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PrOBLEM 1. Note that Ey = Ey U Ey U Es.

(a) (1) For disjoint events, P (Ey) = P (E1) + P (E2) + P (E3), so P (Ey) = 3/4.

(2) For independent events, 1 — P (Ejy) is the probability that none of the events
occur, which is the product of the probabilities that each one doesn’t occur.
Thus 1 — P (Ey) = (3/4)® and P (E,) = 37/64.

(3) If E1 = E2 = Eg, then Eo = E1 and P(E()) = ]_/4

(b) (1) From the Venn diagram in Fig. 1, P (Ej) is clearly maximized when the events
are disjoint, so max P (Ey) = 3/4.
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Figure 1: Venn Diagram for problem 1 (b)(1)

(2) The intersection of each pair of sets has probability 1/16. As seen in Fig. 2,
P (Ey) is maximized if all these pairwise intersections are identical, in which case
P(Ey) =3(1/4—1/16) + 1/16 = 5/8. One can also use the formula P(E,) =
P(Ey)+P(Ey)+P(Es)—P(E1NEy)—P(E1NE;)—P(EyNEs)+P(E1NEyNEs),
and notice that all the terms except the last is fixed by the problem, and the
last term cannot be made more than min; ; P(E; N E;) = 1/16.

Figure 2: Venn Diagram for problem 1 (b)(2)

(c) Same considerations as in (b)(2) yields the upper bound P(Ey) < 3p—2p* As P(Ey) =
1, we find that p > 1/2.

PROBLEM 2. (a) Since the die is fair, the probability of a toss being 6 is 1/6. Then,
P(N; = k) is simply the probability that the child does not observe 6 for the first
k — 1 tosses and observes 6 at k' toss. Hence, P(N, = k) = (5/6)%11/6,



(b)

()

E[Ni] = Y72 P(Ny = k)k = 1/6> 1 ,(5/6)* "'k = 62.1/6 = 6. Here, we used the
hint >°0 ¥k =1/(1 — 2)%

The only way N = k,k > m is when (i) k* toss is a 6 and (ii) in the previous
k — 1 tosses exactly m — 1 6’s and k& — m non-6’s are observed. There are (:1:11)
distinct ways for (ii) to happen each with probability (5/6)%~™(1/6)™. Consequently,

P(N = k) = (571)(5/6)(1/6)™

To find E [N ], consider new random variables N;,i € {1,2,...,m} which denotes
the number of tosses after the i — 1** 6 is observed until the i** 6 occurs. Since
N =Ny + Ny+ ...+ N, and N,’s are independent and identically distributed, we

have E[N] = mE[N;] = 6m.
Using Bayes’ Rule, we have

P(N = k | Fair) P(Fair)
P(N = k | Loaded) P(Loaded) + P(N = k | Fair) P(Fair)
(5/6)*'1/6
(5/6YF11/6 + (1 — 1/6%)k—11/65
The statement P(Fair | N = k) < P(Loaded | N = k) is equivalent to
(5/6)"11/6 < (1 —1/6°%)"11/6°

(k — 1)In(6/5) + In6 > 5In6 + (k — 1)In(6°/6° — 1)

(- 1)m<%

k > 4In6/(In(6(6° — 1)) — In(5.6%)) + 1 ~ 40.3

P(Fair | N=k) =

) + In6 > 5In6

An alternative way to find P(N = k) :

Recalling that N =N;+ Ny +...+ Ny, and N;’s are i.i.d, the distribution of N is
the m-fold convolution of the distribution of N;. To find the m-fold convolution, we
can take the easier z-transform approach. (For convenience, let p =1/6 and ¢ = 5/6)
Define the z-transform of Py, as ¥y, (z) = E[lz7™] = Y72 P(Ny = k)z7F =
Yispgt e

_ p!
1 —gz!

AsSN =N +--+ N,,, the z-transform of N will be

Y(z) = Bl WMt tN] = BRmM B[] BN = (0 ()™ (1)

pz~t \" . 1
= —_— pry Z e —
1—gz1 p (1 —qgz=1)m

From geometric series, we know that > .- r* = 1/1 — r. Taking the derivative of
both sides with respect to r, m — 1 times, one can obtain

f: (k_k! )!rk_m+1:§:(k+z_1)!rk:(m—l)! 1

m+1
k=m—1 + k=0



Thus,
T = —
m — 1 (1 —r)m
k=0

Here, if we substitute r with gz~!

) N

k=0

, we get

and substituting in (1), we obtain

o k—|—m—1 —(m m > k_l —m _—k_m
Vg(2) = ( )qkz (k) pm = ( )q’“ 2 p
k=0

m—1 m—1
k=m

Since by definition, 1 5(z) = Y202 P(N = k)z*, it can be seen that
P(]\7 =k)= (i:ll)qk_mpm,‘v’k >m
PROBLEM 3. Since A, B, C, D form a Markov chain their probability distribution is given
by
p(a)p(bla)p(c|b)p(d]c) (2)

(a) Yes: Summing (2) over d shows that A, B, C have the probability distribution
p(a)p(bla)p(c|b).

(b) Yes: The reverse of a Markov chain is also a Markov chain. Applying this to A, B,
C, D and using part (a) we get that D, C, B is a Markov chain. Reversing again we
get the desired result.

(¢) Yes: Since A, B, C, D is a Markov chain, given C', D is independent of B, and thus
p(d|c) = p(d|(b,c)). So (2) can be written as

p(a, (bv C)v d) - p(a)p((b, C) |a)p(d| <b7 C))

PROBLEM 4. No. Take for example A = D and let A be independent of the pair (B, C).

Then both A, B, C and B, C, A (same as B, C, D) are Markov chains. But A, B, C', D
is not: A is not independent of D when B and C' are given.

PROBLEM 5.
(a)

EX +Y] =) (x+y)Pxy(z,y)

— ZxPXy(x, y) + ZyPXY(x7y)
=Y aPx()+ > yPr(y)
= E[X]+ E[Y].

Note that independence is not necessary here and that the argument extends to non-
discrete variables if the expectation exists.
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E[XY] = nyPXy(x,y)
= nyPX<x)PY(y)

=3 aPy(a) S yPr(y)

= E[X]| E[Y].
Note that the statistical independence was used on the second line. Let X and Y take
on only the values £1 and 0. An example of uncorrelated but dependent variables is
1
Pxy (1,0) = Pxy (0,1) = Pxy (—1,0) = Pxy (0,—1) = T
An example of correlated and dependent variables is

1
Py (1,1) = Pxy (=1,-1) = 5,

(c¢) Using (a), we have

J§(+Y = E[(X _E[X] +Y — E[Y])Q]
= B[(X — E[X])’] + 2B((X — E[X])(Y - E[Y])] + E[(Y — E[Y])?].

The middle term, from (a), is 2(E[XY]— E[X|E[Y]). For uncorrelated variables that
is zero, leaving us with 0%,y = 0% + oy

PROBLEM 6. We solve the problem for a general vehicle with n wheels.

(a) Out of n! possible orderings (n — 1)! has the tyre 1 in its original place. Thus tyre 1
is installed in its original position with probability 1/n.

(b) All tyres end up in their original position in only 1 of the n! orders. Thus the
probability of this event is 1/n!.

(¢) Let X; be the indicator random variable that tyre 7 is installed in its original position,
so that the number of tyres installed in their original positions is N = Y "  X;.
By (a), E[X;] = 1/n. By the linearity of expectation, E[N] = n(1/n) = 1. Note that
the linearity of the expectation holds even if the X;’s are not independent (as it is in
this case).

(e) Let A; be the event that the ith tyre remains in its original position. Then, the event
we are interested in is the complement of the event | J, A; and thus has probability
1 — Pr(|J; Ai). Furthermore, by the inclusion/exclusion formula,

Pr(l JA) =) Pr(4) = > Pr(4, NnA,)+ Y PA,NA,NA,)—...
A 7 11 <12 11 <t2<13

The jth sum above consists of (’;) terms, each term having the value P(A;N---NA;).
Note that this is the probability of the event that tyres 1 through j have remained
in their original positions, and equals (n — j)!/n!. Consequently,

Pr(Ja) = S0y (1) S -1

J o

Jj=1
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and the event that no tyre remains in its original position has probability

| —Pr(LZJAZ) _ Z “j})j.

j=

(For the case n = 4, the value is 3/8.)

PROBLEM 7.

(a) Let A; denote the event that X; # X. The event that X does not appear in the
inventory is thus
A=AN.. A,

Note that the events Ay, ..., A, are not independent—because they involve the com-
mon random variable X. However, they become independent when conditioned on
the value of X, with P(A;|X =2) =1 — p(z). Thus,

PAIX = z) = (1 = p(x))".

Consequently P(A) = p(x)(1 —p(x))"..

(b) With p the uniform distribution on n items, the above value for P(A) equals (1 —

1/n)m.
(¢) For n large, (1 — 1/n)™ approaches 1/e ~ 37%.



