Exercise 1 The Young double slit experiment (1803)

In this exercise we want to calculate the form of the Young interference fringes. A beam of monochromatic light of wave length λ is sent through a double slit, and the light is reflected on a screen at a distance D. The distance between the two slits is d.

We assume that the waves diffracted by each slit have a spherical shape (λ the wavelength and ν the frequency):

$$\phi_B(\vec{r}) = A e^{i \left(\frac{2\pi}{\lambda} |\vec{r}_B - \vec{r}| - 2\pi \nu t \right) / |\vec{r}_B - \vec{r}|}, \quad \phi_C(\vec{r}) = A e^{i \left(\frac{2\pi}{\lambda} |\vec{r}_C - \vec{r}| - 2\pi \nu t \right) / |\vec{r}_C - \vec{r}|}.$$

The total wave function at P on the screen is

$$\psi(\vec{r}_P) = \phi_B(\vec{r}_P) + \phi_C(\vec{r}_P).$$

We will use the plane wave approximation for $D >> d$:

$$\psi(\vec{r}_P) \simeq \frac{A}{D} e^{-2\pi i \nu t} \left(e^{\frac{2\pi i}{\lambda} |\vec{r}_B - \vec{r}_P|} + e^{\frac{2\pi i}{\lambda} |\vec{r}_C - \vec{r}_P|} \right).$$

1) Show that the intensity at P on the screen is equal to

$$|\psi(\vec{r}_P)|^2 \approx \frac{4A^2}{D^2} \cos^2 \left(\frac{\pi d}{\lambda} \sin \theta \right).$$

Hint: evaluate first the path difference $|\vec{r}_C - \vec{r}_P| - |\vec{r}_B - \vec{r}_P|$ for $D >> d$.

2) Find the condition on $\sin \theta$ which leads to minima and maxima of the intensity on the screen.
3) Let \(\rho \) be the coordinate on the screen measured from \(O \). We have \(\tan \theta \approx \frac{\rho}{D} \) and since \(\theta \) is small \(\theta \approx \frac{\rho}{D} \). Compute the distance between two successive minima of the intensity pattern on the screen.

Let \(d = 0.25 \text{mm}, \ D = 10 \text{m} \) and \(\lambda = 652 \text{nm} \) (red light). What is the distance between two successive minima?

Exercise 2 Modern Young’s experiment

Young’s double slit experiment has been reformed with Carbon 60 molecules, \(C_{60} \) in 1999. Surprisingly, these molecules behave like waves when they are well isolated from their environment. The more recent experiments have evidenced such a wave-like behavior for bigger molecules with 400 to 1000 atoms.

The diameter of \(C_{60} \) (this molecule has the form of a sphere and contains 60 carbon atoms) is approximately 0.7 nm and a mole containing \(N_A = 6.022 \times 10^{23} \) carbon atoms weighs 12 grams.

1) Compute the De Broglie wavelength of molecules produced in an oven which have an average velocity of 220 m/s. Compare with the size of individual molecules.

2) We perform a Young’s experiment with \(d = 100 \text{nm} \) and \(D = 1.25 \text{m} \). What do we observe on the screen assuming a wave like behavior?

3) A football weights approximately 450g and the initial velocity of a professional shoot can attain 100 km/h. Estimate the De Broglie wavelength.

Exercise 3 Photoelectric effect

The maximal wavelength to extract a photoelectron from tungsten is 230 nm (ultraviolets). What is the necessary wavelength of light to extract electrons with kinetic energy 1.5 eV? What is the speed of these electrons?

Useful Constant

\[c = 2.997 \times 10^8 \text{ m/s} \] (speed of light)
\[h = 1.054 \times 10^{-34} \text{ J s} \ (\frac{h}{2\pi} \text{ where } h \text{ is Planck’s constant}) \]
\[m = 9.109 \times 10^{-34} \text{ kg} \] (mass of an electron)
\[1\text{eV} = 1.6 \times 10^{-19} \text{ J} \]