
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
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Problem 1.

(a) Recall that C is uniquely decodable means that C∗ is injective, i.e., for any un 6= vm

we have Cn(un) 6= Cm(vm). In particular, whenever un 6= vn we have Cn(un) 6= Cn(vn).
The last statement is the definition of Cn being injective.

(b) Since we are supposed to show that u1 6= v1, we may assume that |U| ≥ 2.

If C is not uniquely decodable, then there are un 6= vm such that Cn(un) = Cm(vm).
Among all such (un, vm) choose one for which n+m is smallest, and assume (without
loss of generality) that m ≤ n. If m ≥ 1 we are done, since in this case we must
have u1 6= v1 (because, if not, we can replace un by ũn−1 = u2 . . . un and vm by
ṽm−1 = v2 . . . vm, contradicting m+ n being smallest).

Otherwise, m = 0 and vm = λ (the null string) with C(vm) = λ. Since un 6= vm = λ
and C(un) = λ, we have a letter a = u1 ∈ U such that C(a) = λ. Take now any letter
b ∈ U with b 6= a, and note that C2(ab) = C1(b), i.e., there are two source sequences
that differ in their first letter and have the same representation.

(c) C is not uniquely decodable means that there is un 6= vm such that Cn(un) = Cm(vm).
If n = m then we are done: this would by definition mean that be Cn is not injective.
If n 6= m, we could attempt the following reasoning: observe C∗(unvm) = C∗(vmun)
and conclude that Cm+n is not injective. However this reasoning fails because we
can’t be sure that unvm 6= vmun just because un 6= vm. (E.g., suppose un = a and
vm = aa). This is the reason the problem has “part (b)”:

As C is not uniquely decodable, we can find un and vm as in part (b). Now observe
that (i) unvm 6= vmun (as they differ in their first letter), (ii) unvm and vmun have
the same length k = n+m, and Ck(unvm) = Ck(vmun), i.e., Ck is not singular.

Moral of the problem: it is clear that the statement “C∗ is injective” is a stronger statement
than “for every n, Cn is injective” — since the first ensures that un 6= vm are assigned
different codewords not only when n = m but also for n 6= m — so part (a) is unsurprising.
The statement “Cn is injective for each n” only means that different source sequences of
same length get different representations; it is not immediately clear that this will also
imply that source sequences of different lengths also get different representations. Part (c)
shows this is indeed the case: that injectiveness of Cn for every n implies the injectiveness
of C∗.

Problem 2.

(a) Note that H(Xn) =
∑n

i=1H(Xi|X i−1). Since X i−1 is part of Yi, and since condition-
ing reduces entropy H(Xi|Yi) ≤ H(Xi|X i−1), and the inequality follows.

(b) Since H(Xn) = H(Yi) + H(Xi|Yi), we have nH(Xn) =
∑

iH(Yi) +
∑

iH(Xi|Yi).
Thus (b) and (a) are equivalent statements.



(c) Since (a) and (b) are equivalent statements, we need only consider the condition
for equality in (a). Accordingly suppose equality in (a) holds. It then follows that
H(Xi|X i−1) = H(Xi|Yi) for each i, and in particular that H(X1) = H(X1|Y1).
Observe now that both H(Xn) and

∑
iH(Xi|Yi) remain unchanged if we permute

X1, . . . , Xn. So, equality in (a) will not only imply that H(X1) = H(X1|Y1) but also
H(X2) = H(X2|Y2), . . . , H(Xn) = H(Xn|Yn). (One can also see this by expanding
H(Xn) by the chain rule in different orders). We see that each Xi is independent of
Yi and thus, that {Xi} are independent (but not necessarily identically distributed)
random variables.

It is easy to check that the independence of {Xi} is sufficient for equality in (a) to hold
(via H(Xi|Yi) = H(Xi|X i−1) = H(Xi)). Thus we have shown that the independence
of the random variables X1, . . . , Xn is necessary and sufficient condition for equality
to hold.

The inequality (b) (or equivalently (a)) is a special case (An−1/(n − 1) ≥ An/n) of Han’s
equality, which say that if X1, . . . , Xn are random variables, and we compute the average
Ak of all H((Xi : i ∈ S)) with S ⊂ {1, . . . , n} of size k, then A1 ≥ A2/2 ≥ . . . An/n.

Problem 3.

(a) The calculation Pr(X2 = 4) = (1 − p)/2 6= (1 − p) = Pr(X1 = 4) shows that the
process is not stationary.

(b) With h2(β) = −β log(β)−(1−β) log(1−β), we haveH(Xn+1|Xn = 1) = H(Xn+1|Xn =
2) = h2(α) and H(Xn+1|Xn = 3) = H(Xn+1|Xn = 4) = h2(1/2) = 1. The answer is
independent of n.

(c) Since the process is Markov, H(Xn|Xn−1) = H(Xn|Xn−1) for n > 1. By part
(b) we get a1 = h2(p), an = H(Xn|Xn−1) = h2(α)[Pr(Xn = 1) + Pr(Xn = 2)] +
h2(1/2)[Pr(Xn = 3) + Pr(Xn = 4)] = h2(α)p+ (1− p) for n > 1.

(d) Using the chain rule bn = (a1 + · · ·+ an)/n, and by (c) bn = a1/n+ (n− 1)a2/n,

(e) As limn bn = a2, H exists and equals a2. Note that bn 6= an.

Moral: we know that entropy rate is well defined for stationary sources; here we have seen
an instance of a non-stationary source for which the entropy rate is still defined.

Problem 4.

(a) Since L = j means that 2j ≤ U < 2j+1, we see that conditioned on {L = j}, U can
take 2j values. Thus H(U |L = j) ≤ j.

(b) As H(U |L) =
∑

j H(U |L = j) Pr(L = j), by part (a) we find H(U |L) ≤
∑

j j Pr(L =
j) = E[L].

(c) Note that H(U) ≤ H(UL) = H(L) + H(U |L). (Indeed, since L is a function of U ,
we even have H(U) = H(UL).) The conclusion now follows by part (b).

(d) Note that for any i, 1 ≥ Pr(U ≤ i). But Pr(U ≤ i) =
∑i

j=1 Pr(U = j) ≥ iPr(U = i)
since each term in the sum is at least Pr(U = i).
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(e) By (d) we get log2 u ≤ − log2 Pr(U = u) for u = 1, 2, . . . . Multiplying both sides by
Pr(U = u) and summing over u we get E[log2 U ] ≤ H(U). As L = blog2 Uc ≤ log2 U ,
we conclude that E[L] ≤ E[log2 U ] ≤ H(U).

(f) Since f(n, µ) = (n+1) log(µ+1)−n log µ, we see that E[f(G, µ)] = (E[G]+1) log(µ+
1) − E[G] log µ and E[f(N,µ)] = (E[N ] + 1) log(µ + 1) − E[N ] log µ. Since E[G] =
E[N ], we get E[f(G, µ)] = E[f(N,µ)]. Remembering that f(n, µ) = − log pG(n), we
see that H(G) = E[f(G, µ)]. Thus

H(G)−H(N) = E[f(G, µ)]−H(N) = E[f(N,µ)]−H(N) =
∑
n

pN(n) log
pN(n)

pG(n)

so, we see that H(G) − H(N) = D(pN‖pG) ≥ 0 and consequently H(N) ≤ H(G).
Moreover H(G) = E[f(G, µ)] = (µ+ 1) log(µ+ 1)− µ log µ = g(µ).

(g) By (c) we have E[L] ≥ H(U) − H(L). By (f) we have H(L) ≤ g(E[L]). As g is
increasing (by computing g′(µ) = log(1 + µ)− log µ > 0), by part (e) we further find
g(E[L]) ≤ g(H(U)). Thus, E[L] ≥ H(U)− g(H(U)).

Moral of the problem: Consider designing an injective code for a random variable U .
By labelling the values of U as 1, 2, . . . , with 1 denoting the most probable value of
U , 2 the next probable, etc., we can assume without loss of generality that U is as
in (d). The injective code with shortest expected length will assign the binary strings
λ, 0, 1, 00, 01, 10, 11, 000, . . . to the values 1, 2, 3, 4, . . . of U in that order. Note that in this
assignment the binary string assigned to the letter u has length exactly blog2 uc. Thus (g)
gives a lower bound to the expected codeword length of the best code (and thus any injec-
tive code) in terms of the entropy. As g(x) is a function that is O(log x), we conclude that
relaxing the requirement of unique decodability to injectivity does not yield a substantive
improvement on expected codeword length.
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