PROBLEM 1. Show that a cascade of n identical binary symmetric channels,

$$X_0 \rightarrow \text{BSC #1} \rightarrow X_1 \rightarrow \cdots \rightarrow X_{n-1} \rightarrow \text{BSC #n} \rightarrow X_n$$

each with raw error probability p, is equivalent to a single BSC with error probability

$$\frac{1}{2}(1 - (1 - 2p)^n)$$

and hence that $\lim_{n \to \infty} I(X_0; X_n) = 0$ if $p \neq 0, 1$. Thus, if no processing is allowed at the intermediate terminals, the capacity of the cascade tends to zero.

PROBLEM 2. Consider a memoryless channel with transition probability matrix $P_{Y|X}(y|x)$, with $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. For a distribution Q over \mathcal{X}, let $I(Q)$ denote the mutual information between the input and the output of the channel when the input distribution is Q. Show that for any two distributions Q and Q' over \mathcal{X},

(a) $I(Q') \leq \sum_{x \in \mathcal{X}} Q'(x) \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log \left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in \mathcal{X}} P_{Y|X}(y|x') Q(x')} \right)$

(b) $C \leq \max_x \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log \left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in \mathcal{X}} P_{Y|X}(y|x') Q(x')} \right)$

where C is the capacity of the channel. Notice that this upper bound to the capacity is independent of the maximizing distribution.

PROBLEM 3.

(a) Show that $I(U; V) \geq I(U; V|T)$ if T, U, V form a Markov chain, i.e., conditional on U, the random variables T and V are independent.

Fix a conditional probability distribution $p(y|x)$, and suppose $p_1(x)$ and $p_2(x)$ are two probability distributions on \mathcal{X}.

For $k \in \{1, 2\}$, let I_k denote the mutual information between X and Y when the distribution of X is $p_k(\cdot)$.

For $0 \leq \lambda \leq 1$, let W be a random variable, taking values in $\{1, 2\}$, with

$$\Pr(W = 1) = \lambda, \quad \Pr(W = 2) = 1 - \lambda.$$

Define

$$p_{W,X,Y}(w, x, y) = \begin{cases} \lambda p_1(x) p(y|x) & \text{if } w = 1 \\ (1 - \lambda) p_2(x) p(y|x) & \text{if } w = 2. \end{cases}$$

(b) Express $I(X; Y|W)$ in terms of I_1, I_2 and λ.

(c) Express $p(x)$ in terms of $p_1(x)$, $p_2(x)$ and λ.
(d) Using (a), (b) and (c) show that, for every fixed conditional distribution $p_{Y|X}$, the mutual information $I(X;Y)$ is a concave∩function of p_X.

Problem 4. Suppose Z is uniformly distributed on $[-1, 1]$, and X is a random variable, independent of Z, constrained to take values in $[-1, 1]$. What distribution for X maximizes the entropy of $X + Z$? What distribution of X maximizes the entropy of XZ?

Problem 5. Random variables X and Y are correlated Gaussian variables:

\[
\begin{pmatrix}
X \\
Y
\end{pmatrix} \sim \mathcal{N}_2\left(\begin{pmatrix}
0 \\
0
\end{pmatrix}; K = \begin{bmatrix}
\sigma^2_x & \rho \sigma_x \sigma_y \\
\rho \sigma_x \sigma_y & \sigma^2_y
\end{bmatrix}\right).
\]

Find $I(X;Y)$.

Problem 6. Suppose X and Y are independent geometric random variables. That is, $p_X(k) = (1-p)^{k-1}p$ and $p_Y(k) = (1-q)^{k-1}q$, $\forall k \in \{1, 2, \ldots\}$.

(a) Find $H(X,Y)$.

(b) Find $H(2X + Y, X - 2Y)$

Now consider two independent exponential random variables X and Y. That is, $p_X(t) = \lambda_X e^{-\lambda_X t}$ and $p_Y(t) = \lambda_Y e^{-\lambda_Y t}$, $\forall t \in [0, \infty)$.

(c) Find $h(X,Y)$.

(d) Find $h(2X + Y, X - 2Y)$