Homework 3: 3-4 October 2018 Traitement Quantique de l'Information

Exercise 1 Orthonormal basis and measurement principle

Let $\{|x\rangle, |y\rangle\}$ an orthonormal basis of \mathbb{C}^2 . This means that $\langle x|x\rangle = \langle y|y\rangle = 1$ and $\langle x|y\rangle = \langle y|x\rangle = 0$. Let $|\alpha\rangle = \cos\alpha |x\rangle + \sin\alpha |y\rangle$, $|\alpha_{\perp}\rangle = -\sin\alpha |x\rangle + \cos\alpha |y\rangle$, $|R\rangle = \frac{1}{\sqrt{2}}(|x\rangle + i|y\rangle)$, $|L\rangle = \frac{1}{\sqrt{2}}(|x\rangle - i|y\rangle)$.

- 1) Check that $\{|\alpha\rangle, |\alpha_{\perp}\rangle\}$ and $\{|R\rangle, |L\rangle\}$ are two orthonormal basis.
- 2) We measure the polarization with three different measurement apparatus. The first apparatus is modeled by the basis $\{|x\rangle, |y\rangle\}$; the second one is modeled by the basis $\{|R\rangle, |L\rangle\}$; and the third one by the basis $\{|\alpha\rangle, |\alpha_{\perp}\rangle\}$. Let

$$|\psi\rangle = \cos\theta |x\rangle + (\sin\theta)e^{i\varphi} |y\rangle$$

be the polarized state of a photon just before the measurement. For each of the three experiments, give the (two) possible outcoming states just after the measurement and their corresponding probabilities of outcome.

Exercise 2 Interferometer revisited

Let $S = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$, $R = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ be the two matrices representing a semi-transparent mirror and a perfectly reflecting mirror.

- 1) Compute $S|H\rangle,\,S|V\rangle$ and $R|H\rangle,\,R|V\rangle$ and give the result in Dirac notation.
- 2) Compute the state $SRS |H\rangle$ as well as the probabilities $|\langle H|SRS |H\rangle|^2$ and $|\langle V|SRS |H\rangle|^2$ (the two probabilities should sum to one).

Recall the picture of the experimental set-up in homework 2 and discuss your computations with your neighbor.

3) We introduce a "dephaser" described by $D = \begin{pmatrix} e^{i\varphi_1} & 0 \\ 0 & e^{i\varphi_2} \end{pmatrix}$ where φ_1 and φ_2 are two different phases (angles). Compute $D|H\rangle$ and $D|V\rangle$ and give the result in Dirac notation.

We consider the operation SRDS. Make a picture of the experimental situation and discuss it with your neighbor. Compute $SRDS |H\rangle$, and the probabilities $|\langle H|SRDS |H\rangle|^2$ and $|\langle V|SRDS |H\rangle|^2$.

Verify also that the matrix SRDS is unitary and relate this fact to the other fact that the two probabilities should sum to one.