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1Akaike ’s Information Criterion (AIC)

• Based on:
– the maximization of the expected log-likelihood.
– The fact that the maximum log-likelihood is a biased

estimator of the expected log-likelihood, with a bias
equal to the number k of free parameters in the model.

• One minimizes:
• AIC has been reported to consistently

overestimate even the order of simple linear AR 
models

( ) ( ) klk k 2ˆ2AIC +−= θ
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2The Model Selection Problem

)|(log θxPMaximum Likelihood: [ ]kθθθ ,...,1=,

And if k is not given? k N failure!

[ ]Nxxx ,...,1=

Rissanen: All models can be regarded as codes

The best model is the one corresponding to
the shortest encoding of the data
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3How to encode the data

• Let us suppose we have a random process
generating (Yt, Zt) in R x Rd, and a relationship:

with εt i.i.d. with finite variance.

• If P is a probability distribution on the data, a 
particular realization x = {(yt, Zt)}, t = 1, …, N,
can be coded with a minimum code length of 

( ) ttt ZFy ε+=

- log2 P(x)  bits
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4How to transmit the data

• One actually transmits a two-part code.

• The first part is: 

• This will allow the receiver to decode the second 
part, i.e. the encoded data.

• The total code length is

( ) ( )θ,ˆ XGXF =

)()|(log),( θθθ LxPxL +−=
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5How to encode a model

• The elements of θ are real numbers, so one as to 
truncate them in order to transmit them in a finite
code length.

• Rissanen’s approach assumes a prior distribution 
on the parameters. 

1011.011 1011011

Accuracy: 32 −=δ
One has to know how to encode integers
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6Universal Prior for Integers

)()|(log),( θθθ LxPxL +−=

Bayes:
)(
),()|(

θ
θθ

P
xPxP =

),()( 22)|( θθθ xLLxP −⋅=

Distribution!
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7Prefix Codes

Example: C(a) = 0    C(c) = 110 
C(b) = 10  C(d) = 111

1011000111010 bcaadab
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8Kraft Inequality

0 1

00 01

000 001 010 011 100 101

10 11

110 111

root

12 )( =∑ − iL

12 )( =∑ − iL

12 )( ≤∑ − iL

12 )( =∑ − iL
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9OPTIMAL CODES

• The average length:

of a prefix code is bounded below by:

H the entropy of the code.

( )∑−=
i

ii ppH 2log

( )∑−=
i

iLpL i
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10Coding of Integers – first approach

• Let us define:

• One obtains a prefix code with:

b = 100001n =  9 

⎣ ⎦nnb 2log)( 2=

Code word: )())(( nbnbb

Code length: ))((2)( nbbnb +

b(n) = 100
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11Coding of Integers – first approach

Example: 9=n
1001)9( =b

100))9(( =bb

1000011001)9())9(( =bbb

100001))9(( =bb
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12Coding of Integers – second approach

Idea: preamble which is code string length 

Kraft Inequality does not hold
for pure binary representation

How to encode the code string length?
Attach preamble which is

the length of the code string length ...

string1l of string2l of 1l3l of 2l
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13Coding of Integers – second approach

Example:

Integer j announces the next length
in the following j+1 positions.

Decoding rule:

101001000001110…

10 100 10000 0... 16
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14Universal Prior for Integers

• If we define:

• It can be proven that:

• And with:

...loglogloglog 2222 ++=∗ nnn

cn =∑
∗− )(log22

)(02)( nLnQ −= is a universal prior for integers

( ) cnnL 2
*
20 loglog +=
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15Prior based on computer representation

• Each parameter θj can be expressed with the 
normalized floating-point binary number:

• If it is truncated to
then the error is at most: 

jmaa 21.0 21 ×L

j
j

m
nj aaa 21.0 21 ×= Lθ

jn
j

−
= 2δ
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16Prior based on computer representation

• As a consequence, the total code length for k
parameters is:

• The log log… terms vary slowly, and, most of the 
time, the exponent cost can be fixed at m bits. 
Then, this expression is well approximated by:

( ) ⎣ ⎦( ) { }( )⎣ ⎦( )∑∑
==

+=
k

j
jj

k

j
j LLL

1
0
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0 1,max2log1 θθδθ

( ) ∑
=

=
k

j j
L

1
log~

δ
γθ with γ = 2m
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17Minimum Description Length

• The total description length is:

• However, it should not be too far, and:

with

( ) ( ) ( )θθθ LxLxL +=,
θθ ˆsolution ML theofversion  truncated theis but 

( ) ( ) δδθθ QxLxL T
2
1ˆ,, +≤

( ) θθθθ θ ˆ== xLDQ



Signal Processing Laboratory 
Swiss Federal Institute of Technology, Lausanne

18Minimum Description Length

• We obtain:

• Minimization over δ gives:

• The bound on minimum description length is then:

( ) ( ) ∑
=

−++≤
k

j
jkQxLxL
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T loglog
2
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19MDL for pseudo-linear models

• These models have the general form:

• Typically, one assumes the errors are normally
distributed, and ML estimation is simply least-
squares estimation.

( ) ( )∑
=

=
m

i
ii zfzG

1
, θθ
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20MDL for pseudo-linear models

• Under these assumptions:

• For N large, it is possible to show that:

It corresponds to the well-known fact that the 
parameter estimates are asymptotically Gaussian, 
non-correlated, with variance 1/N.

∑
=

+−++⋅=
k

j
je CkNkMDL

1

2 ˆln)ln
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21MDL for pseudo-linear models

• This gives:

• In these conditions also, the term k/2 becomes
small with respect to the other terms, and ones
ends up with the simplifed MDL criterion (a factor 
2 is used):

NkNkMDL e ln)1(ˆln)( 2 ⋅++⋅= σ

Nj ≈δ̂
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22Example: MA(5)

e(n) ~ N(0 ,      )2
eσ

)()()(
5

1
neinxany

m
i +−= ∑

=
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23Example: MA(5)
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24Polynomial Search Method

Orthogonal least squares method:

)()()()(ˆ

)()()(ˆ
)()(ˆ
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25Model Selection, Polynomials of Order 3
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26Model Selection, Polynomials of Order 2
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27Model Selection, Linear Models
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28Genetic Algorithm (GA)

• Small population
• Binary coding of regressors
• Three operator GA

– Reproduction of the fittest
– Mutation
– Crossover

• Fitness function
– Minimum description length (MDL)
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29Genetic Algorithm (GA)
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30Genetic Algorithm (GA)

• Mutation

• Crossover

10011100 10011000

10011100
10001010

01101010
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31Genetic Algorithm (GA)

Reproduction
of the fittest

(N-1)/2 mutations
of the fittest

(N-1)/2 crossovers
on the remaining strings

1

2

3
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32Average Number of Generations

Chromosome length

Population 10 20 30
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33Average Number of Generations and Evaluations

GenerationsPopulation Evaluations

9

11

13

7 24.97    8.8

17.88    6.2

15.33    5.1

14.57    4.6

150.82

144.04

154.30

175.84

±

±

±

±

)()( 1 n-3xany =
)(ne+

+ )(
2

n-1xa )(n-3x
+ )(

3
n-2xa )(n-4x + )(

4
n-3xa )(n-5x



Signal Processing Laboratory 
Swiss Federal Institute of Technology, Lausanne

34References

1. K. Judd, A. Mees, ˝On selecting models for 
nonlinear time series,˝ Physica D, vol. 82, pp. 
426-444, 1995.

2. P.D. Grünwald, The Minimum Description 
Length Principle, MIT Press, Cambridge, 
Mass., 2007.

3. J.-M. Vesin and R. Grueter, "Model selection 
using a simplex reproduction genetic 
algorithm," Signal Processing, vol. 7, no. 3, 
June 1999.


