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1INTRODUCTION 

• We are now going to investigate a class of 
models with quite different characteristics. They 
are used to model nonlinear dynamics for which 
the conditional excitation variance changes with 
time.

• One sub-class has been extensively used to 
model changes in volatility in financial time 
series.

• The other sub-class can be used to model natural 
phenomena with burst effects. 
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2FINANCIAL DATA (1)

• Financial data (indices, stock values) 
generally present a high correlation at lag 1, 
i.e. values do not change much from one day 
to the next. 

• This is why one generally works with the 
returns of a financial time series yn, typically 
defined as:
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3FINANCIAL DATA (2)

• Many financial returns share the following 
characteristics, which cannot be dealt with by linear 
models:
– Leptokurtosis. Returns tend to have distributions that 

exhibit fat tails and excess peakedness near the man.
– They tend to have a time-varying variance (volatility). 

The volatility often clusters, i.e. large returns (of either 
sign) are expected to follow large returns, and small 
returns (of either sign) to follow small returns.
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4FINANCIAL DATA (3)

– Leverage effects. The tendency fo volatility 
to rise more following a large price fall. It 
could be that traders react more to negative 
information than to positive one.

– Long-range dependence. The returns 
themselves usually show little correlation, 
while squared returns or absolute returns 
often show persistent autocorrelation. 
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5FINANCIAL DATA (4)

• Example: 500 daily values of SMI

time series

returns
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6FINANCIAL DATA (5)

• Normalized autocovariance estimates

returns

absolute returns
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7ARCH MODEL (1)

• We have seen that in the mean square sense 
one has:

xn = E[xn|Ωn-1] + εn

Where Ωn-1 conveys all the information up to 
time n-1, and the innovation supposed to be 
white, conditionally and unconditionally 
homoscedastic, that is:
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8ARCH MODEL (2)

• A convenient way to express conditional 
heteroscedasticity is:

where ωn is an i.i.d. Gaussian sequence with 
zero mean and unit variance, and hn some 
function of Ωn-1. 

• In this way, the distribution of εn conditional 
on Ωn-1 is Gaussian with zero mean and 
variance hn.
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9ARCH MODEL (3)

• It is to be noted that the unconditional variance 
is still constant if E[hn] is constant since:

• In the basic ARCH model introduced by Engle, 
is a linear function of the squares of the past 
innovations, which gives for an ARCH(1) 
model:
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10ARCH MODEL (4)

• Of course, one needs to have hn ≥ 0. this will 
be guaranteed if α0 ≥ 0 and α1 ≥ 0.

• This ARCH(1) model can be recast as an 
AR(1) model:

Note that E[νn|Ωn-1] = 0, since ωn is not 
correlated with hn and has unit variance.
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11ARCH MODEL (5)

• This AR model will be stable for α1 < 1, and the 
unconditional variance of εn is:

• This AR model can thus be rewritten as:

which indicates that squared innovations > σ2 will 
have a tendency to perpetuate, i.e. the ARCH 
model indeed produces volatility clustering.
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12ARCH MODEL (6)

• Engle showed that the kurtosis of εn is given by: 

which makes sense if 3α1
2 < 1. In that case, Kε is 

larger than 3, which is the kurtosis for a 
Gaussian distribution. This property will reflect 
in the distribution of xn.
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13ARCH MODEL (7)

• Example: xn = 0.5 xn-1 + εn, εn ~ N(0,hn) with
hn = 0.05 + 0.25εn-1

2

xn histogram
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14ARCH MODEL (8)

• Of course it is possible to define an ARCH(q) 
model with:

in which αi ≥ 0 for all i ensures positiveness of hn.
• Having q > 1 permits to model better the 

persistent autocorrelation between the squared 
innovations εn

2. However, for financial time 
series, q must be very large.
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15GARCH MODEL (1)

• This is why Bollerslev proposed an enhanced 
model, the generalized ARCH (GARCH) one. 
The basic idea is to make the evolution on hn
autoregressive. This gives for a GARCH(1,1) 
model:

• Although it is possible to consider higher order 
GARCH(p,q) models, this simple representation 
has been found adequate in many financial 
applications.
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16GARCH MODEL (2)

• Conditions α1,2 ≥ 0 and β1 ≥ 0 guarantee hn ≥ 0.

• Condition α1+ β1 < 1 guarantees the model to 
be stable.

• The unconditional variance and kurtosis take 
the values:
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17GARCH MODEL (3)

• It may also be shown that the autocorrelation of the 
squared innovations εn

2 decrease like (α1+ β1)k. Thus, 
if α1+ β1 is close to 1, this decrease is slow.

• Many extensions to the GARCH model have been 
proposed. For instance the GJR-GARCH model 
introduced by Glosten, Jagannathan and Runkle:

with I[.] the indicator function. It is a threshold model 
which allows for asymmetric effects in the volatility.
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18GARCH MODEL (4)

• Example: xn = 0.5 xn-1 + εn,   εn ~ N(0,hn) with 
hn = 0.05 + 0.5 hn-1 + 0.25εn-1

2

hn for
ARCH(1)

hn for
GARCH(1,1)
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19TESTING FOR ARCH

• The principle is simple. The innovations are 
estimated using some model:

• And a test of hpyothesis is performed on the 
regression:

to detect correlation in the squared estimates.
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20ESTIMATION OF GARCH MODELS (1)

• Due to the specific nature of the innovation εn, 
it is not possible to apply least squares 
estimation, and one must resort to a maximum 
likelihood approach.

• If one hypothesizes a NAR general structure:

with φ the parameter vector defining G(.), the 
total parameter vector is θ = [φ δ], δ being the 
parameters describing the conditional variance.
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21ESTIMATION OF GARCH MODELS (2)

• Let us define f(.) the probability density of the 
“core” innovations ωn, which are i.i.d. with unit 
variance. Then the probability density of εn is:

• So the log-likelihood for the nth  observation will 
be:
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22ESTIMATION OF GARCH MODELS (3)

• So, if f(.) is the Gaussian density:

• Then the maximum likelihood of θ is obtained by 
maximizing:

i.e. the sum of the log likelihoods on all available 
samples. It is a nonlinear problem that must be 
solved using iterative optimization techniques.
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23STATE-DEPENDENT VARIANCE MODELS (1)

• We will examine briefly a different type of 
ARCH models, called state-dependent 
variance (SVR) models, defined by:

xn = g(xn-1,…, xn-p) + s(xn-1,…, xn-p)εn

with s(.) ≥ 0. That is, the conditional variance 
of the innovations is now a function of the 
past signal samples. With this model class, it 
is even easier to generate time series with 
non Gaussian properties.
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24STATE-DEPENDENT VARIANCE MODELS (2)

• Example: xn = 0.5xn-1 + [2+sign(xn-1)]εn,   
εn ~ N(0,hn)

xn histogram
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25STATE-DEPENDENT VARIANCE MODELS (3)

• Since Ωn-1 conveys all the information up to 
time n-1, all that has been said before on the 
conditional heteroscedasticity and 
unconditional homoscedasticity of GARCH 
models remains true for SDV ones.

• However, the stability of SDV models has to 
be assessed globally. We are going to derive 
sufficient conditions on g(.) and s(.) for 
geometrical ergodicity.
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26SDV MODEL STABILITY (1)

• An SDV model can be seen as a Markov one  by 
introducing the state vector xn = [xn, …, xn-p+1]T. 
This gives:

xn = G(xn-1) + s(xn-1)εne1

with G(xn-1) = g(xn-1)e1 + Ilxn-1. The vector e1is p-
dimensional with a first element equal to one and 
all others null. The p×p matrix Il has ones on its 
first lower diagonal and zero elements everywhere 
else.
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27SDV MODEL STABILITY (2)

• Let us recall that two sufficient conditions for 
geometrical ergodicity are:

E(||xn|| - ||xn-1|| | xn-1 = x) ≤ γ,  ||x|| ≤ α (1)

E(r||xn|| - ||xn-1|| | xn-1 = x) ≤ - β,  ||x|| > α (2)
with r a constant > 1, constants α, β, and γ > 0. 

the symbol ||.|| denotes any norm. For 
condition (1):
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28SDV MODEL STABILITY (3)

• One has:
• Thus:

• Let us assume that E[|εn|] is finite (which is 
the case if εn is Gaussian). Then if ||x|| ≤ α and 
g(.), s(.), are continuous, it is clear that this 
last quantity is bounded, and condition (1) is 
satisfied.
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29SDV MODEL STABILITY (4)

• For condition (2), the same development leads to:

with c = E[|εn|] finite. 
• Now it is possible to find some α such that this 

quantity can be made negative for ||x|| > α, 
regardless of c, by assuring that:
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30SDV MODEL STABILITY FOR LINEAR AR PART

• In the case the AR part is linear, i.e.:
g(xn-1,…, xn-p) = a1xn-1+ a2xn-2 + … + apxn-p

then in the Markov representation:

• The condition on stability translates into 
eigenvalues of A having modulus < 1, which is 
equivalent to the poles being in the unit circle.
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31PDF OF SDV(1) MODEL (1) 

• When p = 1, it is actually possible to derive an 
approximation of the probability density 
function of xn, when the innovation is unit-
variance Gaussian.

• First, one notice that with:
xn = g(xn-1) + s(xn-1)εn

the conditional probability P(xn|xn-1=y) is given by:
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32PDF OF SDV(1) MODEL (2)

• Since P(x) = ∫P(x|y)P(y) dy , the equilibrium 
pdf must be a solution (invariant) of the so-
called master equation:

• This is of course impossible to solve exactly 
in most situations.
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33PDF OF SDV(1) MODEL (3)

• But one may use an ansatz (i.e. well chosen 
representation) to obtain an approximate 
solution. In this case it is:

• And after some (lengthy) developments one 
gets, with C a normalizing constant:
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34PDF OF SDV(1) MODEL (4)

• Example   g(x) = 0.9x g(x) = 0.4 + 0.1 tan-1(x) 

approximation

• histogram-based
pdf estimate
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35PDF OF SDV(1) MODEL (5)

• Example   g(x) = tan-1(x) g(x) = 0.2-0.1exp[-10(x-0.25)2] 

approximation

• histogram-based
pdf estimate
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36PDF OF SDV(1) MODEL (6)

• Example   g(x) = 0.9x      g(x) = 0.5(0.7x2+1)1/2
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37ESTIMATION OF SVD MODELS (1)

• Due to the conditional heteroscedasticity, it is 
necessary as for the ARCH models to use a 
maximum likelihood approach to estimate g(.) 
and s(.).

• A parametric description of must be provided, 
which assures s > 0, and obeys the condition for 
stability. Also, it is preferable that s(.) has the  
universal approximation capability. For these 
reasons, an RBF network may be a good choice.



Signal Processing Institute 
Swiss Federal Institute of Technology, Lausanne

38ESTIMATION OF SVD MODELS (2)

• Since optimization algorithms have to be 
used, it is advised to start from a good initial 
solution.

• Such a good initial condition is obvious the 
least squares one. One first estimate g(.) to 
compute the residuals: 
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39ESTIMATION OF SVD MODELS (3)

• If the εn are supposed Gaussian, then the joint 
density of the residuals is:

• Maximizing log[P(.)] amounts to make the 
residuals homoscedastic, i.e. to define a function 
s(xn-1) such that the {ηn/s(xn-1)) have a Gaussian
probability density with unit variance [1].
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40ESTIMATION OF SVD MODELS (4)

• A non parametric approach has also been 
described in [2] in the case s(.) depends only 
on the sample xn-1. The interval J = [a b] 
containing all these samples is divided into K 
equal sub-intervals Jk = [tk tk+1] with t1 = a and 
tK+1 = b. 

• Let us define the random sets:
V(k) = {n, 2 ≤ n ≤ N, xn-1∈ Jk}

And by |V(k)| their cardinal.
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41ESTIMATION OF SVD MODELS (5)

• Once the estimates of the innovations {εn}
have been computed on the available samples 
n =1, …, N, an estimate of s(.) in the interval 
Jk is obtained by:

• The estimate is naturally extended outside J 
by using the first and last estimates.
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42SVD MODELS AND LINEAR AR (1)

• Note the following feature of an SDV model with 
linear AR part (k > 0):

xn = a1xn-1 + … + apxn-p + s(xn-1)εn

xnxn-k = a1xn-1xn-k + … + apxn-pxn-k + s(xn-1)xn-kεn

• If the model is ergodic (thus stationary)
E[xnxn-k] = Rxx(k) = a1Rxx(k-1) … + apRxx(k-p)

+ E[s(xn-1)xn-kεn ]
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43SVD MODELS AND LINEAR AR (2) 

• But εn is independent both from the state 
vector xn-1 (and thus s(xn-1)) and from xn-k. 
This gives:

E[s(xn-1)xn-kεn ] = E[s(xn-1)xn-k].E[εn] = 0
• So

Rxx(k) = a1Rxx(k-1) … + apRxx(k-p)
For k ≠ 0. The output of the SDV model 

follows the same Yule-Walker equations as 
the linear AR model.
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