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1INTRODUCTION (1)

• Threshold models constitute one of the earliest 
extensions of linear models to describe nonlinear 
dynamics [1].

• They are based on the fact that it is often possible 
to define different states of the world or regimes, 
and that it seems natural that the dynamics of the 
phenomenon under study at a given point in time 
should be dependent on the regime at this time.

• Examples: expansion and recession periods in 
economics or in an animal population.
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2INTRODUCTION (2)

• Usually, it is supposed that themodel
describing the data in each regime is linear.

• The general form of a 2-regime threshold 
model is thus:

where zn is the variable of interest defining the 
state at time n, and εn is an i.i.d. sequence.
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3INTRODUCTION (3)

• Some remarks:
– The variable zn may be endogenous. If zn = xn-d , 

for some lag value d, one speaks of a self-
exciting threshold AR (SETAR) model.

– The variable zn may be exogenous, i.e. the state 
is defined by some other signal. When this 
signal is not observable, one usually refers to it 
as a switching model.

– There is no a priori reason why the AR orders 
and innovation variances should be equal.
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4INTRODUCTION (4)

• This model is easily extended to a multiple 
regime one, conveniently described by:

with I(.) the indicator function and the subsets {Ak} 
constitute a partition of the range of variation of 
zn.
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5STABILITY OF A SETAR MODEL (1)

• We can use the sufficient condition (cf. Basic 
Concepts) for the ergodicity of a model, that 
expresses a mechanism of drift back to the 
center.

• In the case of a 2-regime model, a sufficient 
condition (which may be proved necessary) 
is that both AR sub-models are stable.

• In a multiple regime model, AR sub-models 
on the “borders” should be stable, while 
“sandwiched” ones can be unstable.
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6STABILITY OF A SETAR MODEL (2)

• Example: 3-regime model.
For xn-1≤-2 or xn-1>2, stable AR(2), pole radius 0.9.

For -2<xn-1 ≤2 unstable AR(2), pole radius 2.
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7STABILITY OF A SETAR MODEL (3)

• Note that if xn-2 is used instead of xn-1 as the 
threshold variable, the aspect of the signal 
changes notably.
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8ASSESSING A SWITCHING BEHAVIOR (1)

• When it comes to low-order SETAR models, 
scatter plots of the signal under study are 
often very insightful. 

• Let us consider for instance the simple two-
regime model:

with εn an independent N(0,0.25) sequence.
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9ASSESSING A SWITCHING BEHAVIOR (2)

• Typical realizations:

r = -∞
(linear AR)

r = -0.5
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10ASSESSING A SWITCHING BEHAVIOR (3)

• Corresponding scatter plots:

r = -∞
(linear AR)

r = -0.5
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11ESTIMATION OF A SETAR MODEL (1)

• Suppose for the time being that the AR orders 
pk, the lag d, and the partition {Ak}, are fixed.

• The least squares estimator for the AR 
coefficient vectors ak = [ak0, …, akpi]T is simply:  

with: ( )∑
=

K

k
kk AdL

1
;;a

( ) ∑
∈−

−−−− −−=
kdn

kpnkkpnkknkk
Ax

xaxaaxAdL 2)(;; 110 La



Signal Processing Institute
Swiss Federal Institute of Technology, Lausanne

12ESTIMATION OF A SETAR MODEL (2)

i.e. each of the sub-models is estimated separately.
• Now the variances can be estimated as:

where Nk is the number of samples xn-d in Ak.
• In conventional NAR models, if the are supposed 

to be Gaussian, then least squares estimation is 
close to maximum likelihood estimation. It is not 
true for SETAR models.
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13ESTIMATION OF A SETAR MODEL (3)

• It is of course due to the presence of multiple 
variances. The maximum likelihood estimate for 
Gaussian innovation is obtained by minimizing:

• But if the variances are not too far apart both 
estimates will be quite close.
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14ESTIMATION OF A SETAR MODEL (4)

• Suppose now that only the AR orders pk, the lag d
are fixed. How can the partition be defined?

• The discussion will be limited to the 2-regime 
case (i.e. the threshold r must be defined), but is 
easily generalized to the multiple regime one.

• Since r is a real number, it could take any value in 
the range [min(xn) max(xn)]. But it is to be noted 
that the least squares estimate of the model will 
change only when r crosses a sample value.
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15ESTIMATION OF A SETAR MODEL (5)

• Also, the numbers of samples N1 and N2 that are 
involved in the least squares estimation of each 
sub-model should be large enough for the 
estimates to be reliable. A safe choice is that both 
N1 and N2 should be at least 15% of N1 + N2.

• So the idea is to sort the signal samples at hand in 
ascending order:

{xn} → {x(i)}
and determine the possible values for threshold r.
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16ESTIMATION OF A SETAR MODEL (6)

• Graphically:

• Then all that remains is to estimate the 
SETAR model for all possible threshold 
values, and select the one with smallest least 
squares error.

15% 15%candidate samples

{x(i)}
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17ESTIMATION OF A SETAR MODEL (7)

• Suppose now the lag d for the threshold 
variable is not known. One can fix a 
maximum value dmax (usually max[pk]) and 
try all values of  d between 1 and dmax for all 
candidate thresholds.

• The last point is how to select the AR orders 
pk. It is obviously possible to apply a model 
selection criterion such as MDL.
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18ESTIMATION OF A SETAR MODEL (8)

• The problem is that using a classical MDL 
formulation (written here for a 2-regime model):

with N the total number of samples and σ2 the 
global error variance, typically penalizes 
SETAR models to much with respect to linear 
AR ones, especially if only a limited number of 
samples corresponds to one of the sub-models.
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19ESTIMATION OF A SETAR MODEL (9)

• This is why a special form of the MDL (similar 
formulation for other criteria) has been proposed:

i.e. the coding cost is considered separately for each 
sub-model and the corresponding samples.

• The coding cost not taken into account is that of 
the sub-model number for each residual.
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20ESTIMATION OF A SETAR MODEL (10)

• To sum up, complete selection of a 2-regime 
SETAR model implies testing models for 
each possible pair of AR orders, all candidate 
thresholds and all lag values for the threshold 
variable.

• This is why having some a priori information 
(such as that given by scatter plots) may be 
worthwhile. 
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21EXAMPLE OF SETAR MODELING (1)

• The time series modeled is the (benchmark) 
lynx time series, more precisely its (base 10) 
logarithm.

• It corresponds to the number of lynx trapped 
in the Mackenzie River district of northwest 
Canada.

• It was early recognized by Moran, who first 
fitted a linear AR(2) model to this time 
series, that it presented nonlinear features.
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22EXAMPLE OF SETAR MODELING (2)

• It may be observed that the series is not time 
reversible. The phases of increase are typically 
slower than the phases of decrease.
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23EXAMPLE OF SETAR MODELING (3)

• The histogram of the data also indicates a non 
Gaussian characteristic:
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24EXAMPLE OF SETAR MODELING (4)

• It is instructive to visualize some scatter 
plots, namely xn vs. xn-1, and xn vs. xn-2. One 
may distinguish a “break” in the second plot.

• Of interest also are the plots of the residuals 
of a linear fit of xn with respect to xn-1, i.e. an 
estimate of E[xn|xn-1], which corresponds to:

vs. xn-1, and xn-2. Here also, a break is visible 
on the second plot.
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25EXAMPLE OF SETAR MODELING (5)
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26EXAMPLE OF SETAR MODELING (6)

• Tong proposed the following SETAR model:

• Discarding the innovation term, this model 
can be rewritten as:
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27EXAMPLE OF SETAR MODELING (7)

• There is a nice ecological interpretation of this 
model in terms of predator-prey interaction.

• The lower regime corresponds to the increase 
phase, and the upper one to the decrease phase. 
Note that the (positive) coefficient of xn-1 is 
smaller in the first regime, while that of xn-2 is 
more negative in the second one.

• This difference in the two phases is called 
phase-dependence in ecology.
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28EXAMPLE OF SETAR MODELING (8)

• It is also interesting t note that iteration of the 
deterministic part of the model gives rise to a 
limit cycle with the same feature of 
asymmetry.
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29ESTIMATION OF A REGIME-SWITCHING MODEL (1)

• In the case that the unobserved threshold 
variable zn is a Markov random variable, it is 
possible to perform a maximum-likelihood 
estimation, not only on the AR coefficients 
and variances, but also on the transition and 
static probabilities of zn, as well as the 

• We will focus on the 2-regime case (2 
Markov states) . 
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30ESTIMATION OF A REGIME-SWITCHING MODEL (2)

• Note that if πij is the transition probability of zn

from state i to state j, then only π11 and π22 need 
be specified, since π12 = 1 - π11, and π21 = 1 – π22.

• Let Ωn-1 be the full information up to time n-1,
ak = [ak0, …, akp]T and σ the coefficient vector 

and (common) standard deviation. Under the 
assumption the residuals are Gaussian, the density 
of xn conditional on zn and Ωn-1 is Gaussian. 
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31ESTIMATION OF A REGIME-SWITCHING MODEL (3)

• With θ the full parameter vector, and xn-1 = 
[1,xn-1, …, xn-p]T, this probability density is 
expressed as:

• As the state zn is not observed, the log-
likelihood is computed only conditionally on 
Ωn-1, i.e. one considers ln[f(xn| Ωn-1;θ)].
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32ESTIMATION OF A REGIME-SWITCHING MODEL (4)

• The probability density f(xn| Ωn-1;θ) can be 
obtained from:

• The probabilities P(zn=k|Ωn-1;θ) are unknown, 
and must be estimated.
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33ESTIMATION OF A REGIME-SWITCHING MODEL (5)

• We are going to need three estimates:
ûn|n-1 = [P(zn=1|Ωn-1;θ) P(zn=2|Ωn-1;θ)]T, the 

forecast.
ûn|n = [P(zn=1|Ωn;θ) P(zn=2|Ωn;θ)]T, the inference.
ûn|t = [P(zn=1|Ωt;θ) P(zn=2|ΩN;θ)]T, the smoothed 

inference.
In the smoothed inference, ΩN corresponds to all N 

observations (past and future of n). 
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34ESTIMATION OF A REGIME-SWITCHING MODEL (6)

• If the state was known at time n-1, then would 
consist simply of the transition probabilities, that 
is:

with P the transition matrix, and un-1 = [1 0]T if zn-1 = 
1 and un-1 = [0 1]T if zn-1 = 2. Since is not known, it 
is replaced by an estimate of the probablities of 
the states at n-1 conditioned on Ωn-1, i.e. ûn-1|n-1
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35ESTIMATION OF A REGIME-SWITCHING MODEL (7)

• Given a starting value for û1|0 (typically two 
probabilities summing to unity) one can 
compute the optimal forecast and inference for 
n = 1,…, N using:

Where * denotes element-by-element 
multiplication , 1 = [1 1]T and vector fn contains 
the conditional densities of xn for the two states.
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36ESTIMATION OF A REGIME-SWITCHING MODEL (8)

• Now it can be shown that the smoothed 
inference can be obtained (backwards in time) 
using:

where ÷ denotes element-by-element division.
• The maximum likelihood estimates of the 

transition probabilities are given by:
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37ESTIMATION OF A REGIME-SWITCHING MODEL (9)

• Also, one can obtain the following relationships:

Which mean that the coefficients vectors are 
obtained as a weighted least square solution, 
with the weights the square roots of the 
smoothed probabilities that regime k takes place.
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38ESTIMATION OF A REGIME-SWITCHING MODEL (10)

• To sum up:
1) starting value of the parameters
2) Computation of the smoothed state probabilities
3) New estimates of transition probabilities
4) New estimates of coefficients vectors and variance
5) Back to 2) until convergence.
Note this algorithm is an expectation-maximization (EM) 

one, with guaranteed increase of the likelihood.
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