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4. The Hartree-Fock Method

Electronic Schrodinger
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Simplest Ansatz for the many-electron wavefunction W:

1 single Slater determinant

U ="(ry,ro,..., rv) = |¢1,d2,. ... 0N

Hartree (1927) — Fock (1930) Approximation
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Why is that an approximation?

- We describe the many-electron wavefunction as an (antisymmetrized)
product of one-electron wavefunctions

- this is only exact when the probability distributions of the single electrons
are independent of each

- in reality the probability distributions of the single electrons are not
independent of each other, i.e. the wavefunction of electron 1 depends on the
instantaneous position of electron 2 etc..we say ‘the motion of the electrons is
correlated’

Notabene:

* by approximating the many electron wavefunction with a single determinant
we neglect electron correlation, i.e. the Hartree-Fock Method does not take

account of electron correlation effects

* The solution of the Hartree-Fock method is the Slater determinant that results
in the lowest Hartree-Fock energy, i.e. this is the best 1 determinantal
wavefunction that exists (within a given basis set)




Shorthand Notations

- one electron operator .-Fa (all the terms of the Hamiltonian that depend on 1

electron only) Z
> /e ]- -2 I
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- two electron operator (%, 7 (the term of the Hamiltonian that depends on 2
electrons) . . L
L 1 - electronic Hamiltonian in shorthand form
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- one electron integrals
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- two electron integrals (Chemist’ s notation)

. . o1 .
_ 7kl = 150y dxo b (31 Vs (X1 ) — @ (Xo )by (Ko ).
[(pl.qu ‘(pk(pl]_ [27] k1] /f 1dXo @y (X )¢y L_quk( 2 ) (Xa)

U » - X;i = (i, 5,

Q. )= (1|k]g) = [ dx1¢;(x1)h(r1)o;(x1) (combined coordinate for
J the position r,and the spin s;
of electron i)

How do we find the Hartree-Fock solution
(Eyr and W) of the Schrodinger Equation?

- As always when we want to determine the expectation value of a quantum operator we
multiply to the left with the conjugate complex of the wavefunction and integrate over all

space:

- W ) || Eyp = (W || W, = (9 H a7
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i For an orthonormal W,

- this formula tells us how to calculate the total Hartree-Fock energy E, once we know
the wavefunction ¥, . But how do we find W, ?

- for this we can use the variational theorem that tells us that the correct wavefunction
among all possible Slater determinants is the one for which E,; is minimal

E = (lPHF |P}el q"HF) < <1p|]:[e]|1p>
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-That means that in order to find the Hartree-Fock wavefunction we have to minimize the
energy expression E, with respect to changes in the one electron orbitals ¢, — ¢; + 3¢, from
which we construct the Slater determinant W. The set of one electron orbitals ¢, for which
we obtain the lowest energy are the Hartree-Fock orbitals, i.e. the solutions to the Hartree-

Fock equations.




Hartree-Fock Energy Expression

Let’ s look at this in detail...we first start with the Hartree-Fock energy expression E,:

What kind of energy .
expression do we get Egq = {lI"|Hef| ‘I":'
if we use our 1 Slater
determinant Ansatz

for the wavefunction? =1/ \Vn |(01(p2 (pn|

Let’ s look at this in the case of a 2 electron system:
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...etc..this example is solved explicitly in Appendix 3 of the script!

In the general N electron case we obtain . .
Restricted HF (N/2 orbitals)
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One electron two electron integrals
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Hartree-Fock Equations

How do we find the Hartree-Fock wavefunction? — —
— minimize the Hartree-Fock energy expression _ TR
with respect to variations in the one-electron Epe = 22 <l lh |l> + 5 E 2']4'/' - K‘_/_
orbitals ¢; with the additional boundary condition ! J
that the orbitals have to remain orthonormal

mmm) Hartree-Fock Equations (1 Schrédinger equation for each 1 electron orbital ¢,)

F(x1)di(x1) = €:0i(x1)

f(xi): Fock operator  f(x,) = hixi) + D~ Tjx1) — Kylx1)
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One electron Fock operator / \

Coulomb operator Exchange operator
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Mean electrostatic field of all the
other electrons

N.B. The Fock operator for electron i depends on all the other one-electron orbitals ¢; —
The Hartree-Fock equations have to be solved iteratively until self-consistency (self-
consistent field SCF method)
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| Hartree-Fock Roothaan Equations

e set of coupled integro-differential eqs
e basis set expansion —matrix eqs

Hartree-Fock-Roothaan Egs.

(closed shell systems, singlets)
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Expansion in basis set:
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E:Cinq =¢ E:Ct’qsrlq
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FC = SCFE
transformation yields eigenvalue problem:
Fc =cCc'E
with ,
F =S8 '2FS—1/2

c' =s"2C

Matrix elements

overlap matrix:

Sp = J 22,4V =(pla)

Fock matrix:

F,, =[x, fx,av={p|f|a)

Some Remarks:

e Solution of the HF eqs.
— gives "the best” 1 determinant wf,
i.e. the Slater determinant with the
lowest possible energy (for this basis)

e motions of electrons with the same
spin are correlated (Fermi hole)

e exchange is exact

e electrons with different spins move
independently — no electron correlation

e HF is variational (HF energy > true

energy)




leferent Types of HF Methods

Restricted Hartree-Fock (RHF)
(Roothaan 1951, Hall 1951)

closed-shell systems (spatial MO’s doubly
occupied with one spin « and one spin 3
electron) (non degenerate singlet ground
state)

e restricted open-shell Hartree-Fock (ROHF)
(Rothaan 1961)
spatial MO'’s are singly or doubly occupied

e unrestricted Hartree-Fock (UHF)
(Pople-Nesbet 1954)
different spatial MO'’s for « and 3 spins
Wavefunctions no longer eigen functions
of spin operator S2 — occurrence of ’spin
contaminated’ states: Example: Li atom

ROHF |1s22s]| doublet
UHF |1sqalsg2s,| lower energy
but not pure doublet

Performance of Hartree-Fock

Relative good performance:

e structural properties:
(bond distances ~0.054, bond angles ~ 5°,
torsional angles ~ 10°

e enthalpies for isodesmic reactions:
(error ~ 2-4 kcal/mol)

e barriers for internal rotations

Relative bad performance:

e whole PES

e vibrational frequencies:
systematically too high (10-12 %)

e reaction energies:
homolytic bond breaking (~ 25-40 kcal/mol
off), protonations ( ~ 10 kcal/mol off)

e transition states
e excited states

e alkali metals (e.g. Liz, Nas..)
transition metal complexes (e.g. ferrocene)

e systems with low lying excited states




Performance

Wrong results

e dissociation to open-shell fragments

e dispersion interactions:
e.g. Ars not bound
[ J F_v




