reaches this 
bound, but that the MVU still exists.
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12PARAMETER ESTIMATION (4)

• CRLB for a parameter vector θ
The covariance matrix of any unbiased estimator 

satisfies:
Meaning that the matrix is positive semidefinite. 

The Fisher information matrix I(θ) is given by:

With p(x;θ) the probability density function of the 
data x parameterized by θ.
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13PARAMETER ESTIMATION (5)

• An unbiased estimator that reaches the CRLB, that 
is:

can be found if and only if 

for some multidimensional function h. In that case 
the MVU estimator is: 

Unfortunately, this approach is easy to apply only for 
linear models and data with Gaussian statistics.
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14PARAMETER ESTIMATION (6)

• Maximum likelihood (ML) estimation 
The ML estimator is the value of  θ maximizing 

the likelihood p(x;θ), where x is now the vector 
of observed data samples.

It is not optimal in general, but asymptotically is 
the MVU estimator.

Under some conditions, asymptotically:

))(,(ˆ 1 θθ −≈ INθ
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15PARAMETER ESTIMATION (7)

• Least squares (LS) estimation
For NAR models, and N samples available, the 

LS estimator is the value of minimizing:

• The estimation performance depends on the 
distribution of the modeling errors. If this 
distribution is Gaussian and the errors are 
uncorrelated, then LS is equvalent to ML.
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16WHEN IS A NONLINEAR MODEL STABLE? (1)

• Conditions have been derived in the literature
[2] on the ergodicity of (vector) Markov 
chains {Yn}.

• A sufficient condition for ergodicity is the 
existence of positive constants α, β, and γ
such that:

E(||Yn|| - ||Yn-1|| | Yn-1 = y) ≤ - β,  ||y|| > α (1)

E(||Yn|| - ||Yn-1|| | Yn-1 = y) ≤ γ,  ||y|| ≤ α (2)
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17WHEN IS A NONLINEAR MODEL STABLE? (2)

• Condition (2) is not very stringent. It just
imposes that the increase in norm inside a 
ball of radius α is bounded.

• Condition (1) expresses that there must be
some mechanism for drift back to the center, 
i.e. that if the norm of the instance of the 
Markov chain becomes large, then the norms
of successive instances must decrease. In this
way, ergodicity (existence of an equilibrium
pdf) is guaranteed.
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18WHEN IS A NONLINEAR MODEL STABLE? (3)

• A stronger condition for geometrical
ergodicity (exponentially fast convergence to 
the equilibrium pdf starting from arbitrary
initial conditions) is obtained by replacing
condition (1) with: 

E(r||Yn|| - ||Yn-1|| | Yn-1 = y) ≤ - β,  ||y|| > α (1b)
with r a constant > 1.
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19WHEN IS A NONLINEAR MODEL STABLE? (4)

• Now {xn} in the NAR model is not 
Markovian. A Markov chain is obtained by 
using a state space representation:

Xn = G(Xn-1) + Εn

with
Xn-1 = [xn-1, xn-2,…, xn-p]T

G(Xn-1) = [g(xn-1,…, xn-p), xn-1,…, xn-p+1]T

Εn = [σ(xn-1,…, xn-p)εn, 0,…, 0]T
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20SOME PRE-PROCESSING (1)

• If the mean does not carry information by itself, it is
often judicious to remove it from the data. If it is not 
removed, one should include a constant term in the 
NAR model to take it into account.

• Also, deterministic trends (ramp) and oscillations (for 
instance seasonal effects) should be removed.

• Stochastic trends (unit root) should also be dealt with. 
Statistical tests (such as the Augmented Dickey-Fuller 
one) test for the presence of such a trend.
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21SOME PRE-PROCESSING (2)

By all means, the presence of a unit root is usually
visible in the signal, and differencing yn = xn - xn-1,
usually solves this problem.

Standard & Poor
500 Index
(1947 – 1983)

Differenced signal
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22TESTING FOR NONLINEARITY (1)

• Obviously, the first test is to check whether
the signal samples are Gaussian or not, using
the Kolmogorov-Smirnov or the Chi-square 
test for instance.

• Likelihood-ratio (LR) tests have been 
developed to test the significance of a 
nonlinear model with respect to a linear one. 
Unfortunately, LR tests have to be tailored to 
the nonlinear models used, and the test 
statistics may be hard to evaluate [3].
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23TESTING FOR NONLINEARITY (2)

• A test for nonlinearity based on higher-order
statistics has also been proposed in [4]. It uses 3rd 
and 4th order cumulants and test statistics are 
derived.

• A test based on time irreversibility (linear signals
are time reversible) has also been proposed. The 
measure of time irreversibility is given by:

For a suitable lag τ.
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24TESTING FOR NONLINEARITY (3)

• It is also possible to select the best 
polynomial model on the signal with respect 
to a model selection criterion such as MDL.

The linear AR models constitute a subset of the 
set of polynomial models. If only linear terms
ar retained, then there is non nonlinearity in 
the signal.
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25TESTING FOR NONLINEARITY (4)

• In order to assess the significance of a test, a 
powerful approach, surrogate analysis, has 
recently been introduced [5].

The idea is the following: suppose one has 
measured some feature m on the signal at
hand. One generates synthetic (surrogate) 
signals sharing some properties of the 
original signal (sample pdf and 2nd-order 
statistics), but not the hypothetized nonlinear
relationship between samples. 
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26TESTING FOR NONLINEARITY (5)

Then one can compute a significance S:

Where <m>surr is the mean of the distribution 
of the feature for the surrogates and σsurr its 
standard deviation. 

Assuming m is Gaussian a value S = 2.6 
corresponds to a significance level of 0.01 
for the value of m obtained on the original 
signal.
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27TESTING FOR NONLINEARITY (6)

Since the assumption that m is Gaussian may be
bold, one can also use a rank-order test [5].

• To build these surrogates, one uses the fact
that linear relationships between samples
imply only 2nd-order statistics, i.e. the 
autocorrelation function, which is even and 
doest not carry any phase information.
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28TESTING FOR NONLINEARITY (7)

• Principle of surrogate generation:

signal gaussianization DFT

phase randomizationInverse DFT

de-gaussianization
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29TESTING FOR NONLINEARITY (8)

• To “Gaussianize“ the samples, one feeds them 
through an instantaneous nonlinearity which is 
the distribution of the samples.

• Phase randomization on the discrete Fourier 
transform (phases uniformly drawn between 0 
and 2π), destroys any potential nonlinear
structure.

• De-Gaussianization consist in applying the 
inverse of the instantaneous linear transform.
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30SURROGATE DATA (4)

• Example: surrogate for a chaotic signal
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31SURROGATE DATA (5)

Estimated probability density functions:
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32SURROGATE DATA (6)

Estimated power spectra
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33SURROGATE DATA (7)

But in the state space…

The structure present in the initial signal has 
been destroyed. 
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