
Appendix B

1. Properties of the Many-Electron Wavefunction

Probabilistic interpretation of the many-electron wavefunction

The many-body wavefunction Ψ(r1, r2, . . . , rN), which describes the elec-

tronic state of the molecule, must be "quadratic integrable"

∫

Ψ∗(r1, r2, . . . , rN )Ψ(r1, r2, . . . , rN) d3Nr =

∫

|Ψ(r1, r2, . . . , rN)|2 d3Nr = 1

and |Ψ2(r1, r2, . . . , rN)| has the physical interpretation that

|Ψ(r1, r2, . . . , rN )|2 d3Nr = |Ψ(r1, r2, . . . , rN )|2 d3r1 d
3r2 . . . d

3rN

is the "probability of finding electrons 1, 2, . . . , N simultaneously in volume

elements d3
r1, d

3
r2, . . . d

3
rN".

Indistinguishability

The fact that electrons are indistinguishable particles places important re-

strictions on the form of the wavefunction.

In order to preserve the probability

|Ψ(r1, r2, . . . , rN)|2 d3Nr

the many body wavefunctions of indistiguishable particles must be either

symmetric or antisymmetric under interchange of two particles. This be-

cause all observables must remain unchanged upon interchange of two parti-

cles in the system (which is exactly the definition of indistinguishability!).
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2. The two electrons case

The fact that electrons are indistinguishable means that the many-body

wavefunction has to fulfill the symmetric restriction required by the con-

servation of the probability |Ψ|2 dr unter interchange of particles.

In the case of a two electrons system with wavefunction Ψ(r1, r2),

P (r1, d
3r1; r2, d

3r2) = Ψ(r1, r2)Ψ
∗(r1, r2)d

3r1d
3r2

is the probability of electron 1 in the volume dr1, electron 2 simultaneously

in dr2, and

P1(r1, d
3r1) = d3r1

∫

d3r2Ψ(r1, r2)Ψ
∗(r1, r2)

is the probability to find electron 1 in d3r1 and the other anywhere else.

The probability of finding any of the 2 electrons in d3r1 is 2P1(r1, d
3r1),

since the product Ψ(r1, r2)Ψ
∗(r1, r2) is completely symmetrical in the vari-

ables ri and therefore each one has the same probability of being in a given

volume.

In order to fulfill the requirements of indistinguishibility the two-electron

wavefunction must satisfy

Ψ(r1, r2) = Ψ(r2, r1, ) (symmetric)

or

Ψ(r1, r2) = −Ψ(r2, r1) (antisymmetric)

Since electrons are fermions we know that we have to take the second option.

In general, the many electron wavefunction of N electrons is described by
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an anti-symmetric function in the position variables r1, r2, . . . , r2.
1

3. The Slater Determinant

The main problem with the simple guess Ψ(r1, r2, . . . , rN ) = φ1(r1) · φ1(r1) ·
φ2(r2) . . . φN(rN) for a many-electron wavefunction starting from single elec-

tron orbitals is that this does not take into account that the electrons are

indistinguishable. It violates therefore one of the fundamental principles of

quantum theory. In order to constract N electrons wavefunctions with the

correct symmetry (anti-symmetry upon exchange of two electrons) we can

proceed in the following way:

1. construct a set of one-electron molecular orbitals. To this end we can

use for example linear combinations of atomic orbitals or, even better,

Hartree-Fock orbitals, which are solution of the Hartree Fock equation

(In Hartree-Fock one makes the assumption that the many-electron

wavefunction is a Slater determinant of unknown molecular orbitals,

and then one solves the Schrödinger equation to get such orbitals).

2. construct products of the one electron orbitals, which possess the right

symmetry.

You can easily convince yourself that the simple product of one electron

orbitals doesn’t have the required anti-symmetric property

Φ(r1, r2) = φ1(r1)φ2(r2) 6= −φ1(r2)φ2(r1) = −Φ(r2, r1)

1For the case of N electrons the result can be generalized in the following way:

PΨ(r1, r2, . . . , rN ) = Ψ(r1, r2, . . . , rN ) (symmetric)

or

PΨ(r1, r2, . . . , rN ) = εP Ψ(r1, r2, . . . , rN ) (antisymmetric)

where P effects any permutation of the arguments r1, r2, . . . , rN and εp is ±1 according

as the perturbation is equivalent to an even or odd number of interchanges.
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In linear algebra you learnt about an object that shows this particular prop-

erty: the determinant of a matrix.

detA =

∣

∣

∣

∣

∣

∣

∣

∣

a11 . . . a1N

...
...

aN1 . . . aNN

∣

∣

∣

∣

∣

∣

∣

∣

=

N !
∑

i=1

(−1)αa1p1
a2p2

. . . a1pN

where the sum runs over all permutations (p1, p2, . . . , pN) of the set (1, 2, . . . , N),

and α is the number of permuted pairs (pi, pj) with pi > pj and i < j.

It is simple to look at an example. For N = 2 we have

detA =

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

= a11a22 − a12a21

According to the rules of determinants, we know that upon exchange of two

columns the determinant changes sign:

detA′ =

∣

∣

∣

∣

∣

a12 a11

a22 a21

∣

∣

∣

∣

∣

= a12a21 − a11a22 = − detA

This is exactly what we need to construct the N electrons wavefunction!

Consider again the case of a 2 electrons wavefunction. The Slater deter-

minant

Ψ(r1, r2) =
1√
2!

∣

∣

∣

∣

∣

ψ1(r1) ψ2(r1)

ψ1(r2) ψ2(r2)

∣

∣

∣

∣

∣

has precisely the correct symmetry,

Ψ(r2, r1) =
1√
2!

∣

∣

∣

∣

∣

ψ2(r1) ψ1(r1)

ψ2(r2) ψ1(r2)

∣

∣

∣

∣

∣

= −Ψ(r1, r2) .

We can now generalize the result to the case ofN -electrons wavefunctions.

The Slater determinant in terms of N one-electron wavefunctions ψ1, . . . ψN
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is

Ψ(r1, r2, · · · rN) =
1√
N !

∣
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ψ1(r1) ψ2(r1) · · · ψN (r1)

ψ1(r2) ψ2(r2) · · · ψN (r2)

. . . .

. . . .

. . . .

ψ1(rN) ψ2(rN) · · · ψN (rN)
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.

4. A One Dimensional Example

Imagine you have two electrons in a one dimensional box, and that one is

in the ground state, the other in the first excited state. The square of the

corresponding one-particle wavefunctions, φ1(r) and φ2(r), are shown here:

Below are shown two different 2D-plots of the square of the two electron

wavefunction obtained from the "product"of the ground state and first ex-

cited state one electron wavefunctions.

The first (on the left) is constructed as a simple product of the two one-

electron wavefunctions

Φ1(r1, r2) = φ1(r1)φ2(r2)

But we have just shown that this expression is incorrect because it has no

symmetry. The picture on the right shows the correct antisymmetrized dif-

ference of products

Φ2(r1, r2) = φ1(r1)φ2(r2) − φ1(r2)φ2(r1)
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Figure 1: Plot of Φ1(r1, r2) (left) and Φ2(r1, r2) (right).

What is the main difference between these two wavefunctions?.
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