## Homework 9 : 21-22 Novembre 2018 Traitement Quantique de l'Information

## Exercise 1 Rotations sur la sphère de Bloch

- a) Représentez sur la sphère de Bloch les vecteurs propres de  $\sigma_x$ ,  $\sigma_y$  et  $\sigma_z$ .
- b) Calculez explicitement les matrices  $\exp(-i\frac{\alpha}{2}\sigma_x)$ ,  $\exp(-i\frac{\beta}{2}\sigma_y)$ ,  $\exp(-i\frac{\gamma}{2}\sigma_z)$ .
- c) Considérez le qubit  $|\psi\rangle = (\cos\frac{\theta}{2})|\uparrow\rangle + e^{i\frac{\pi}{2}}(\sin\frac{\theta}{2})|\downarrow\rangle$ . Représentez l'action des matrices  $\exp(-i\frac{\alpha}{2}\sigma_x)$  et  $\exp(-i\frac{\gamma}{2}\sigma_z)$  sur ce vecteur.

Exercise 2 Création d'intrication grâce à une interaction magnétique.

On considère deux spins  $\frac{1}{2}$  nucléaires avec Hamiltonien d'interaction  $\mathcal{H} = \hbar J \sigma_1^z \otimes \sigma_2^z$ . L'opérateur d'évolution de ce système est  $U = \exp\left(-\frac{it}{\hbar}\mathcal{H}\right)$ . Soit

$$|\psi_0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle + |\downarrow\rangle) \otimes \frac{1}{\sqrt{2}} (|\uparrow\rangle - |\downarrow\rangle)$$

l'état initial des deux spins.

a) Montrez que l'état après un temps  $t = \frac{\pi}{4J}$  est

$$|\psi_t\rangle = \frac{e^{-\frac{i\pi}{4}}}{2} (|\uparrow\uparrow\rangle - i|\uparrow\downarrow\rangle + i|\downarrow\uparrow\rangle - |\downarrow\downarrow\rangle)$$

- b) Montrez que cet état est intriqué, c'est à dire qu'il est impossible de l'écrire sous la forme  $(\alpha \mid \uparrow \rangle + \beta \mid \downarrow \rangle) \otimes (\gamma \mid \uparrow \rangle + \delta \mid \downarrow \rangle)$ .
- c) Maintenant on laisse voluer l'état obtenu ci-dessus, encore pendant un temps  $\frac{\pi}{4J}$ . Calculez l'état résultant et déterminez si il est intriqué ou non.
- d) Et que ce passe t-il si on laisse évoluer l'état initial  $|\Psi_0\rangle$  pendant un temps  $\frac{\pi}{J}$ ?