


Queries with for

The for notation is essentially equivalent to the common operations
of query languages for databases.

Example: Suppose that we have a database books, represented as a
list of books.

case class Book(title: String, authors: List[String])



A Mini-Database

val books: List[Book] = List(

Book(title = ”Structure and Interpretation of Computer Programs”,
authors = List(”Abelson, Harald”, ”Sussman, Gerald J.”)),
Book(title = ”Introduction to Functional Programming”,
authors = List(”Bird, Richard”, ”Wadler, Phil”)),
Book(title = ”Effective Java”,
authors = List(”Bloch, Joshua”)),
Book(title = ”Java Puzzlers”,
authors = List(”Bloch, Joshua”, ”Gafter, Neal”)),
Book(title = ”Programming in Scala”,

authors = List(”0Odersky, Martin”, ”Spoon, Lex”, ”Venners, Bill”)))



Some Queries

To find the titles of books whose author’'s name is “Bird”:

for (b <- books; a <- b.authors if a startsWith ”Bird,”)
yield b.title

To find all the books which have the word “Program” in the title:

for (b <- books if b.title indexOf ”Program” >= @)
yield b.title



Another Query

To find the names of all authors who have written at least two
books present in the database.

for {
b1 <- books
b2 <- books
if b1 != b2
al <- bl.authors
a2 <- b2.authors
if al == a2

} yield al



Another Query

To find the names of all authors who have written at least two
books present in the database.

for {
b1 <- books
b2 <- books
if b1 != b2
al <- bl.authors
a2 <- b2.authors
if al == a2

} yield al

Why do solutions show up twice?

How can we avoid this?



Modified Query

To find the names of all authors who have written at least two
books present in the database.

for {
b1 <- books
b2 <- books
if bl.title < b2.title
al <- bl.authors
a2 <- b2.authors
if al == a2
} yield al



Problem

What happens if an author has published three books?

The author is printed once
The author is printed twice
The author is printed three times
The author is not printed at all

O O O O
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Modified Query (2)

Solution: We must remove duplicate authors who are in the results
list twice.

This is achieved using the distinct method on sequences:

{ for {
b1 <- books
b2 <- books
if bl.title < b2.title
al <- bl.authors
a2 <- b2.authors
if al == a2

} yield a1
}.distinct



Modified Query

Better alternative: Compute with sets instead of sequences:

val bookSet = books.toSet
for {

b1 <- bookSet

b2 <- bookSet

if b1 != b2

al <- bl.authors

a2 <- b2.authors

if al == a2
} yield ail






For-Expressions and Higher-Order Functions

The syntax of for is closely related to the higher-order functions
map, flatMap and filter.

First of all, these functions can all be defined in terms of for:

def mapFun[T, Ul(xs: List[T1, f: T => U): List[U] =
for (x <- xs) yield f(x)

def flatMap[T, UJ(xs: List[T1, f: T => Iterable[U]): List[U] =
for (x <= xs; y <= f(x)) yield y

def filter[TJ1(xs: List[T], p: T => Boolean): List[T] =
for (x <= xs if p(x)) yield x



Translation of For (1)

In reality, the Scala compiler expresses for-expressions in terms of
map, flatMap and a lazy variant of filter.

Here is the translation scheme used by the compiler (we limit
ourselves here to simple variables in generators)

1. A simple for-expression
for (x <- el) yield e2
is translated to

el.map(x => e2)



Translation of For (2)

2. A for-expression
for (x <- el if f; s) yield e2

where f is a filter and s is a (potentially empty) sequence of
generators and filters, is translated to

for (x <- el.withFilter(x => f); s) yield e2

(and the translation continues with the new expression)

You can think of withFilter as a variant of filter that does not
produce an intermediate list, but instead filters the following map or
flatMap function application.



Translation of For (3)

3. A for-expression
for (x <- el; y <- e2; s) yield e3

where s is a (potentially empty) sequence of generators and filters,
is translated into

el.flatMap(x => for (y <- e2; s) yield e3)

(and the translation continues with the new expression)



Example
Take the for-expression that computed pairs whose sum is prime:

for {

i <= 1 until n

j <= 1 until i

if isPrime(i + j)
} yield (i, J)

Applying the translation scheme to this expression gives:

(1 until n).flatMap(i =>
(1 until i).withFilter(j => isPrime(i+j))
-map(j => (i, 3)))

This is almost exactly the expression which we came up with first!



Exercise

Translate

for (b <- books; a <- b.authors if a startsWith ”Bird”)
yield b.title

into higher-order functions.
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Generalization of for

Interestingly, the translation of for is not limited to lists or
sequences, or even collections;

It is based solely on the presence of the methods map, flatMap and
withFilter.

This lets you use the for syntax for your own types as well — you
must only define map, flatMap and withFilter for these types.

There are many types for which this is useful: arrays, iterators,
databases, XML data, optional values, parsers, etc.



For and Databases

For example, books might not be a list, but a database stored on
some server.

As long as the client interface to the database defines the methods
map, flatMap and withFilter, we can use the for syntax for querying
the database.

This is the basis of the Scala data base connection frameworks
ScalaQuery and Slick.

Similar ideas underly Microsoft’s LINQ.






Recap: Collections

Core classes

Iterable--+--Seq--+--List
| +--Stream
| +--Vector
| +--Range
| +~~Array
| +~~String
|

+--Set--+--HashSet

| +--TreeSet

I

+--Map--+--HashMap

+--TreeMap



Recap: Collection Methods

Core methods:

map
flatMap
filter

and also

foldLeft
foldRight



For-Expressions

Simplify combinations of core methods map, flatMap, filter.

Instead of:

(1 until n) flatMap (i =>
(1 until i) map (j => (i, j))) filter ( pair =>
isPrime(pair._1 + pair._2))

one can write:

for {

i <= 1 until n

j <= 1until i

if isPrime(i + j)
} yield (i, 3j)



Other Uses of For-Expressions

Operations of sets, or databases, or options.
Question: Are for-expressions tied to collections?

Answer: No! All that is required is some interpretation of map,
flatMap and withFilter.

There are many domains outside collections that afford such an
interpretation.

Tow examples: Random values and futures.



Random Values

You know about random numbers:

import java.util.Random
val rand = new Random
rand.nextInt

Question: What is a systematic way to get random values for other
domains:

booleans

strings

pairs and tuples
lists

sets



Generators

Let’s define a class Generator[T] that can generate random values
of type T:

trait Generator[+T] {
def generate: T
3

Some instances:

val integers = new Generator[Int] {
def generate = scala.util.Random.nextInt()
3
val booleans = new Generator[Boolean] {
def generate = integers.generate >= 0
3
val pairs = new Generator[(Int, Int)] {
def generate = (integers.generate, integers.generate)



Streamlining It

Can we avoid the new Generator ...

Ideally, would like to write:

val pairs = for {
X <- integers
y <- integers
} yield (x, ¥)

Need map and flatMap for that!

boilerplate?



Generator with Map and FlatMap

Here's a more convenient version of Generator:

trait Generator[+T] {
self => // an alias for ”this”.

def generate: T
def flatMap[SI(f: T => Generator[S]): Generator[S] = new Generator[S] {

def generate = f(self.generate).generate

def map[S](f: T => S): Generator[S] = new Generator[S] {
def generate = f(self.generate)



Some Generators

implicit def integers: Generator[Int] = new Generator[Int] {
def generate = scala.util.Random.nextInt()

implicit def choose(lo: Int, hi: Int): Generator[Int] = new Generator[Int] {
def generate = scala.util.Random.nextInt(hi - lo) + lo

implicit def single[T](x: T): Generator[T] = new Generator[T] {
def generate = x



More Generators

implicit def booleans: Generator[Boolean] = integers.map(_ >= 0)

implicit def pairs[T, Ul(implicit t: Generator[T], u: Generator[U]): Generator[(T, U
X <-t
y <- u

} yield (x, y)



Application: Random Testing

You know about units tests:

» Come up with some some test inputs to program functions and
a postcondition.

» The postcondition is a property if the expected result.
» Verify that the program satisfies the postcondition.

Question: Can we do without the test inputs?

Yes, by generating random test inputs



Random Test Function

Using generators, we can write a random test function:

def test[TI(g: Generator[T], numTimes: Int = 100)
(test: T => Boolean): Unit = {
for (i <= @ until numTimes) {
val value = g.generate
assert(test(value), ”test failed for ”+value)
3
println(”passed ”+numTimes+” tests”)

b

Example usage:

test(lists[Int]) {(xs: List[Int]) =>
XS.reverse == Xxs



ScalaCheck

Shift in viewpoint: Instead of writing tests, write properties that are
assumed to hold.

This idea is implemented in the ScalaCheck tool.
It can be used either stand-alone or as part of ScalaTest.

See ScalaCheck tutorial on the course page.



Asynchronous Processing
Programs are often asynchronous: Several tasks, some results need
waiting.
Examples:
» 1/0

» Webservices

> Inter-process communication
Want to avoid blocking waits.

SlowService(request).get()
// System hangs until SlowService has finished



Futures

A Future represents a value that will be computed in the future.

First version:

class Future[+T] {
def get: T

If SlowService returns a future, we can now do something useful in
the meantime:

val myFuture = MySlowService(request) // returns right away
...do other things...

val result = myFuture.get() // blocks until service ”fills in” myFuture



Asynchronous Use of Futures

Problem: Once we call get, we still block!
Would like to use a call-back, be notified when future is ready.
Here's how this works:
val future = MySlowService(request)
future onSuccess { reply =>
// when the future gets ”filled”, use its value

println(reply)
3

This assumes an onSuccess operation in class Future:

def onSuccess[U](cont: T => U): U



Downside of Callbacks

Problem with too many callbacks: spaghetti-code.
Would like to write code like:

val user = getUserById(id)

val orders = getOrdersForUser(user.email)

val products = getProductsForOrders(orders)
val stock = getStockForProducts(products)

But have it work asynchronously out of the box.



Composition of Futures

We can do better with (you guessed it!) for expressions.

for {
user <- getUserById(id)
orders <- getOrdersForUser(user.email)
products <- getProductsForOrders(orders)
stock <- getStockForProducts(products)
} yield stock

To make this work, futures need map and flatMap operations.



Outline of Class Future

class Future[+T] { self =>
def get: T
def onSuccess[U](cont: T => U): U
def map[UI(f: T => U): Future[U] =
def flatMap[UJ(f: T => Future[U]): Future[U]



Monads

Data structures with map and flatMap seem to be quite common.

In fact there's a name that describes this class of a data structures
together with some algebraic laws that they should have.

They are called monads.

Monads are very popular in the Haskell programming language.



What is a Monad?

A monad M is a parametric type M[T] with two operations, flatMap and
unit, that have to satisfy some laws.

trait M[T] {
def flatMap[UI(f: T => M[U]): M[U]
def unit[T1(x: T): M[T]

In the literature, flatMap is more commonly called bind.



Examples of Monads

» List is a monad with unit(x) = List(x)
> Set is monad with unit(x) = Set(x)
» Option is a monad with unit(x) = Some(x)

> Generator is a monad with unit(x) = single(x)

flatMap is an operation on each of these types, whereas unit in Scala is
different for each monad.



Monads and map

map can be defined for every monad as a combination of flatMap and unit:

mmap f == m flatMap (x => unit(f(x)))
== m flatMap (f andThen unit)



Monad Laws
To qualify as a monad, a type has to satisfy three laws:
Associativity:
m flatMap f flatMap g == m flatMap (x => f(x) flatMap g)
Left unit
unit(x) flatMap f == f(x)
Right unit

m flatMap unit == m



Checking Monad Laws

Let's check the monad laws for Option.
Here's flatMap for Option:

abstract class Option[+T] {

def flatMap[UJ(f: T => Option[U]): Option[U] = this match {
case Some(x) => f(x)

case None => None



Checking the Left Unit Law

Need to show: Some(x) flatMap f == f(x)

Some(x) flatMap f
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Checking the Left Unit Law

Need to show: Some(x) flatMap f == f(x)

Some(x) flatMap f

== Some(x) match {
case Some(x) => f(x)
case None => None

3

= £



Checking the Right Unit Law

Need to show: opt flatMap Some == opt

opt flatMap Some



Checking the Right Unit Law

Need to show: opt flatMap Some == opt

opt flatMap Some

== opt match {
case Some(x) => Some(x)
case None => None



Checking the Right Unit Law

Need to show: opt flatMap Some == opt

opt flatMap Some
== opt match {

case Some(x) => Some(x)
case None => None

== op‘t



Checking the Associative Law
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flatMap g)
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Checking the Associative Law
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Checking the Associative Law

Need to show: opt flatMap f flatMap g == opt flatMap (x => f(x)
flatMap g)

opt flatMap f flatMap g

== opt match { case Some(x) => f(x) case None => None }
match { case Some(y) => g(y) case None => None }

== opt match {
case Some(x) =>
f(x) match { case Some(y) => g(y) case None => None }
case None =>
None match { case Some(y) => g(y) case None => None }



Checking the Associative Law (2)

== opt match {
case Some(x)
f(x) match { case Some(y) => g(y) case None => None }

>

case None => None



Checking the Associative Law (2)

== opt match {

case Some(x) =>
f(x) match { case Some(y) => g(y) case None => None }

case None => None

== opt match {
case Some(x) => f(x) flatMap g
case None => None



Checking the Associative Law (2)

== opt match {
case Some(x)

>

f(x) match { case Some(y) => g(y) case None => None }
case None => None

== opt match {
case Some(x) => f(x) flatMap g
case None => None

== opt flatMap (x => f(x) flatMap g)



Significance of the Laws for For-Expressions

We have seen that monad-typed expressions are typically written as for
expressions.

What is the significance of the laws with respect to this?
1. Associativity says essentially that one can “inline” nested for

expressions:

for (y <- for (x <-m; y <= f(x)) yield y
z <- g(y)) yield z

== for (x <- m;
y <= f(x)
z <- g(y)) yield z



Significance of the Laws for For-Expressions

2. Right unit says:

for (x <- m) yield x

3. Left unit does not have an analogue for for-expressions.



Another type: Try

In the later parts of this course we will need a type named Try.

Try resembles Option, but instead of Some/None there is a Success case
with a value and a Failure case that contains an exception:

abstract class Try[+T]
case class Success[T](x: T) extends Try[T]
case class Failure(ex: Exception) extends Try[Nothing]

Try is used to pass results of computations that can fail with an exception
between threads and computers.



Creating a Try

You can wrap up an arbitrary computation in a Try.
Try(expr) // gives Success(someValue) or Failure(someException)
Here's an implementation of Try:

object Try {
def apply[T](expr: => T): Try[T] =
try Success(expr)
catch {
case NonFatal(ex) => Failure(ex)



Composing Try

Just like with Option, Try-valued computations can be composed in for
expresssions.

for {
x <- computeX
y <- computeY
} yield f(x, y)

If computeX and computeY succeed with results Success(x) and Success(y),
this will return Success(f(x, y)).

If either computation fails with an exception ex, this will return
Failure(ex).



Definition of flatMap and map on Try

abstract class Try[T] {
def flatMap[UJ(f: T => Try[U]): Try[U] = this match {
case Success(x) => try f(x) catch { case NonFatal(ex) => Failure(ex) }
case fail: Failure => fail

def map[UI(f: T => U): Try[U] = this match {
case Success(x) => Try(f(x))
case fail: Failure => fail

3
So, for a Try value t,

t map f == t flatMap (x => Try(f(x)))
== t flatMap (f andThen Try)



Exercise

It looks like Try might be a monad, with unit = Try.

Is it?

Yes

No, the associative law fails
No, the left unit law fails

No, the right unit law fails
No, two or more monad laws fail.

O O O O o



Solution

It turns out the left unit law fails.
Try(expr) flatMap f != f(expr)
Indeed the left-hand side will never raise a non-fatal exception whereas the

right-hand side will raise any exception thrown by expr or f.

Hence, Try trades one monad law for another law which is more useful in
this context:

An expression composed from ‘Try’, ‘map’, ‘flatMap’ will never
throw a non-fatal exception.

Call this the “bullet-proof” principle.



Conclusion

We have seen that for-expressions are useful not only for collections.

Many other types also define map,flatMap, and withFilter operations and
with them for-expressions.

Examples: Generator, Option, Try.
Many of the types defining flatMap are monads.
(If they also define withFilter, they are called “monads with zero™).

The three monad laws give useful guidance in the design of library APlIs.



