
4 Post-Hartree Fock Methods: MPn and Configuration
Interaction

In the limit of a complete basis, the Hartree-Fock (HF) energy in the complete basis set
limit (EHF

CBS) yields an upper boundary to the physical energy of the system:

Etotal = EHF
CBS + Ecorr, (81)

where the difference between the total and the Hartree-Fock energy is given by effects
due to electron correlation, Ecorr. The neglect of electron correlation in Hartree-Fock
is a consequence of the restriction to a single Slater determinant. In weakly correlated
systems, this may be a reasonable approximation; in the majority of the cases, however,
this approximation breaks down more or less drastically. In such cases, it is inevitable to
include electron correlation; Hartree-Fock results may, in the worst case, be almost (or
even totally) meaningless (recall that Hartree-Fock predicts a non-bonding F2), since the
the contribution of correlation is significant in these systems. Inclusion of correlation can
be based on e.g. Post-Hartree-Fock methods, such as Configuration Interaction (CI) or
Møller Plesset Perturbation Theory of nth order (MPn). In this set of exercises, you will
compare the performance of HF, MPn and CI in describing a bond dissociation energy,
and you will assess the influence of electron correlation on structural parameters (bond
lengths and angles).

4.1 Bond Dissociation in CH3F: HF vs. MPn

An accurate description of thermochemical properties, such as reaction enthalpies, will
usually call for a more accurate energy than the Hartree-Fock energy. Møller-Plesset per-
turbation theory is often precise enough to describe such processes, and will therefore be
the method of choice especially for larger systems, where other, more elaborate methods
become computationally untractable.

Møller-Plesset Perturbation Theory

According to Rayleigh-Schrödinger perturbation theory, an instantaneous perturbation
of a system described by a Hamiltonian Ĥ0 is described by the perturbed Hamiltonian

Ĥ = Ĥ0 + λV. (82)

For a sufficiently weak perturbation, the eigenstates and eigenvalues may then be ex-
panded in a power series:

�Ψ| = �Ψ(0)|+ λ �Ψ(1)|+ λ2 �Ψ(2)|+ . . . (83)
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The perturbing operator V̂ which is introduced in Møller-Plesset perturbation theory is
the difference between the true ground state Hamiltonian and the Hartree-Fock Hamil-
tonian; hence, the perturbation may be written in terms of excited Slater determinants
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(which also imposes orthonormality). By carrying out the expansion, collecting terms
of the same order and applying the Slater-Condon rules (cf. chapter 5.4 of the course
script), one concludes that only doubly-excited Slater determinants can contribute to the
second- and third-order term. Only the fourth-order energy will include up to quadruply
excited determinants. By truncating the expansion at second order, one arrives at the
MP2 expression for the energy, where electron correlation is now included as a pertur-
bation to the uncorrelated Hartree-Fock wavefunction:
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where a, b denote occupied, r, s denote virtual orbitals and � are the respective energy
eigenvalues. The total energy is given by the perturbative contribution and the Hartree-
Fock energy:

Etotal
0 = EHF
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E
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0 . (86)

(We note en passant that the first-order Møller Plesset energy is nothing but the ex-
pression for the total Hartree Fock energy, such that the zero-order term is given by a
sum over orbital eigenvalues.) The MP approach is often accurate enough; however, it is
not variational, i.e. the resulting MPn energy may be lower than the true ground-state
energy.

Homolytic Cleavage of the C-F Bond

In this exercise, you will investigate the influence of correlation on the BDE in a radical
process by comparing Hartree-Fock to MPn results. Consider the reaction enthalpy of
the homolytic cleavage of the H3C-F bond in monofluoro methane:

CH3F → H3C · + F · . (87)

As in the exercise on hydrogen dissociation, you may calculate the bond dissociation
energy as the difference of the energy of the fragments:

EBDE = ECH3F − EH3C· − EF ·, (88)

where EBDE was experimentally determined to be 109.2 kcal mol−1 (J. Phys. Chem. A,
2000, 104, 436 ).

Practical Application of Post-Hartree-Fock Methods

Bond dissociation energies of large systems often require the use of large basis sets of
triple-ζ quality; you may either use Pople’s 6-311+G* basis, or the larger aug-cc-pVTZ
by Dunning and coworkers (the choice is up to you; either will take comparably long). As
Post-HF methods require orbitals that diagonalise the Fock operator (i.e. the Hartree-
Fock orbitals), the HF orbitals will need to be calculated at the start of every run.
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The Post-HF treatment itself may take some considerable time. It is therefore not ad-
visable to run electronic structure calculations with computationally expensive methods
starting from a random guess for the geometry (since this guess may be considerably off
the equilibrium). It is usually more effective to pre-optimise the geometry and wavefunc-
tion at the Hartree-Fock level, and only then carry out the more elaborate calculations on
the basis of the converged Hartree-Fock result. Therefore, one must make the converged
geometry and wavefunction available to the electronic structure code. In Gaussian, this
information is written to the Checkpoint file that will be used in the following calculations.
First, create a Hartree-Fock input file for CH3F:

%NProcShared=2
%Mem=1GB
%Chk=CH3F_HF
#P UHF/[...] Opt Symmetry=None

CH3F - HF geometry optimisation

0 1
F -0.650 -0.000 0.000
C 0.749 0.000 0.000
H 1.112 0.000 1.028
H 1.112 -0.890 -0.514
H 1.112 0.890 -0.514

You will need to replace [...] by the basis set you chose to use. The new line cor-
responding to %Chk= instructs Gaussian to create a Checkpoint file that will be named
CH3F_HF.chk in this example. This file will contain all the relevant information for Gaus-
sian to read in binary form. Create two other input files for the radical fragments CH3·
and F·, and make sure that you can keep track of the naming of the files. Do not forget to
adjust the name of the Checkpoint file for the new inputs, as the old file will get overwrit-
ten otherwise. Consider that the multiplicity changes when moving from a closed-shell
species to a radical. Submit all three jobs to Gaussian. Quickly investigate the output
structures in Molden, as in the previous exercise. If the geometries look reasonable, you
may continue using Post-HF methods.

You may now create the MPn inputs. As the HF wavefunction and geometry should
be read from the Checkpoint file, the syntax for the input will be slightly modified:
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%NProcShared=2
%Mem=1GB
%OldChk=CH3F_HF
%Chk=CH3F_MP2
#P MP2/[...] Opt Symmetry=None Guess=Read Geom=Checkpoint

CH3F - MP2 geometry optimisation from HF checkpoint

0 1

Note that you will only have to give charge and multiplicity, but no coordinates. Instead,
Geom=Checkpoint makes Gaussian read the optimised (converged) coordinates from the
old Checkpoint file, the name of which is specified by %OldChk=. Guess=Read similarly
instructs Gaussian to avoid the initial guess for the wavefunction optimisation; it will
instead be reading the converged HF wavefunction from the old Checkpoint file. Note
that we need to specify a name for the new Checkpoint file in %Chk= in order to avoid
overwriting the old Checkpoint file when submitting the calculation.
For MP3 and MP4, one often expects the geometry not to change too much anymore, and
a reasonable estimate for the energy may already be given by a single-point calculation
on the optimised MP2 geometry. Create inputs for MP3 and MP4, where you restart
from the MP2 Checkpoint file rather than the HF Checkpoint file. As a reminder, the
keyword for a single-point wavefunction optimisation is SP.
(In general, it is sometimes necessary to optimise the geometry at a lower Post-Hartree-
Fock level, followed by a higher level single point calculation. This is due to a lack
of available analytical gradients for certain higher order methods (such as MP4), which
causes the computational time for a geometry optimisation to become exorbitantly high.)

a) Complete the following table. Please ensure that before running the Post-HF run,
you have appropriately renamed the new MPn Checkpoint file in the input and that
for MP3 and MP4, you make sure to start from the MP2 and not the HF geometry.
Note that although you will find the statement SCF Done in all the outputs, the
relevant keyword for the energy in the outputfile will not be SCF Done anymore, but
will be given by EUMP2, EUMP3, UMP4(SDTQ) for MP2, MP3 and MP4 respectively.

Method: HF MP2 MP3 MP4 Exp.

EF · n/a
EH3C· n/a
ECH3F n/a
EBDE 109.2 kcal mol−1

b) Is the homolytic cleavage of the H3C-F bond likely, based on the BDE that you
calculated? (Think of radical processes in general.)
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c) Why is it a reasonable choice to use Hartree-Fock geometries and wavefunctions
as a starting point for optimisations at the Post-Hartree-Fock level? What is the
advantage and how is this approach justified?

d) What is the trend in energies when moving from MP2 over MP3 to MP4? Does
this series converge?

e) Why can’t you extract the MPn energies by grepping SCF Done, as you did for the
HF calculations?

f) Comment on the accuracy of the HF approach for this system. If the difference
between HF and MPn is large, how is the use of MPn still justified? (Hint: Think
in terms of the scale of the absolute energy of the system, rather than the reaction.)

g) Why did we choose not to carry out a geometry optimisation for the methods where
no analytical gradient is available (such as MP4)?

4.2 Geometry Optimisation of HNO3: HF vs. MP2 vs. QCISD

The influence of electron correlation on structural parameters such as bond lengths and
angles is not negligible. Hartree-Fock calculations may give bond lengths that deviate
considerably from the experimental value. Comparably cheap methods such as MPn may
often remedy sufficiently for this problem, but some smaller deviations may remain. The
most rigorous approach in such cases would be e.g. a full configuration interaction (full
CI/FCI), but this is computationally untractable for any larger molecule using a reason-
able basis. One may therefore restrict the method to singly and doubly excited Slater
determinants, assuming that the main effects of correlation are captured well enough
in such a truncation. However, such truncations introduce size-consistency problems.
Quadratic configuration interaction corrects for any size-consistency errors (cf. chapter
2.4 in the course script) in the truncated CISD approach (configuration interaction with
single and double excitations); the resulting approach is denoted QCISD, and the results
obtained from QCISD are in principle of better quality than those obtained from many-
body perturbation approaches such as MP2. QCISD, however, requires more computa-
tional resources, and its performance is still outrun by methods such as coupled-cluster
approaches (for instance, CCSD(T)).

a) Assess and comment on the performance of HF, MP2 and QCISD with respect to
the prediction of bond lengths and bond angles in HNO3 (Phys. Chem. Chem.
Phys., 2014 16, 19437 ). For the Hartree-Fock level, you may use the following
input:
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%NProcShared=2
%Mem=1GB
%Chk=HNO3_HF
#P UHF/6-31+G* Opt Guess=Mix Symmetry=None

HNO3 - HF geometry optimisation

0 1
O 1.326 -0.373 -0.127
N 0.015 -0.015 0.415
O -0.329 1.292 -0.145
O -0.944 -0.973 -0.135
H -1.811 -0.738 0.223

For the Post-HF methods, proceed as in the previous exercise: Make Gaussian read
the converged HF wavefunction (Guess=Read) and Geometry (Geom=Checkpoint)
from the HF Checkpoint file, and do not forget to name the new Checkpoint file
differently for every run. Analyse the optimised structures in Molden and compare
the following structural parameters:

Method: HF MP2 QCISD Exp.

E [kcal mol−1] n/a
φO−N−O [◦] 130.2
r(O1 −N) [Å] 1.198
r(O2 −N) [Å] 1.410
r(O3 −N) [Å] 1.213

b) Bonus: Even QCISD breaks down for the radical derived from nitric acid, NO3·.
Why could that be? (Think of the common basis of all Post-HF methods.)
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