Problem to solve:

Solution of the
- electronic
- time-independent
- non relativistic

Schrödinger equation for many electron systems:

\[\mathcal{H}\Psi = \varepsilon\Psi \]

Chapter 3: How to represent \(\Psi \)

Chapter 4: Hartree-Fock (first approximate method to solve this equation)

4. The Hartree-Fock Method

Electronic Schrödinger equation for many electron system

\[
\begin{align*}
\hat{H}\Psi & = E\Psi \\
\frac{1}{2} \sum_i \nabla_i^2 + \sum_i \frac{Z_i}{|\mathbf{r}_i - \mathbf{r}|} + \sum_i \sum_{j>i} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \Psi(\mathbf{r}, \mathbf{R}) = E_{\mathrm{el}}\Psi(\mathbf{r}, \mathbf{R})
\end{align*}
\]

Kinetic energy operator

Potential due to electron – nucleus attraction

nucleus-nucleus repulsion potential

electron – electron repulsion

This is a constant for a fixed set of nuclear coordinates

Simplest Ansatz for the many-electron wavefunction \(\Psi \):

1 single Slater determinant

\[
\Psi = \Psi(\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_N) = \begin{vmatrix} \phi_1, \phi_2, \ldots, \phi_N \end{vmatrix}
\]

Hartree (1927) – Fock (1930) Approximation
Why is that an approximation?

- We describe the many-electron wavefunction as an (antisymmetrized) product of one-electron wavefunctions.
- This is only exact when the probability distributions of the single electrons are independent of each other.
- In reality, the probability distributions of the single electrons are not independent of each other, i.e., the wavefunction of electron 1 depends on the instantaneous position of electron 2 etc. We say ‘the motion of the electrons is correlated’.

Notabene:
- By approximating the many electron wavefunction with a single determinant, we neglect electron correlation, i.e., the Hartree-Fock Method does not take account of electron correlation effects.
- The solution of the Hartree-Fock method is the Slater determinant that results in the lowest Hartree-Fock energy, i.e., this is the best 1 determinantal wavefunction that exists (within a given basis set).
Shorthand Notations

- **one electron operator** \hat{h} (all the terms of the Hamiltonian that depend on 1 electron only)
 \[\hat{h}(i) = -\frac{1}{2} \nabla_i^2 - \sum_{l} \frac{Z_l}{|\mathbf{r}_i - \mathbf{r}_l|} \]

- **two electron operator** $\hat{v}(i,j)$ (the term of the Hamiltonian that depends on 2 electrons)
 \[\hat{v}(i,j) = \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \]

- **electronic Hamiltonian in shorthand form**
 \[\hat{H}_{el} = \sum_i \hat{h}(i) + \sum_{i<j} \hat{v}(i,j) + V_{NN} \]

- **one electron integrals**
 \[\langle \varphi_i \hat{h} \varphi_j \rangle = \int dx_1 \psi_i^*(x_1) \hat{h}(x_1) \psi_j(x_1) \]

- **two electron integrals** (Chemist’s notation)
 \[\left[\varphi_i \varphi_j | \varphi_k \varphi_l \right] = \langle ij|kl \rangle = \int dx_1 dx_2 \psi_i^*(x_1) \psi_j(x_1) \psi_k(x_2) \psi_l(x_2) \]

How do we find the Hartree-Fock solution (E_{HF} and Ψ_{HF}) of the Schrödinger Equation?

- As always when we want to determine the expectation value of a quantum operator we multiply to the left with the conjugate complex of the wavefunction and integrate over all space:
 \[\langle \Psi_{HF} | \hat{H}_{el} | \Psi_{HF} \rangle = E_{HF} \] for an orthonormal Ψ_{HF}

- this formula tells us how to calculate the total Hartree-Fock energy E_{HF} once we know the wavefunction Ψ_{HF}. But how do we find Ψ_{HF}?

- for this we can use the variational theorem that tells us that the correct wavefunction among all possible Slater determinants is the one for which E_{HF} is minimal

-That means that in order to find the Hartree-Fock wavefunction we have to minimize the energy expression E_{HF} with respect to changes in the one electron orbitals $\phi_i \rightarrow \phi_i + \delta \phi_i$ from which we construct the Slater determinant Ψ. The set of one electron orbitals ϕ_i for which we obtain the lowest energy are the Hartree-Fock orbitals, i.e. the solutions to the Hartree-Fock equations.
Hartree-Fock Energy Expression

Let’s look at this in detail…we first start with the Hartree-Fock energy expression E_{HF}:

$$E_{el} = \langle \Psi | \hat{H}_{el} | \Psi \rangle$$

$$\Psi = 1 / \sqrt{n} | \varphi_1 \varphi_2 \cdots \varphi_n \rangle$$

Let’s look at this in the case of a 2 electron system:

$$E_{HF} = \langle \Psi | \hat{H}_{el} | \Psi \rangle = 1 / \sqrt{2} | \varphi_1 \varphi_2 \rangle = 1 / \sqrt{2} [\varphi_1 (r_1) \varphi_2 (r_2) - \varphi_1 (r_2) \varphi_2 (r_1)]$$

…etc..this example is solved explicitly in Appendix 3 of the script!

In the general N electron case we obtain

$$E_{HF} = \sum_{ij} [i|H|i] + \frac{1}{2} \sum_{ij} [i|J|j] - \frac{1}{2} \sum_{ij} [i|K|i]$$

Restricted HF (N/2 orbitals)

Hartree-Fock Equations

How do we find the Hartree-Fock wavefunction? → minimize the Hartree-Fock energy expression with respect to variations in the one-electron orbitals φ_i with the additional boundary condition that the orbitals have to remain orthonormal

Hartree-Fock Equations (1 Schrödinger equation for each 1 electron orbital φ_i)

$$f(x_i) \varphi_i (x_i) = \epsilon_i \varphi_i (x_i)$$

$f(x_i)$: Fock operator

$$f(x_i) = h(x_i) + \sum \tilde{J}_i (x_i) - K_i (x_i)$$

One electron Fock operator

Mean electrostatic field of all the other electrons

N.B. The Fock operator for electron i depends on all the other one-electron orbitals φ_j → The Hartree-Fock equations have to be solved iteratively until self-consistency (self-consistent field SCF method)
Hartree-Fock Roothaan Equations

- set of coupled integro-differential eqs
- basis set expansion → matrix eqs

Hartree-Fock-Roothaan Eqs. (closed shell systems, singlets)

\[\hat{f}_i(\vec{r}_i) = \varepsilon_i \phi_i(\vec{r}_i) \quad i = 1, 2, \ldots N/2 \]

\[\hat{f}_i(\vec{r}_i) = \hat{h}_i(\vec{r}_i) + \sum_{j=1}^{n/2} 2\hat{J}_j(\vec{r}_i) - K_j(\vec{r}_i) \]

Expansion in basis set:

\[\phi_i = \sum_q c_{iq} \chi_q \]

\[\hat{f}_i(\vec{r}_i) \sum_q c_{iq} \chi_q = \varepsilon_i \sum_q c_{iq} \chi_q \]

\[\int dV \chi_p^* \hat{f}_i(\vec{r}_i) \sum_q c_{iq} \chi_q = \varepsilon_i \int dV \chi_p^* \sum_q c_{iq} \chi_q \]

\[\sum_q c_{iq} \int dV \chi_p^* \hat{f}_i(\vec{r}_i) \chi_q = \varepsilon_i \sum_q c_{iq} \int dV \chi_p^* \chi_q \]
\[\sum_q c_i F_q = \epsilon_i \sum_q c_i S_{pq} \]

\[FC = SCE \]

Transformation yields eigenvalue problem:

\[F'C' = C'E \]

with

\[\begin{align*}
F' &= S^{-1/2}FS^{-1/2} \\
C' &= S^{-1/2}C
\end{align*} \]

Matrix elements

Overlap matrix:

\[S_{pq} = \int \chi_p^* \chi_q dV = \langle p|q \rangle \]

Fock matrix:

\[F_{pq} = \int \chi_p^* \hat{\chi} \chi_q dV = \langle p|\hat{f}|q \rangle \]

Some Remarks:

- Solution of the HF eqs. gives "the best" 1 determinant wf, i.e. the Slater determinant with the lowest possible energy (for this basis)
- Motions of electrons with the same spin are correlated (Fermi hole)
- Exchange is exact
- Electrons with different spins move independently → no electron correlation
- HF is variational (HF energy > true energy)
Different Types of HF Methods

- **Restricted Hartree-Fock (RHF)**
 (Roothaan 1951, Hall 1951)
 closed-shell systems (spatial MO’s doubly occupied with one spin α and one spin β electron) (non degenerate singlet ground state)

- **restricted open-shell Hartree-Fock (ROHF)**
 (Roothaan 1961)
 spatial MO’s are singly or doubly occupied

- **unrestricted Hartree-Fock (UHF)**
 (Pople-Nesbet 1954)
 different spatial MO’s for α and β spins
 Wavefunctions no longer eigen functions of spin operator $S^2 \rightarrow$ occurrence of ‘spin contaminated’ states: Example: Li atom

 ROHF $|1_s^22_s\rangle$ doublet
 UHF $|1_s\alpha 1_s\beta 2s\alpha\rangle$ lower energy
 but not pure doublet

Performance of Hartree-Fock

Relative good performance:
- **structural properties:**
 (bond distances \sim0.05 Å, bond angles \sim 5°, torsional angles \sim 10°)
- **enthalpies for isodesmic reactions:**
 (error \sim 2-4 kcal/mol)
- **barriers for internal rotations**

Relative bad performance:
- **whole PES**
- **vibrational frequencies:**
 systematically too high (10-12 %)
- **reaction energies:**
 homolytic bond breaking (\sim 25-40 kcal/mol off), protonations (\sim 10 kcal/mol off)
- **transition states**
- **excited states**
- **alkali metals** (e.g. Li$_2$, Na$_2$..)
 transition metal complexes (e.g. ferrocene)
- **systems with low lying excited states**
<table>
<thead>
<tr>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong results</td>
</tr>
<tr>
<td>• dissociation to open-shell fragments</td>
</tr>
<tr>
<td>• dispersion interactions:</td>
</tr>
<tr>
<td>e.g. Ar_2 not bound</td>
</tr>
<tr>
<td>• F_2</td>
</tr>
</tbody>
</table>