
Constraint Programming

Functional programming describes computation using functions

f : A  B

Computation proceeds in one direction: from inputs (A) to outputs (B)

e.g. f(x) = x / 2 is a function that maps x to x/2

A more general view, constraint programming, works with relations

r  A x B

which state only constraints between the quantities

e.g. y + y = x is constraint between x and y

We can interpret a constraint as either mapping x to y, or mapping y to x

We discuss how to do constraint programming in a functional language



Why this is interesting

First part: constraint propagation networks

• It builds on the idea of discrete event simulation: 
re-compute only what is needed

• Useful patterns, often used in user interface design

Second part: SAT solvers

• a method to check satisfiability of propositional formulas

• many useful problems can be reduced to SAT



Example: Ohm’s Law

I  R = V
where the meaning of symbols is:

I - current flowing through the wire

V - the voltage between endpoints of the wire

R - resistance of the wire

The constraint applies regardless which ones of V, I, R are known

It encodes several functions, depending on what is known:

fI(V,R) = V/R

fV(I,R) = I  R

fR(V,I) = V / I

I

V

R



Schematic Display of Constraints vs Functions

fI(V,R) = V/R

fV(I,R) = I  R

fR(V,I) = V / I
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def fI(v:Double,r:Double) =
v/r

def fR(v:Double,i:Double) = 
v/i

def fV(i:Double,r:Double) =
i*r

today:
Multiplier(I, R, V)

replaces all of above



How to Use Constraints

We define Multiplier as a class whose construction establishes the constraint.

To allow dynamically setting which one of  I,R,V  is known, we define I,R,V as 
Quantities: objects that model the variables that participate in constraints

val I, R, V = new Quantity

Multiplier(I, R, V)

I * R = V
I R

V

Multiplier(I, R, V)I  R = V

V setValue 220

R setValue 100

I getValue Some(2.2)

I * R = V
I? R=100

V=220

R forgetValue

I setValue 5

R getValue Some(44)

I * R = V
I=5 R?

V=220



Connecting Constraints: Temperature Converter

K = C + 273.15 each variable determines the other two

F = C * 1.8 + 32 K – Kelvin, C – Celsius, F – Fahrenheit

+w1 C

K

273.15 * 1.8w2

w3

+ 32w4

F

val K, F, C = new Quantity
val w1,w2,w3,w4 = new Quantity
Constant(w1, 273.15)
Adder(w1, C, K) Constant(w2, 1.8); Multiplier(C,w2,w3)

Adder(w3, w4, F); Constant(w4, 32)
F setValue 451

K getValue Some(505.93)



Quantities and Constraints are Doubly-Linked Objects

+w1 C

K

273.15

val K, C, w1 = new Quantity
Quantities start unconstrained
They can be connected to any 
number of constraints
Constraints create rules to set
some quantities if others change.

Constant(w1, 273.15)
Keeps w1 set to 273.15

Quantities optionally store a value, if known:
class Quantity {
private var value: Option[Double] = None
def getValue: Option[Double] = value
def setValue(v: Double) = setValue(v,NoConstr)
def setValue(v : Double, setter : Constraint)
def forgetValue = forgetValue(NoConstr)
def forgetValue(retractor : Constraint)
private var constraints: List[Constraint] = List()
def connect(c : Constraint) }

Value can be set by a constraint, or by setValue

Adder(w1, C, K)
If two quantities are known, 
sets the third.



A Constraint Can Update and Reset Quantities 

abstract class Constraint {
// subclasses have fields pointing to Quantities of the constraint
def newValue: Unit  // rules to compute quantities from known ones
def dropValue: Unit  // forgetValue-s all quantities of the constraint

} C setValue 100
m.newValue
 K.setValue(373.15, m)

C forgetValue
m.dropValue
 K.forgetValue(m)

m: +w1 C

K

273.15



Implementation of the Adder Constraint
case class Adder(a1: Quantity, a2: Quantity, sum: Quantity) extends Constraint {

def newValue = (a1.getValue, a2.getValue, sum.getValue) match {

case (Some(x1), Some(x2), _) => sum.setValue(x1 + x2, this)

case (Some(x1), _, Some(r))  => a2.setValue(r - x1, this)

case (_, Some(x2), Some(r))  => a1.setValue(r - x2, this)

case _ => 
}

def dropValue {

// quantitities ignore irrelevant forgetValue calls, so we can just call it on all of them

a1.forgetValue(this); a2.forgetValue(this); sum.forgetValue(this)

}

a1 connect this // tell each quantity to add a back link to us

a2 connect this

sum connect this

}

Adder
a1 a2

sumset as case class argument

set by ‘sum connect this’



Implementation of the Multiplier Constraint
case class Multiplier(a1: Quantity, a2: Quantity, prod: Quantity) extends 
Constraint {

def newValue = (a1.getValue, a2.getValue, prod.getValue) match {

case (Some(0), _, _) => prod.setValue(0, this) // optional

case (_, Some(0), _) => prod.setValue(0, this) // optional

case (Some(x1), Some(x2), _) => prod.setValue(x1 * x2, this)

case (Some(x1), _, Some(r))  => a2.setValue(r / x1, this)

case (_, Some(x2), Some(r))  => a1.setValue(r / x2, this)

case _ => 
}



Constant Constraint

case class Constant(q: Quantity, v: Double) extends Constraint {

def newValue: Unit = ???

def dropValue: Unit = ???

q connect this

q.setValue(v, this)

}

• Constants cannot be redefined or forgotten

• That's why `newValue` and `dropValue` produce an error – w1 will never call them

• Constants immediately give a value to the attached quantity.

w1273.15 Constant(w1, 273.15)



More on Quantities: Summary of Their Fields

class Quantity {

private var value: Option[Double] = None

private var constraints: List[Constraint] = List()      

private var informant: Constraint = NoConstr;   ... }

object NoConstr extends Constraint {  } // not an actual constraint

w1: value = Some(273.15)

constraints = List(c1, m)

informant = c1

m: +w1
c1:

273.15



More on Quantities: setValue

def setValue(v: Double, setter: Constraint) = value match {

case Some(v1) => if (v != v1) error("Error! contradiction: " + v + " and " + v1)

case None =>  informant = setter; value = Some(v)

for (c <- constraints if c != informant) c.newValue

}

Signals an error when one tries to modify a value that is already defined

Otherwise, it propagates the change by calling `newValue` on all the attached 
constraints, except the informant that called it

It remembers the informant, so it knows who is responsible for the value



More on Quantities: forgetValue

def forgetValue(retractor: Constraint): Unit =

if (retractor == informant) {

value = None

for (c <- constraints if c != informant) c.dropValue

}

Forgets the value (by resetting it to `None`) only if the call comes from the constraint 
that the value originated from

It propagates the modification by calling `dropValue` on all the attached constraints, 

except the informant

A call to `forgetValue` coming from somewhere else than the informant is ignored



More on Quantities: connect
def connect(c: Constraint) : Unit = {

constraints = c :: constraints

value match {

case Some(_) => c.newValue

case None =>

}

}

Adds the constraint to the list `constraints`

If the quantity has a value, it also calls `newValue` on the new constraint



Callbacks to Monitor Changes

What if we want to take an action when some quantity gets a new value?

We could keep traversing all quantities, but that is inefficient and unnecessary

case class Notification(q: Quantity,  action : Option[Double] => Unit) 
extends Constraint {

def newValue: Unit = action(q.getValue)

def dropValue: Unit = action(None)

q connect this

}

Example: print quantity C when it changes: Notification(C, println(_))



Notation: Constraints vs Math

C * 1.8w2

w3

+ 32w4

F

Constant(w2, 1.8); Multiplier(C,w2,w3)
Adder(w3, w4, F); Constant(w4, 32)

math:
F = C * 1.8 + 32

Scala:

Can we make our Scala code more like math?

Yes, it is possible to write e.g.
F === (C * k(1.8)) + k(32)

How?



Notation: Constraints vs Math
Introduce additional binary methods on 
quantities:

class Quantity { …

def +(that: Quantity): Quantity = {

val sum = new Quantity

Adder(this, that, sum)

sum

}

def *(that: Quantity): Quantity = {

val product = new Quantity

Multiplier(this, that, product)

product

}

def ===(that: Quantity): Unit =

Equalizer(this, that)

}

def k(x : Double) : Quantity = {

val qx = new Quantity

Constant(qx, x); qx

}

case class Equalizer(left: Quantity, right: Quantity) 

extends Constraint {

def newValue = (left.getValue, right.getValue) match {

case (Some(l), _) => right.setValue(l)

case (_, Some(r))  => left.setValue(r) 

case _ => 

}

def dropValue {

left.forgetValue(this); right.forgetValue(this)

}

left connect this

right connect this

}

F === (C * k(1.8)) + k(32)



Remarks on Constraint Propagation Networks

• They work well and are fast when constraints have structure of trees

• Current implementation does not make it easy to remove constraints or add 
them only temporarily and revert to previous state

• Propagation is limited as a solving technique: it does not produce results for 
directed acyclic graphs with sharing, even if they are uniquely determined:

Adder(x, x, y);  y.setValue(10); x.getValue  None

+

y

x



How to Solve More General Constraints?

Depends on the type of Quantities and types of Constraints we have

• Double-s with approximate precision: numerical analysis techniques 
(e.g. iterative solvers for non-linear equations, Newton’s method, …)

• rational numbers with only Adders and constants: Gaussian elimination

• BigInts where with only Adders and constants: solving Diophantine equations

• BigInts with Adders, Multipliers, constants: there can be no general algorithm
(Hilbert’s 10th problem, final step in 1970ies shown by Matiyasevich)

• For finite domains: we could try all possibilities, but in practice we use 
combinatorial search teachnique, often Satisfiability (SAT) Solvers

• Solutions are not always unique, here we are interested in any solution
• to enumerate all solutions, one could use streams



Combinational Circuits as Constraint Networks

Propagation values from inputs to outputs in a DAG is evaluation and works

p q

r?

p’ q’

c1 c2

p setValue 1

q setValue 0

Propagation can compute:

p’ setValue 0

q’ setValue 1

c1 setValue 0

c2 setValue 1

r setValue 0



Computing Backwards Can Also Work Sometimes

What if instead we set p and r and ask for q?

p q?

r

p’ q’

c1 c2

p setValue 1

r setValue 0

Propagation can compute:

p’ setValue 0 (inverter)

c2 setValue 1 (or)

c1 setValue 0 (and)

q setValue 0 (or)



Propagation Alone is Not Sufficient

What if instead we just ask for p to be inverse of r? What is the value of q?

p q?

r

p’ q’

c1 c2

Nothing is set, nothing propagates

So we must speculate (“decide”) 

q setValue 1

 q’ setValue 0

 c1 setValue 1

Nothing more propagates. But it does not mean that 
q is the right value. We need to find examples of p,r

p setValue 1
 r setValue 0
p’ setValue 0
 c2 setValue 1
 r setValue 1
CONFLICT

p setValue 0
 r setValue 1
p’ setValue 1
 c2 setValue 0
 r setValue 0
CONFLICT



Chosen Value of q Was Wrong. Had to try p to see that

What if instead we just ask for p to be inverse of r? What is the value of q?

p q?

r

p’ q’

c1 c2

Nothing is set, nothing propagates

So we must speculate (“decide”) 

q setValue 1  wrong decision

 q’ setValue 0

 c1 setValue 1

Nothing more propagates. But it does not mean that 
q is the right value. We need to find examples of p,r

p setValue 1
 r setValue 0
p’ setValue 0
 c2 setValue 1
 r setValue 1
CONFLICT

p setValue 0
 r setValue 1
p’ setValue 1
 c2 setValue 0
 r setValue 0
CONFLICT



Search Tree

What if instead we just ask for p to be inverse of r? What is the value of q?

p q?

r

p’ q’

c1 c2

Nothing is set, nothing propagates

The only alternative (if there is any):

q setValue 0

q
1

p

1

CONFLICT

0

CONFLICT

0

p

1

 q’ : 1
 c2: 1
Decide p: 1
 p’:0
 c1:0
 r:0
All values assigned!
All constraints true!

We found a solution q:0, p:1, r:0

SOLVED



SAT Solver

Given an arbitrary circuit, a SAT solver needs to answer one of these two:

1. SAT: Gives back a satisfying assignment of 0/1 to all 
Boolean quantities such that all constraints hold

2. UNSAT: Says “there are no satisfying assignments”

Techniques in SAT solvers:

• constraint propagation: always deduce consequences 
of current decisions; use efficient data structures such 
as “2-watched literals scheme”

• backtracking search: always maintain candidate partial 
solution and update it

• clause learning (CDCL): deduce new clause 
representing minimal reason for a conflict

• heuristics on which variable to decide

• restarts if no progress after some time

p q

r

p’ q’

c1 c2



SAT for Circuits = SAT for Propositional Formulas

p q

r

p’ q’

c1 c2

r == !p &&

p’ == !p &&

c1 == p’ || q &&

q’ == !q &&

c2 == p || q’ &&

r == c1 && c2

Given circuit: write each constraint, conjoin them all

Given nested formula: introduce fresh variables to denote 
subformulas, express operations using &&,||,!  - obtain a circuit.



SAT for Propositional Formulas = SAT for CNF

r == !p &&

p’ == !p &&

c1 == p’ || q &&

q’ == !q &&

c2 == p || q’ &&

r == c1 && c2

CNF = Conjunctive Normal Form, formula is conjunction of clauses

A clause is a disjunction of literals

A literal is a propositional variable or its negation

Converting to CNF: L==R becomes    (!L || R) && (L || !R)

(!r || !p) && (r || p) &&

(!p’ || !p) && (p’ || p) &&

(!c1 || p’ || q) && (c1 || !p’) && (c1 || !q) &&

(!q’ || !q) && (q’ || q) &&

(!c2 || p || q’) && (c2 || !p) && (c2 || !q’) &&

(!r || c1) && (!r || c2) && (r || !c1 || !c2)

“DIMACS format for CNF formulas”



Encoding Constraints on Finite Domains


x y

z

D = {a0, a2, …, aN-1} arbitrary finite set of N elements.  
Let    D x D x D be constraint on D
Let M be such that 2M  N
Using M bits we can represent all numbers 1,…,N
Represent ak using binary representation of number k, e.g., for N=6, M=3

a0 000
a1 001
a2 010
a3 011
a4 100
a5 101 Represent each finite-domain variable using M Boolean variables

Represent the constraint  using a circuit


x1 y1

z3

x2
x3

y2y3

z1 z2



Applications of SAT

• Scheduling problems

• Checking plugin dependencies in Eclipse IDE

• Checking pattern matching in Scala compiler

• Checking correctness of microprocessors before they are fabricated 
(verification tools of companies such as Cadence, Synopsys, Mentor Graphics)

• Solving puzzles: e.g. Sudoku solver

• Solving planning problems in AI: find a sequence of actions to meet the goal

…

In your homework you will be using a SAT solver written in Scala



What if domains are not finite?

We can use extension of SAT called SMT
SMT = Satisfiability Modulo Theories

Constraints involving not only Booleans but also a mixture of

• linear integer/real constraints (Simplex algorithm, branch and cut, …)

• fixed-width integers

• arrays, sequences/strings

• finite trees (unification constraints) – we will see them in later lectures

A convenient way to use constraint solving in Scala is the Leon system:

http://leon.epfl.ch

which comes with online documentation. See the choose construct.

http://leon.epfl.ch/


Example in http://leon.epfl.ch

import leon.lang._

import leon.lang.synthesis._

import leon.annotation._

object Example {

def R(x:BigInt, y:BigInt) = {

x + x == y

}

def test1 = choose((y:BigInt) => R(10,y)) // gives 20

def test2 = choose((x:BigInt) => R(x,10)) // gives 5

}

http://leon.epfl.ch/


Conclusions

• Constraint propagation networks can solve certain classes of constraints

• They are graphs consisting of quantity objects and constraint objects

• Propagation of quantities is done by setting and invalidating quantities 
according to the meaning of local constraints

• More complex constraints require search or algebraic reasoning

• It is worth considering to use an outside solver and express your problem in 
its constraint language

• An important class of constraint solvers are SAT solvers, which we can use to 
solve constraints over finite domains

• SAT solvers perform propagation but also search and have many heuristics


