Midterm

Nom: Prénom: Section:

- Vous pouvez répondre aux questions en Français ou en Anglais.
- Ecrivez votre nom sur chaque feuille double, rendez la donnée et tous les brouillons SVP.
- Durée: 8h15-10h00.
- Les formules suivantes de trigonométrie peuvent être utiles:

$$\cos^2 \alpha + \sin^2 \alpha = 1$$
, $\cos^2 \alpha - \sin^2 \alpha = \cos(2\alpha)$, $2\cos \alpha \sin \alpha = \sin(2\alpha)$.

• Vous avez le droit de faire les calculs en notation de Dirac ou en composantes si vous préférez (on prend tout ce qui est juste).

Exercise 1 Interferometer with imperfect semi-transparent mirrors

We consider the interferometer constituted of two semi-transparent and two reflecting mirrors. We assume the Hilbert space of the photon is $\mathcal{H} = \mathbb{C}^2 = \{ |\Psi\rangle = \alpha |h\rangle + \beta |v\rangle$, $|\alpha|^2 + |\beta|^2 = 1 \}$ where $|h\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|v\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. The incoming photon on the left is in state $|h\rangle$. The semi-transparent mirrors have "imperfections" and modeled by the matrix

$$S = \cos \gamma |h\rangle \langle h| + \sin \gamma |h\rangle \langle v| + \sin \gamma |v\rangle \langle h| - \cos \gamma |v\rangle \langle v| = \begin{pmatrix} \cos \gamma & \sin \gamma \\ \sin \gamma & -\cos \gamma \end{pmatrix}$$

The perfectly reflecting mirrors are modeled by

$$R = |h\rangle\langle v| + |v\rangle\langle h| = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

(a) Compute the state after the second semi-transparent mirrors (just before the detectors).

Answer: In Dirac notation: The state after the second semi-transparent mirrors is

$$SRS |h\rangle = SR(\cos \gamma |h\rangle + \sin \gamma |v\rangle)$$

$$= (\cos \gamma)SR |h\rangle + (\sin \gamma)SR |v\rangle$$

$$= (\cos \gamma)S |v\rangle + (\sin \gamma)S |h\rangle$$

$$= \cos \gamma(\sin \gamma |h\rangle - \cos \gamma |v\rangle) + \sin \gamma(\cos \gamma |h\rangle + \sin \gamma |v\rangle)$$

$$= \sin(2\gamma) |h\rangle - \cos(2\gamma) |v\rangle$$

Answer: In matrix component notation: The state after the second semi-transparent mirrors is

$$SRS |h\rangle = \begin{pmatrix} \cos \gamma & \sin \gamma \\ \sin \gamma & -\cos \gamma \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos \gamma & \sin \gamma \\ \sin \gamma & -\cos \gamma \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} \cos \gamma & \sin \gamma \\ \sin \gamma & -\cos \gamma \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos \gamma \\ \sin \gamma \end{pmatrix}$$
$$= \begin{pmatrix} \cos \gamma & \sin \gamma \\ \sin \gamma & -\cos \gamma \end{pmatrix} \begin{pmatrix} \sin \gamma \\ \cos \gamma \end{pmatrix}$$
$$= \begin{pmatrix} \sin 2\gamma \\ -\cos 2\gamma \end{pmatrix}$$

(b) Compute the probabilities of detecting the photon in the detectors $P(D_1)$ and $P(D_2)$.

Answer: Using the measurement postulate (in the simple form of the Born rule), we have

$$P(D_1) = |\langle h|SRS|h\rangle|^2 = (\sin 2\gamma)^2$$

$$P(D_2) = |\langle v|SRS|h\rangle|^2 = (\cos 2\gamma)^2$$

(c) What are the probabilities for $\gamma = \frac{\pi}{4}$? For $\gamma = \frac{\pi}{8}$? (express the probabilities as simple rational fractions using $\cos \frac{\pi}{4} = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$).

Answer: When $\gamma = \pi/4$, we have $P(D_1) = 1$ and $P(D_2) = 0$. When $\gamma = \pi/8$, we have $P(D_1) = P(D_2) = 1/2$.

(d) Prove that S and R are unitary.

Answer:

$$S^{\dagger}S = SS^{\dagger} = \begin{pmatrix} \cos\gamma & \sin\gamma \\ \sin\gamma & -\cos\gamma \end{pmatrix}^2 = \begin{pmatrix} \cos^2\gamma + \sin^2\gamma & \cos\gamma\sin\gamma - \sin\gamma\cos\gamma \\ \cos\gamma\sin\gamma - \sin\gamma\cos\gamma & \cos^2\gamma + \sin^2\gamma \end{pmatrix} = I$$

$$R^{\dagger}R = RR^{\dagger} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^2 = I$$

Exercise 2 Quantum key distribution when Alice has an imperfect encoder

Consider the BB84 protocol with the following modification.

- Alice generates two random sequences $x_1
 ldots x_N$ with $P(x_i = 0) = P(x_i = 1) = 1/2$ and $e_1
 ldots e_N$ with $P(e_i = 0) = P(e_i = 1) = 1/2$.
- For $e_i = 0$ she encodes the *i*-th qubit in the state $|x_i\rangle$. For $e_i = 1$ she encodes the *i*-th qubit in the state $U|x_i\rangle$, where

$$U = \cos\frac{\pi}{8} \left| 0 \right\rangle \left\langle 0 \right| + \sin\frac{\pi}{8} \left| 0 \right\rangle \left\langle 1 \right| + \sin\frac{\pi}{8} \left| 1 \right\rangle \left\langle 0 \right| - \cos\frac{\pi}{8} \left| 1 \right\rangle \left\langle 1 \right|.$$

- Bob generates a random sequence $d_1
 ldots d_N$ with $P(d_i = 0) = P(d_i = 1) = 1/2$.

 If $d_i = 0$, he measures the received qubit in the basis $\{|0\rangle, |1\rangle\}$ and registers $y_i = 0$ (respectively $y_i = 1$) if the outcome is $|0\rangle$ (respectively $|1\rangle$).

 If $d_i = 1$, he measures the received qubit in the basis $\{\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)\}$ and registers $y_i = 0$ (respectively $y_i = 1$) if the outcome is $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ (respectively $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$).
- (a) Compute the probabilities $P(x_i = y_i | e_i = d_i = 0)$ and $P(x_i = y_i | e_i = d_i = 1)$. *Hint*: For any event A you have:

$$P(x_i = y_i | A) = P(x_i = y_i = 0 | A, x_i = 0) P(x_i = 0) + P(x_i = y_i = 1 | A, x_i = 1) P(x_i = 1)$$

Answer: Let A_0 be the event that $e_i = d_i = 0$ and A_1 be the event that $e_i = d_i = 1$. When $e_i = d_i = 0$, the probability is

$$P(x_i = y_i | e_i = d_i = 0) = P(x_i = 0) \cdot P(x_i = y_i = 0 | A_0, x_i = 0)$$

$$+ P(x_i = 1) \cdot P(x_i = y_i = 1 | A_0, x_i = 1)$$

$$= \frac{1}{2} \cdot |\langle 0 | 0 \rangle|^2 + \frac{1}{2} \cdot |\langle 1 | 1 \rangle|^2$$

$$= 1.$$

When $e_i = d_i = 1$, we compute

$$P(x_{i} = 0) \cdot P(y_{i} = 0 | A_{1}, x_{i} = 0) = \frac{1}{2} \cdot \left| \frac{(\langle 0 | + \langle 1 |)}{\sqrt{2}} U | 0 \rangle \right|^{2}$$

$$= \frac{1}{4} \left| (\langle 0 | + \langle 1 |) (\cos \frac{\pi}{8} | 0 \rangle + \sin \frac{\pi}{8} | 1 \rangle) \right|^{2}$$

$$= \frac{1}{4} \left| \cos \frac{\pi}{8} + \sin \frac{\pi}{8} \right|^{2}$$

$$= \frac{1}{4} \left(1 + \sin \frac{\pi}{4} \right)$$

$$= \frac{2 + \sqrt{2}}{8}$$

and similarly

$$P(x_{i} = 1) \cdot P(y_{i} = 1 | A_{1}, x_{i} = 1) = \frac{1}{2} \cdot \left| \frac{(\langle 0 | - \langle 1 |)}{\sqrt{2}} U | 1 \rangle \right|^{2}$$

$$= \frac{1}{4} \left| (\langle 0 | - \langle 1 |) (\sin \frac{\pi}{8} | 0 \rangle - \cos \frac{\pi}{8} | 1 \rangle) \right|^{2}$$

$$= \frac{1}{4} \left| \cos \frac{\pi}{8} + \sin \frac{\pi}{8} \right|^{2}$$

$$= \frac{2 + \sqrt{2}}{8}.$$

Therefore, we have

$$P(x_i = y_i | e_i = d_i = 1) = P(x_i = 0) \cdot P(x_i = y_i = 0 | A_1, x_i = 0)$$

$$+ P(x_i = 1) \cdot P(x_i = y_i = 1 | A_1, x_i = 1)$$

$$= \frac{2 + \sqrt{2}}{8} + \frac{2 + \sqrt{2}}{8}$$

$$= \frac{2 + \sqrt{2}}{4}.$$

(b) Deduce the probability $P(x_i = y_i | e_i = d_i)$. How does it compare to the corresponding probability in the perfect BB84 protocol?

Answer: In the perfect BB84 protocol, we have $P(x_i = y_i | e_i = d_i) = 1$. However, when the protocol is replaced by the "imperfect" encoder here, we have

$$P(x_i = y_i | e_i = d_i) = P(e_i = 0) \cdot P(x_i = y_i | A_0, e_i = 0)$$

$$+ P(e_i = 1) \cdot P(x_i = y_i | A_1, e_i = 1)$$

$$= \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{2 + \sqrt{2}}{4}$$

$$= \frac{6 + \sqrt{2}}{8} < 1.$$

Exercise 3 Entanglement for two quantum bits

The state of two quantum bits has a general form

$$|\Psi\rangle = a_{00}|0\rangle \otimes |0\rangle + a_{01}|0\rangle \otimes |1\rangle + a_{10}|1\rangle \otimes |0\rangle + a_{11}|1\rangle \otimes |1\rangle$$

where $\{|0\rangle, |1\rangle\}$ is the canonical orthonormal basis of \mathbb{C}^2 .

(a) Show that $|\Psi\rangle$ is a product state in the sense that it admits a "product form" $(a|0\rangle + b|1\rangle) \otimes (c|0\rangle + d|1\rangle)$ if and only if det A = 0, where A is the matrix

$$A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix}.$$

Hint: Recall that $\det A = a_{00}a_{11} - a_{10}a_{01}$.

Answer: If $|\Psi\rangle$ is a product state of the form

$$|\Psi\rangle = (a|0\rangle + b|1\rangle) \otimes (c|0\rangle + d|1\rangle)$$

= $ac|0\rangle \otimes |0\rangle + ad|0\rangle \otimes |1\rangle + bc|1\rangle \otimes |0\rangle + bd|1\rangle \otimes |1\rangle$,

then $\det A = \begin{vmatrix} ac & ad \\ bc & bd \end{vmatrix} = abcd - abcd = 0.$

On the other hand, to show that $\det A = 0$ implies that $|\Psi\rangle$ is a product sate, we need to propose a solution of (a, b, c, d) that satisfies

$$ac = a_{00},$$

 $ad = a_{01},$
 $bc = a_{10},$
 $bd = a_{11}.$

Suppose $a_{00} \neq 0$. Then det A = 0 implies $a_{11} = a_{01}a_{10}/a_{00}$ and this allows us to write

$$\begin{aligned} |\Psi\rangle &= \frac{1}{a_{00}} \left(a_{00}^2 |0\rangle \otimes |0\rangle + a_{00} a_{01} |0\rangle \otimes |1\rangle + a_{00} a_{10} |1\rangle \otimes |0\rangle + a_{01} a_{10} |1\rangle \otimes |1\rangle \right) \\ &= \frac{1}{a_{00}} (a_{00} |0\rangle + a_{10} |1\rangle) \otimes (a_{00} |0\rangle + a_{01} |1\rangle), \end{aligned}$$

which shows that $|\Psi\rangle$ is product state.

Suppose $a_{00} = 0$. Then det A = 0 implies either $a_{01} = 0$ or $a_{10} = 0$. For $a_{00} = a_{01} = 0$,

$$|\Psi\rangle = a_{10} |1\rangle \otimes |0\rangle + a_{11} |1\rangle \otimes |1\rangle = |1\rangle \otimes (a_{10} |0\rangle + a_{11} |1\rangle).$$

For $a_{00} = a_{10} = 0$,

$$|\Psi\rangle = a_{01} |0\rangle \otimes |1\rangle + a_{11} |1\rangle \otimes |1\rangle = (a_{01} |0\rangle + a_{11} |1\rangle) \otimes |1\rangle.$$

(b) Using part (a), show that

$$|\Psi_1\rangle = \frac{1}{\sqrt{3}}(|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle + i|1\rangle \otimes |0\rangle)$$

is entangled (in french "intriquer").

Answer: For $|\Psi_1\rangle$, we have $\det A = \begin{vmatrix} \frac{1}{\sqrt{3}} & 0\\ \frac{i}{3} & \frac{1}{\sqrt{3}} \end{vmatrix} = \frac{1}{3}$. Hence it is entangled and does not have a product form.