Graphical Models Reading Group
Week 1

Nicholas Ruozzi

1 Inference and Graphical Models

Historically, the study of graphical models was developed to perform statistical inference. Let
p(z1,...,z,) be a probability distribution. Because of their importance in a wide variety of applica-
tions, two inference problems are typically studied in this context: the maximum a posteriori (MAP)
estimation problem and the computation of marginal probabilities.

A marginal of a probability distribution p is the function obtained by fixing the value of one of
the random variables and summing out over the remaining variables. For example, the marginal
function, p;(x;), corresponding to the it" variable is given by:

pi(zi) = Z p(Ill,...,I;l) (1)
x/ st. xi=x;

Computing the marginals of a given probability distribution is, in general, an expensive operation.
However, when the probability distribution has some additional structure, we may be able to compute
the marginals much faster.

Example 1.1 (Efficient marginalization).
Suppose p(z1,z2,23) is a probability distribution over three random variables that take values in
the set {1, ..., k}. Further, suppose that p can be written as a product of functions as follows:
p(x1, 2, 23) = qr2(1, w2)q13(21, T3) (2)
Now, consider computing the marginal of p for the variable z1:
p1(x1) =ZZP($1,$2,$3) (3)

T2 I3

As x5 and z3 can each take one of k different values, this summation contains k2 distinct terms.
However, if we exploit the observation that p can be written as a product, we can rewrite the
summation as

Pl(iﬂl) = ZZQ12($1,5€2)Q13($1,$3) (4)

T2 T3

= ZQ12(I1,$2){ZQ13(x17x3)} ()

which only requires summing 2k distinct terms.

As an alternative to computing the marginals, we may also be interested in computing the most
likely configuration of our joint probability distribution. This problem is typically referred to as
maximum a posteriori estimation, MAP estimation for short, and is a solution to the following
optimization problem:

¥ e argm;xxp(xl, ey L) (6)

Again, notice that, like summation, computing the maximum can be computationally expensive,
but if the probability distribution can be written as a product of smaller functions, then we may be
able to compute the maximum more efficiently. A similar idea can be applied over any semiring [1]
(e.g. sum and product, max and product, min and sum, etc.).

Graphical models describe the relationship between the pieces of the decomposition, called po-
tentials, of a particular probability distribution. When the graphical model has a certain structure,
then we can efficiently compute the marginals and the MAP estimate.

2 Graphical Models

Let f:][, &i = RU {oc0, —o0}, where each &; is an arbitrary set (e.g. R, {0,1}, Z, etc.). We will
in general allow f to take the value co over its domain. However, as we will see later, some results
will only apply when f is a real-valued function (i.e. f does not take the value oo or —co for any
element in its domain).

Often, we will be interested in finding an element (x1,...,x,) € [[; &; that maximizes/minimizes
f, and as such, we will assume that there is such an element. For an arbitrary function, computing
this maximum/minimum may be computationally expensive, especially if n is large. A typical
scientific application may involve hundreds of thousands of variables and potential functions and
storing the entire problem on one computer may be difficult, if not impossible. In other applications,
such as sensor networks, processing power and storage are limited. Because local message passing
algorithms are decentralized and distributed, they can operate on scales at which typical algorithms
would be impractical.

2.1 Dynamic Programming

As a motivation for studying the general problem, we will begin by examining the connection between
message passing algorithms and more standard notions in computer science.

A common problem solving strategy in computer science is to break apart large problems into
smaller subproblems, solve the subproblems, and then combine the solutions of the subproblems into
a solution to the larger problem. To solve each subproblem, we can recursively employ a similar
strategy. This style of problem solving is typically referred to as divide-and-conquer.

Closely related to divide-and-conquer is the notion of dynamic programming. In dynamic pro-
gramming, we start with an optimization problem that can expressed as an optimization over sub-
problems via some recurrence. Naively computing the recurrence can be costly; we may end up
solving many of the same subproblems over and over again. Instead, we employ a bottom up strat-
egy: we create a table containing the solutions to all of the subproblems by solving the smallest
subproblems first, recording their solution in the table, and then using these solutions to compute
the solutions to the next smallest subproblems. Local message passing algorithms such as belief
propagation and min-sum are, in many ways, a natural by-product of the same problem solving
strategies underlying dynamic programming. This connection is best illustrated by example:

Example 2.1 (Maximum weight independent set on a tree).
Let G = (V, E) be a graph with associated weights w; for each node i € V. A set, S C V, of the
vertices forms an independent set if no two vertices in the subset are joined by an edge in E. The
weight of a set .S, written w(S), is the sum of the weights of all of the vertices in S. The maximum
weight independent set problem is to find an independent set in G of maximum weight.
Computing the maximum weight independent set for an arbitrary graph is known to be NP-hard.
However, in the special case that the graph G is a tree, the problem can be solved in polynomial
time using standard dynamic programming techniques. To see this, let T" be a tree rooted at a node
r. Define the function mwis(i, inSet) to be the value of the maximum weight independent set in the
subtree rooted at ¢ formed by the descendants of node ¢ where inSet is either zero or one to indicate
whether or not node 7 should be taken as part of the independent set. The function mwis is defined

Figure 1: Example of the maximum weight independent set problem on a tree. The number inside
of each node corresponds to the weight of that node.

via the following recursion:

mwis(i,1) = w; + Z mwis(c, 0) (7)
c child of 4
mwis(i,0) = Z max{mwis(c, 0), mwis(c, 1)} (8)
c child of ¢

We have that w(S*) = max{mwis(r,0), mwis(r, 1)} for any maximum weight independent set,
S*, on T. Notice that mwis(i,1) and mwis(i,0) only depend on the value of mwis for the children
of node i. To see how we might turn this into a distributed algorithm, suppose we could perform
computations at each node of the graph. We can have each leaf node [compute mwis(l,1) and
mwis(l,0) and pass these results to their parents. The nodes directly above the leaf nodes can then
perform a similar computation and pass the results to their parents and so on. Formally, let p(i) be
the parent of node i in the tree, and define a vector of messages, m, by setting m;_,¢;y(1) = mwis(i, 1)
and ;) (0) = mwis(¢,0). From this formulation, we can see that each node other than r needs
to pass two messages to its parent. We then have that the maximum weight independent set has
weight

max{w, + Z Me—r(0), Z max}mcﬁr(xc)}. (9)

c child of r c child of r

The algorithm described in Example 2.1 exactly computes the maximum weight independent set
on a tree. We would like to answer the following question: if the graph is not a tree, under what
conditions can we use a similar message passing strategy to find the maximum weight independent
set?

2.2 Factorizations and Factor Graphs

The basic observation of the max-sum algorithm is that, even though the original maximization
problem may be difficult, if f can be written as a sum of functions depending on only a small subset
of the variables, then we may be able to maximize the global function by performing a series of
maximizations over (presumably easier) sub-problems. To make this concrete, let A C 2{5--7} We
say that f factorizes over A if we can write f as a sum (or product depending on the application)
of real valued potential functions ¢; : X; = R U {00, —0o} and 9, : Xy — RU {00, —oo} as follows:

fla) = Z@(fﬂz) + Z Ya(Ta) (10)

i=1 acA

This factorization is by no means unique. For example, suppose we are given the objective
function f(x1,z2) = 1 + 22 + 122. There are many different ways that we can factorize f:

f($1,$2) = X1+ Ty + x122 (11)
= x1+ (IQ + {E1I2) (12)
= (;Cl + X2 +.’I]1(E2) (13)
1T 1T
= 24+ ag+ 122+ 122 (14)

Figure 2: Factor graph corresponding to f(x1, x2,3) = ¢1+d2+Ps+112+1e3+113. By convention,
variable nodes are represented as circles and factor nodes are represented as squares.

Each of these rewritings represents a different factorization of f (the parenthesis indicate a single
potential function). All of these factorizations can be captured by the above definitions, except
for the last. Recall that A was taken to be a subset of 2{17} In order to accommodate the
factorization given by equation 14, we will allow A to be a multiset whose elements are members of
the set 210},

The set of all factorizations of the objective function f(z) over the set A forms a is defined as:

Falf) = ¢1/)|Z¢>z T —I—Zi/)a Zq) = f(x) for all x} (15)

acA

If (¢,9) € Fa(f) and (¢, 9") € Fa(f), then (¢,) is called a reparameterization of (¢',4’) and vice
versa.

Every factorization of f has a corresponding graphical representation known as a factor graph.
Factor graphs provide a visual representation of the relationship among the potential functions. The
factor graph consists of a variable node i for each variable z;, a factor node « for each of the potentials
1, and an edge joining the factor node corresponding to a to the variable node representing z; if
i € a. For a concrete example, see Figure 2.

2.3 Message Passing Algorithms

The max-sum, sum-product, max-product, and min-sum algorithms are local message passing algo-
rithms over a factor graph. Here, we will describe the max-sum algorithm. Suppose f factorizes
over A as

Z¢z xz + Z Ya(CL‘a (16)

acA

The max-sum algorithm is a local message passing algorithm that attempts to compute an
assignment that maximizes f. During the execution of the max-sum algorithm, messages are passed
back and forth between adjacent nodes of the graph. In the algorithm, there are two types of
messages: messages passed from variable nodes to factor nodes and messages passed from factor
nodes to variable nodes. On the t* iteration of the algorithm, messages are passed along each edge
of the factor graph as follows:

mg—)a (‘TZ) = K+ (bz xz Z mgﬂz (17)
Bedi\a
mh (o) = nma [Va(a) + 30 mihy ()] (18)
o kea\i

where 9i denotes the set of all & € A such that ¢ € « (intuitively, this is the set of neighbors of
variable node z; in the factor graph), z, is the vector formed from the entries of = by selecting only
the indices in «, and « \ ¢ is abusive notation for the set-theoretic difference a \ {i}.

The other message passing algorithms can be obtained from the one described here by substi-
tuting the appropriate operations. For example, the sum-product updates are given by:

mi, (i) = ki) [[mib(@:) (19)
Bedi\a
mhoiw) = 53 [talra) [T mi)] (20)
LTa\i kea\i

where f factorizes over A as

f(x) = H@(%) H Ya(Ta) (21)
=1

acA

When the graph is a tree, these message updates can be derived using the same dynamic pro-
gramming techniques we saw in Example 2.1. When the graph is not a tree, the same updates are
used as if the graph was a tree. Understanding when these updates work for arbitrary graphs is the
central question underlying the study of local message passing algorithms.

Each message update has an arbitrary normalization factor x. Because & is not a function of any
of the variables, it only affects the value of the maximum and not where the maximum is located. As
such, we are free to choose it however we like for each message and each time step. In practice, these
constants are used to avoid numerical issues that may arise during the execution of the algorithm.

Definition 2.1. A wvector of messages m = ({ma—i}, {Misa}) is real-valued if for all o € A,
Vi € a, and Vx; € X, ma—i(2;) and mi—qo(x;) are real-valued functions (i.e., they do not take the
value oo for any x; € X).

We will think of the messages as a vector of functions indexed by the edge over which the
message is passed. Any vector of real-valued messages is a valid choice for the vector of initial
messages m", but the choice of initial messages can greatly affect the behavior of the algorithm.
A typical assumption for the max-sum algorithm is that the initial messages are chosen such that
m?_,, =0 and m?_, , = 0. This uniformity assumption is often useful when we need to analyze the
evolution of the algorithm over time, but ideally, we would like to design message passing schemes
that perform well independent of initialization.

In Example 2.1, we saw that the maximum weight independent set could be computed by looking
at all of the messages passed to the root node. mwis(r, inSet) is special in that it recursively depends
on all of the problem variables. Because of this, we can compute the value of the maximum weight
independent set simply by trying both possible values of inSet. For general objective functions, this
phenomenon is captured by a marginal computation. A max-marginal of f is a function of one or
more variables obtained by fixing a subset of the variables and maximizing the function f over all of
the remaining variables. For example, the max-marginal for the variable z; would be the function
fz(xz) = MaXg .yl =g, f(‘rl)

We can use the messages in order to construct an estimate of the max-marginals of f. Given
any vector of messages, m?, we can construct a set of beliefs that are intended to approximate the
max-marginals of f:

bi(xi) = K+ oilm)+ > mh (@) (22)
a€0i
bo(Ta) = K+Palza)+ Z Mo () (23)

If b;(2;) = maxy 4=, f(2'), then for any y; € argmax;,, bi(z;) there exists a vector z* such
that 27 = y; and z* maximizes the function f. If the | argmax,, b;(z;)| = 1 for all i, then we can
take z* = y, but, if the objective function has more than one optimal solution, then we may not
be able to construct such an x* so easily. For this reason, one typically assumes that the objective
function has a unique global maximum. Unfortunately, because the beliefs are not necessarily the

true max-marginals, we can only approximate the optimal assignment by computing an estimate of
the argmax:

z € argmaxbf-(:vi) (24)

Definition 2.2. A wvector, b = ({b;}, {ba}), of beliefs is locally decodable to x* if b;(x}) < b;(x;)

for all i, z; # x}. Equivalently, each b; has a unique mazimum at .

If the algorithm converges to a vector of beliefs that are locally decodable to =*, then we hope that
the vector z* is a global maximum of the objective function. This is indeed the case when the factor
graph contains no cycles. Informally, this follows from the correctness of dynamic programming on
a tree. We will defer a formal proof of this result until later. For now, consider using the max-sum
algorithm to compute the maximum weight independent set on a tree:

Example 2.2 (Maximum weight independent set on a tree revisited).

Consider the maximum weight independent set problem on the graph G = (V, E) with weights w;
from Example 2.1. Let 2 € {0,1}" be an indicator vector for a set S C V where x; = 1ifi € S
and zero otherwise. We can construct an objective function for the maximum weight independent
set problem as follows:

f(z) = Zwixi + Z log{z; + z; <1} (25)

% (1,7)€E

where {z; + z; < 1} is one if z; + z; < 1 and zero otherwise. Fix a vector T and let S be the
corresponding set. We can check that f(Z) = w(S) if S is an independent set in G and f(z) = oo
otherwise. Consequently, any x that maximizes f must correspond to a maximum weight indepen-
dent set. For the natural factorization given by equation 25, the max-sum message passing updates
can be written as:

mf'—>(i,j) (z;) = wiz; + Z mﬁ;,i)%(fl?i) (26)
kEdi\j
mi i) = maxflog{a: +a; < 1} 4+ m! 7\, (@) (27)

By substituting equation 27 into equation 26, we have

mﬁﬁ(iﬁj)(xi) = wz; + Z rr;%x[log{:ci +ap <1} + mfﬂf(i7k) (zr)] (28)
kedi\j

which is equivalent to the recurrence, equations 7 and 8, derived using dynamic programming. If
G is a tree with root » € V, then a simple proof by induction can be used to show that the messages
will converge to fixed values after at most |V| time steps. Further, for all ¢ > |V, mﬁﬁ(i)p(i))(xi) =
mwis(é, z;) where p(i) € V is the parent of ¢ in G. From this observation, we can conclude that
maxy, br(x,) corresponds to the value of the maximum weight independent set.

Notice that, unlike the dynamic programming solution, there is no fixed root node, and the max-
sum algorithm does not pass messages only in one direction in the tree. The max-sum algorithm

actually computes all of the max-marginals simultaneously, instead of just the one at the root.

2.3.1 Computation Trees

An important tool in the analysis of the local message passing algorithms is the notion of a com-
putation tree. Intuitively, the computation tree is an unrolled version of the original graph that
captures the evolution of the messages passed by the max-sum algorithm needed to compute the
belief at time ¢ at a particular node of the factor graph. Computation trees describe the evolution
of the beliefs over time, which, in some cases, can help us prove correctness and/or convergence of

Figure 3: The computation tree at time ¢ = 4 rooted at the variable node x; of the factor graph in
Figure 2. The variable nodes have been labeled with their potentials for emphasis.

the message passing updates. For example, the convergence of the max-sum algorithm on graphs
containing a single cycle can be demonstrated by analyzing the computation trees produced by the
max-sum algorithm at each time step [4].

The depth t computation tree rooted at node ¢ contains all of the length ¢ non-backtracking
walks in the factor graph starting at node i. A walk is non-backtracking if it does go back and forth
successively between two vertices. For any node v in the factor graph, the computation tree at time
t rooted at v, denoted by Ty, (t), is defined recursively as follows: T),(0) is just the node v, the root of
the tree. The tree T, (t) at time ¢ > 0 is generated from T, (¢ — 1) by adding to each leaf of T}, (t — 1)
a copy of each of its neighbors in G (and the corresponding edge), except for the neighbor that is
already present in T,(¢ — 1). Each node of T, (t) is a copy of a node in G, and the potentials on
the nodes in T, (t), which operate on a subset of the variables in Ty, (t), are copies of the potentials
of the corresponding nodes in GG. The construction of a computation tree for the graph in Figure
2 is pictured in Figure 3. Note that each variable node in T, (¢) represents a distinct copy of some
variable x; in the original graph.

Given any initialization of the messages, T, (t) captures the information available to node v at
time ¢. At time ¢ = 0, node v has received only the initial messages from its neighbors, so T, (0)
consists only of v. At time ¢ = 1, v receives the round one messages from all of its neighbors, so v’s
neighbors are added to the tree. These round one messages depend only on the initial messages, so
the tree terminates at this point. By construction, we have the following lemma:

Lemma 2.1. The belief at node v produced by the maz-sum algorithm at time t corresponds to the
ezact maz-marginal at the root of T, (t) whose boundary messages are given by the initial messages.

Proof. See, for example, [2] and [5]. O

2.3.2 Fixed Point Properties

Computation trees provide us with a dynamic view of the max-sum algorithm. After a finite number
of time steps, we hope that the beliefs on the computation trees stop changing and that the message
vector converges to a fixed point of the message update equations (in practice, when the beliefs
change by less than some small amount, we say that the algorithm has converged). For any real-
valued objective function f (i.e. |f(z)| < oo for all x), there always exists a fixed point of the
message update equations (see Theorem 2 of [3]).

Ideally, the beliefs constructed from any fixed point of the message update equations would be the
true max-marginals of the function f. If the beliefs are the exact max-marginals, then the estimate
corresponding to our beliefs would indeed be a global maximum. Unfortunately, the algorithm is
only known to produce the exact max-marginals on special factor graphs (e.g. when the factor graph
is a tree). Instead, we will show that the fixed point beliefs are almost like max-marginals. Like
the messages, we will think of the beliefs as a vector of functions indexed by the nodes of the factor
graph. Consider the following definitions:

Definition 2.3. A vector of beliefs, b, is admissible for a function f if
1) =kt S b + Y [balwa) = 3 bulon)]
% «a kea
Beliefs satisfying this property are said to reparameterize the objective function.

Definition 2.4. A wvector of beliefs, b, is max-consistent if for all a and all i € a:

max b, () = Kk + bi(x;)

Ta\i

Any vector of beliefs that satisfies these two properties provides a meaningful reparameterization
of the original objective function. Any vector of beliefs obtained from a fixed point of the message
updates does indeed satisfy these two properties:

Theorem 2.2. For any vector of fixed point messages of the maz-sum algorithm, the corresponding
beliefs are admissible and maz-consistent.

Proof. Let m be a fixed point of the message update equations:

miﬁa(zi) = K+ ¢z I’L Z mﬁ%z I’L (29)
Bedi\a
Ma—i(T;) = K-+ max {1/)(1 Ta) Z Mi—a (Tk } (30)
Ta\i
kea\i

First, we will show that m produces max-consistent beliefs. Take o € A and choose some i € «.
Without loss of generality, we can assume that the constants are uniformly equal to zero.

max by (rs) = maxd)a ZTa) + kaﬁa(xk) (31)
LTa\i Ta\i kea

= Misa(zi) + max,(x,) Z Mi—ao(Tk) (32)

Ia\z

kea\i

= Misa(Ti) + Maoi(z;) (33)
= (bz I’L [Z mﬁ%z T } +ma~>i(xi) (34)

Bedi\a
= bi(,Ti) (35)

Next, we can check that the beliefs are admissible. Again, we can assume that the constants are
uniformly equal to zero.

flz) = Z@(xi) + Zi/fa(l‘a) (36)
= Z di(wi) + Z Mo wz)] Z [wa Tq) Zma—n x } (37)

= Ybila)+ Zawx) - mH«xz—)} (39)
_ ibi(xi) +£; () +§mm () = 3 mia(@) = Y mailan)] (39)
= imm + z ba(a) - Z [micsa @) . ()] (40)
- ibiw + Z ba(za) - Z |01l + [B; mai(@i) | +masi(@)]] (1)
- ;bi(xi) + Zaj :ba(:ca) - ;bi(:ci)} o (42)

O

References

[1] S.M. Aji and R.J. McEliece. The generalized distributive law. Information Theory, IEEE Trans-
actions on, 46(2):325 —343, mar 2000.

[2] S. Tatikonda and M. I. Jordan. Loopy belief propagation and gibbs measures. In In Uncertainty
in Artificial Intelligence, pages 493-500. Morgan Kaufmann, 2002.

[3] M. Wainwright, T. Jaakkola, and A. S. Willsky. Tree consistency and bounds on the performance
of the max-product algorithm and its generalizations. Statistics and Computing, 14(2):143-166,
2004.

[4] Y. Weiss. Correctness of local probability propagation in graphical models with loops. Neural
Comput., 12(1):1-41, 2000.

[6] Y. Weiss and W.T. Freeman. On the optimality of solutions of the max-product belief-
propagation algorithm in arbitrary graphs. Information Theory, IEEE Transactions on,
47(2):736 —744, feb 2001.

