# Introduction to Electronic Structure Methods

http://lcbc.epfl.ch/ teaching

Fall Semester 2018

18 September - 18 December Course: BCH 4119 Computer Exercises: BCH 1113

### Lecturer:

Prof. Dr. Ursula Röthlisberger BCH 4109 phone: 3 0321 ursula.roethlisberger@epfl.ch http://lcbcp.epfl.ch

### **Demos/Exercises:**

Matthias Dankl François Mouvet Justin Villars







| Time Table                                    |                                                                     |  |  |  |  |  |  |
|-----------------------------------------------|---------------------------------------------------------------------|--|--|--|--|--|--|
| <ul> <li>First 7 weeks (≤ 6 Nov) :</li> </ul> | 4h course (BCH4119) (Tue&Fri)                                       |  |  |  |  |  |  |
| • 2 <sup>nd</sup> 7 weeks (6 Nov – 4 Dec):    | 2h exercises (BCH4119/BCH1113) (Fri)<br>2h exercises (BCH113) (Tue) |  |  |  |  |  |  |
| Written Exam:                                 | Tue 16 Oct: 15-17:00                                                |  |  |  |  |  |  |
|                                               | Tue 11 & 18 Dec                                                     |  |  |  |  |  |  |
|                                               |                                                                     |  |  |  |  |  |  |
|                                               |                                                                     |  |  |  |  |  |  |

| Time                                             | Table | e for the Course | e 'Introduction to Electronic Structure Methods' Fall Semester 2018          |  |  |  |  |
|--------------------------------------------------|-------|------------------|------------------------------------------------------------------------------|--|--|--|--|
| 18.9.                                            | Tue   | course           | practical info, repetition basic QM concepts                                 |  |  |  |  |
| 21.9. Fri (morn) course<br>Fri(aftern) exercises |       | norn) course     | repetition linear algebra<br>Exercise 1: Linear Algebra in Quantum Mechanics |  |  |  |  |
|                                                  |       | tern) exercises  |                                                                              |  |  |  |  |
| 25.9.                                            | Tue   | course           | Basis Sets                                                                   |  |  |  |  |
| 28.9.                                            | Fri   | course           | Hartree-Fock I & Demo Hartree-Fock/Basis Sets                                |  |  |  |  |
|                                                  | Fri   | exercises        | Exercise 2: H Atom: HF calcs in G09                                          |  |  |  |  |
| 2.10.                                            | Tue   | course           | Hartree-Fock II                                                              |  |  |  |  |
| 5.10. Fri                                        |       | exercises        | Exercise 3: Basis sets, De, geom opt.                                        |  |  |  |  |
|                                                  | Fri   | course           | HF&CI                                                                        |  |  |  |  |
| 09.10.                                           | Tue   | course           | Configuration Interaction                                                    |  |  |  |  |
| 12.10.                                           | Fri   | course           | Many-Body Perturbation Theory                                                |  |  |  |  |
|                                                  | Fri   | exercises        | Questioning hour & old exams                                                 |  |  |  |  |
| 16.10.                                           | Tue   | course           | Written Exam                                                                 |  |  |  |  |
| 19.10.                                           | Fri   | exercises        | Exercise 4: Post HF: MPn & CI                                                |  |  |  |  |
|                                                  | Fri   | course           | Coupled Cluster                                                              |  |  |  |  |
| 23.10.                                           | Tue   | course           | Density Functional Theory I                                                  |  |  |  |  |
| 26.10                                            | Fri   | course           | Solutions Written Exam                                                       |  |  |  |  |
|                                                  | Fri   | exercises        | Exercise 5 & 6.1: Trouble Shooting, Pitfalls, traps                          |  |  |  |  |
| 30.10                                            | Tue   | course           | Density Functional Theory II (CP, QM/MM & Demos)                             |  |  |  |  |
| 02.11                                            | Fri   | course           | Properties & Summary                                                         |  |  |  |  |
|                                                  | Fri   | Exercises        | Exercise 6.2: DFT vs HF/MP2                                                  |  |  |  |  |
| 8.11                                             | Tue   | exercises        | Exercise 6.2 (continued)                                                     |  |  |  |  |
| 13.11                                            | Tue   | exercises        | Exercise 7: PES scans & traj visualization                                   |  |  |  |  |
| 20.11                                            | Tue   | exercises        | Exercise 8.1: TS & Barrier Heights                                           |  |  |  |  |
| 27.11                                            | Tue   | exercises        | Exercise 8.2                                                                 |  |  |  |  |
| 4.12                                             | Tue   | exercises        | Question hour                                                                |  |  |  |  |
| 11.12                                            | Tue   | exercises        | oral exams                                                                   |  |  |  |  |
| 18.12                                            | Tue   | exercises        | oral exams                                                                   |  |  |  |  |















# **Chapter 1:**

Introduction to computational quantum chemistry

# **Computational Quantum Chemistry**

Goal: to calculate (predict) all properties of chemical systems



Lowest energy structure(s)?
Vibrational properties (IR and Raman spectra)
Dipole and quadrupole moments
Proton affinity, pK<sub>a</sub>, electron affinity
Electronically excited states (UV-VIS spectra: Absorption, fluorescence, photochemistry)
Chemical shifts and NMR coupling constants
Thermodynamic properties
Reaction enthalpies, activation energies
Reaction mechanisms etc..

Theoretical Chemistry develops mathematical models to describe chemical systems Computational Chemistry uses computers to find numerical solutions for these mathematical models Quantum Chemistry applies quantum mechanics to describe chemical systems









## Exercises

Ex1. Derive the general form of the Hamilton operator starting from the classical description.

## Approximate Solutions of the Many-Electron Schrödinger Equation

- Ab initio methods: 'from the beginning', only based on physical laws, no parameterization with experimental data

- semiempirical methods: some terms are approximated or parameterized by empirical data

Possible approximations:

- approximate description of the Hamiltonian (density functional theory (DFT), semiempirical methods)

- approximate description of the wavefunction (Hartree-Fock (HF, SCF), Møller-Plesset perturbation theory (MP2, MP4 etc.), configuration interactio (CIS, CISD etc..), coupled Cluster methods (CCSD, CCSD(T) etc..), quantum Monte Carlo (QMC))



| Package  | MM | Semi-Empirical | HF | Post-HF | DFT | Ab-inito MD | Periodic | QM/MN |  |  |  |
|----------|----|----------------|----|---------|-----|-------------|----------|-------|--|--|--|
| ACES     | N  | N              | Y  | Y       | N   | N           | N        | N     |  |  |  |
| ADF      | N  | N              | N  | N       | Y   | N           | Y        | Y     |  |  |  |
| CPMD     | Y  | N              | N  | N       | Y   | Y           | Y        | Y     |  |  |  |
| DALTON   | N  | N              | Y  | Y       | Y   | N           | N        | N     |  |  |  |
| GAUSSIAN | Y  | Y              | Y  | Y       | Y   | Y(?)        | Y        | Y     |  |  |  |
| GAMESS   | N  | Y              | Y  | Y       | Y   | N           | N        | Y     |  |  |  |
| MOLCAS   | N  | N              | Y  | Y       | N   | N           | N        | N     |  |  |  |
| MOLPRO   | N  | N              | Y  | Y       | Y   | N           | N        | N     |  |  |  |
| MOPAC    | N  | Y              | N  | N       | N   | N           | Y        | N     |  |  |  |
| NWChem   | Y  | N              | Y  | Y       | Y   | Y(?)        | Y        | N     |  |  |  |
| PLATO    | Y  | N              | N  | N       | Y   | N           | Y        | N     |  |  |  |
| PSI      | N  | N              | Y  | Y       | N   | N           | N        | N     |  |  |  |
| Q-Chem   | ?  | N              | Y  | Y       | Y   | N           | N        | N     |  |  |  |
| TURBOMOL | N  | N              | Y  | Y       | Y   | Y           | Y        | N     |  |  |  |





## Chapter 2: Repetition of Basic Concepts of Quantum Mechanics

**Atomic Units** 

https://en.wikipedia.org/wiki/Atomic units