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Foreword

Statistical physics, over more than a century, has developed powerful techniques

to analyze systems consisting of many interacting “particles.” In the last twenty

years it has become increasingly clear that the very same techniques can be

applied successfully to problems in engineering such as communications, signal

processing, or computer science.

However, there are several hurdles which one encounters when one tries to

make use of these methods.

First, there is the language. Statistical physics has developed over the last

150 years with the aim of providing models and deriving predictions for various

physical phenomena, such as magnetism or the behavior of gases. This long

history, together with the specific areas of their original application, has resulted

in a rich language whose origins and meaning are not always clear to someone

just starting in the field. It therefore takes a considerable effort to learn this

language.

Second, except for extremely simple models, the “calculations” which are nec-

essary are often long and daunting and frequently use little tricks and conventions

somewhat outside the realm what one usually picks up in a calculus class. A good

way of overcoming this difficulty is to start with a familiar example, casting it

in terms of statistical physics notation, and by then going through some basic

calculations.

Third, and connected to the second point, not all methods and tricks used in

the calculations are mathematically rigorous. Some of the most powerful tech-

niques, such as the cavity method, currently do not have a mathematical justifi-

cation. In the “right hands” they can do miracles and give predictions which are

currently not possible to derive with any classical method. But a newcomer to

the field might quickly despair in trying to figure out what parts are mathemat-

ical rigorous and what parts are “most likely correct” but cannot currently be

justified. Both worlds are valuable. The cavity or replica method give predictions

which would be very difficult to guess. These predictions can then be used as a

starting point for a rigorous proof. But it is important to cleanly separate the

two worlds.

Our aim in writing these notes is not to give an exhaustive account of all there

is to know about statistical mechanics ideas applied to engineering problems.
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Several excellent books already exist. We in particular recommend (Nishimori

2001, MacKay 2003, Mézard & Montanari 2009).

Our aim was to write the simplest non-trivial account of the most useful sta-

tistical mechanics methods so as to ease the transition for anyone interested in

this strange put powerful world. Therefore, whenever we were faced with an op-

tion between completeness and simplicity, we chose simplicity. On purpose our

language changes progressively throughout the text. Whereas at the beginning

we try to avoid as much jargon as possible, we progressively start talking like a

physicist. Most of the literature uses this language, so you better get used to it.

We decided to structure our notes around three important problems, namely

error correcting codes, compressive sensing, and the random K-SAT problem.

Although we will introduce basic versions of each of these problems, we only

introduce what is necessary for our purpose. It goes without saying that there

are countless versions and extensions that we do not discuss. In fact, we hope

that the reader is already somewhat familiar with these topics and accepts that

these are important problems worth while studying. Using the basic versions of

these problems we explain how they can be cast in a statistical physics framework

and how standard concepts and techniques from statistical physics can be used

to study these problems. This allows us to introduce the necessary terminology

step by step, just when it is needed.

The notes are further partitioned into three parts. In the first part, com-

prised of Chapters 1-4, we introduce the problems, some of the language, and we

rewrite these problems in the language of statistical physics. In the first chapter

of the second part, namely Chapter 5, we then introduce the main protagonist,

a message-passing algorithm which is also know as the belief-propagation algo-

rithm. The remaining chapters of the second part, namely Chapters 6-9.3, contain

the analysis of the performance of our three problems under this low-complexity

algorithm. We will see that, in many cases, even this simple combination yields

excellent performance. Finally, in the third part, consisting of Chapters 11-13,

we get to the perhaps most surprising part of our story. Our aim will be to study

the fundamental behavior of these three problems without the restriction to low

complexity algorithms. I.e., how well would these systems work under optimal

processing. The surprise is that the same quantities which appeared in our study

of low-complexity suboptimal message-passing algorithms will play center stage

also for this seemingly completely unrelated question.

Although we follow essentially the same pattern for each of the three problems,

we will see that they are not all equally difficult.

Error correcting coding is perhaps easiest, and in principle most of the question

one might be interested in can be answered rigorously. In this case we are dealing

with large graphically models which are locally “tree like.” It is therefore perhaps

not so surprising that message-passing algorithms work well in this setting and

that the performance can be analyzed.

Compressive sensing follows a similar pattern but introduces a few more wrin-

kles. In particular, the story of compressive sensing is leading to the so-called
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AMP algorithm. The surprising fact here is that message-passing works very

well, and that its performance can be predicted, despite that the relevant graph-

ical model is not sparse at all but rather is a complete tree. The key observation

is that every single edge contributes very little to the global performance. AMP

can still be analyzed rigorously but the required computations are quite lengthy.

We will give an outline of the whole story, but we will not discuss every single

step in detail. Once the basic idea is clear, the interested reader should be able

to fill in missing details by studying the pointers to the literature.

The hardest problem is without doubt the random K-SAT problem. We will

only be able to present a partial picture. Many interesting and very basic ques-

tions remain open.

Many people have helped us in creating these notes. In the Spring of 2011 we

gave a series of lectures on these topics at EPFL to mostly a graduate student

population. We would like to thank Marc Vuffray, Mahdi Jafari, Amin Karbasi,

Masoud Alipour, Marc Desgroseilliers, Vahid Aref, Andrei Giurgiui, Amir Hesam

Salavati for typing up initial notes for some lectures. In addition we would like

to thank Mike Bardet who typed up further material as well as Hamed Hassani

who has since contributed material to several of the chapters.

Nicolas Macris, Lausanne, 2017

Rüdiger Urbanke





Part I

Models and their Statistical
Physics Formulations





1 Models, Questions, and Overview

This chapter introduces three problems: error correcting coding, compressive

sensing, and random constraint satisfaction. All three problems play a funda-

mental role and have emerged as important paradigms in their respective dis-

ciplines: communications, signal processing, and theoretical computer science.

Although the three problems are quite different, it turns out that essentially the

same concepts and tools from statistical physics can be used to analyze and make

quantitative predictions. It is no coincidence that statistical physics provides a

unifying point of view on these problems. Indeed, they all involve the study of

probability distributions, over a large number of random variables, with a struc-

ture akin to the probability distributions studied in the framework of statistical

physics.

The connections between statistical physics, computation and information are

not new, and were already recognised a decade after Shannon’s 1948 foundational

article on information theory (a few historical pointers are given in the Notes

at the end of the chapter). Such connections were pushed towards engineering

problems in communications and signal processing during the late 1990’s and

flourished since then, and it seems already impossible to review the whole subject.

We concentrate on three essential models which form our guiding line, and should

provide the reader with the necessary basis to understand the literature and solve

further problems. In each domain of interest the models are paradigmatic, have

important practical applications, and beautifully connect to some of their cousin

statistical physical models. As is often the case with paradigms the models are

simple enough that they can be formulated from scratch, and almost no prior

knowledge in any of the above mentioned disciplines is needed.

In the next three sections we define each problem and outline a few funda-

mental questions that will be addressed in the next chapters. We then present a

high level overview of the developments in the next chapters. If the discussion

sounds difficult to follow at first, for one that is not familiar with the subject,

we hope that refering back to it will help to grasp the general picture.
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1.1 Coding

Error correcting codes

Codes are used to reliably transmit information across a noisy channel. The

basic idea is to add some further bits to the information to be transmitted and

to use these extra redundant bits to reconstruct the original information from

the “noisy” observation.

A binary block code C of length n is a collection of binary n-tuples, C =

{x(1), . . . , x(M)}, where x(i), 1 ≤ i ≤ M, is called a codeword, and where the

components of each codeword are elements of F2 = ({0, 1},⊕,×), the binary

field. The number of codewords is henceM = |C| the cardinality of C. The rate

of the code is defined as log2 |C|
n . This is the ratio of the number of information

bits per transmitted bit.

We will soon talk about various channel models, in other words, various math-

ematical models that describe how information is “perturbed” during the trans-

mission process. In this respect it is good to know that for a large class of such

models we can achieve optimal performance (in terms of the rate we can reliably

transmit) by limiting ourselves to a simple class of codes, namely linear codes.

A linear binary block code is a subspace of Fn
2 , the vector space of dimension

n over the field F2. Equivalently, a binary block code C is linear iff for any two

codewords x(i) and x(j), we have x(i) − x(j) ∈ C. In particular x(i) − x(i) = 0

the vector with all-zero components always belongs to a linear code. Since C is

a subspace, it has a dimension, call it k, 0 ≤ k ≤ n. Hence |C| = 2k, and the

rate of C is equal to k
n . All codes which we consider in this course are binary and

linear. Therefore, in the sequel we sometimes omit these qualifiers. We will view

vectors x as column vectors. For row vectors we write xT .

It will be convenient to represent a linear binary code C of length n and

dimension k as the kernel (or null space) of an (n− k)×n binary matrix of rank

n−k. Such a matrix is called a parity-check matrix and is usually denoted by H.

Every binary linear code has such a representation (because any linear subspace

is the null space of some matrix). So equivalently, we may write

C = {x ∈ Fn
2 : Hx = 0}

for some suitably chosen (n− k)× n binary matrix H of rank (n− k).
A few remarks might be in order. First, once we have convinced ourselves that

there is at least one such matrix, it is easy to see that there are exponentially

many (in n − k) such matrices since elementary row operations do not change

the row space and hence the code defined by the matrix. All these matrices

define the same code, and are equivalent in this sense. But the representation of

the code in terms of a bipartite graph, which we will introduce shortly, and the

related decoding algorithm, do depend on the specific matrix we choose and so

our choice of matrix is important.

Second, and somewhat connected to the first point, rather than first defining
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a code C and then finding a suitable parity-check matrix H, we typically specify

directly the matrix H and hence indirectly the code C.
It can then happen that this matrix does not have full row rank, i.e., that its

rank is strictly less than n − k. What this means is that the code C contains

more codewords than 2k. Since this will happen rarely, and since having more

codewords than “initially planned” is in fact a good thing, we will ignore this

possibility and only count on having 2k codewords at our disposal.

The factor graph associated to the parity-check matrix H (of a code C)

Assume that we have a code C defined by the (n − k) × n binary parity-check

matrix H. We can associate to H the following bipartite graph G. The graph

G has vertices V ∪ C, where V = {x1, . . . , xn} is the set of n variable nodes

corresponding to the n bits (and hence to the n columns of H), and where

C = {c1, . . . , cn−k} is the set of n− k check nodes, each node corresponding to

one row of H. There is an edge between xi and cj if and only if Hji = 1. The

parity-check matrix H and the graph G encode the same information. But we

will see that G is the natural starting point for introducing the low-complexity

decoding algorithms.

example 1 (Factor Graph) Consider the following parity-check matrix,

H =

 1 0 0 1

0 1 1 1

0 0 1 1

 .
The factor graph corresponding to H is shown in Fig. 1.1. □

Figure 1.1 The factor graph corresponding to the parity-check matrix of Example 1.

Gallager’s ensemble and the configuration model

A common theme in these notes is that instead of studying specific instances of a

problem we define an ensemble of instances, in other words a set of instances en-

dowed with a probability distribution. We then study the average “performance”

of this ensemble, and once the average is determined, we know that there must

be at least one element of the ensemble with a performance at least as good as

this average. In fact, in many cases, with extra effort one can show that most

elements in the ensemble behave almost as good as the ensemble average.
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For coding, we focus on a specific ensemble of codes called the (dv, dc)-regular

Gallager ensemble introduced by Gallager in the 1960’s. Rather than specifying

the codes directly, we specify their factor graphs. The ensemble is characterized

by the triple of integers (n, dv, dc) such that m = ndv

dc
is also an integer. The

parameter n is the length of the code, dv is the variable node degree, and dc is

the check node degree.

We describe the ensemble by explaining how to sample from it. Pick n variable

nodes and m = ndv

dc
check nodes. Each variable node has dv sockets and each

check node has dc sockets. Number the dvn variable sockets in an arbitrary but

fixed way from 1 till dvn. Do the same with the dcm check node sockets. Pick a

permutation π uniformly at random from the set of permutations on dvn letters.

For s ∈ {1, . . . , dvn} insert an edge which connects variable node socket s to

check node socket π(s) ∈ {1, . . . dcm}.
If, after construction, we delete sockets (and retain the connections between

variable and check nodes) then we get a bipartite graph which is the factor

graph representing our code. To this bipartite graph we can of course associate a

parity-check matrix H. But note that in this model there can be multiple edges

between nodes. Can such a graph be meaningfully interpreted as representing a

code?

A moments thought shows that the natural interpretation of such a graph in

terms of a parity-check matrix H is to say that H has a 1 at row j and column

i if there are an odd number of connections between constraint j and variable

i. Otherwise it has a 0 at this position. In practice multiple connections are not

desirable and more sophisticated graph generation algorithms are employed. But

for our purpose the typically small number of multiple connections will not play

a role. In particular, it does not play a role if we are interested in the behavior

of such codes for very large instances.

The above way of specifying the Gallager ensemble is inspired by the config-

uration model of random graphs. This particular ensemble is a special case of

what is called a low-density parity-check (LDPC) ensemble. This name is easily

explained. The ensemble is low-density since the number of edges grows linearly

in the block length. This is distinct from what is typically called the Fano ran-

dom ensemble where each entry of the parity-check matrix is chosen uniformly

at random from {0, 1}, so that the number of edges grows like the square of the

block length. It is further a parity-check ensemble since it is defined by describ-

ing the parity-check matrix. We will see that a reasonable decoding algorithm

consists of sending messages along the edges of the graph. So few edges means

low complexity and, even more importantly, we will see that the algorithm works

better if the graph is sparse.

For many real systems, LDPC codes are the codes of choice. They have a very

good trade-off between complexity and performance and they are well suited for

implementations. “Real” LDPC codes are often further optimized. For example,

instead of using regular degrees we might want to choose nodes of different

degrees and the connections are often chosen with care in order to minimize
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complexity and to maximize performance. We will ignore these refinements in

the sequel. The most important trade-offs are already apparent for the relatively

simple regular Gallager ensemble.

Encoding, Transmission, and Decoding

The three operations involved in the coding problem are encoding, transmission

over a channel, and decoding. Let us briefly discuss each of them.

Encoding: Given a binary linear block code C of dimension k, we can encode

k bits of information by our choice of codeword, i.e., by choosing one out of

the 2k possibilities. More precisely, we have an information word u ∈ Fk
2 , and

an encoding function g : Fk
2 → C, which maps each information word into a

codeword.

Although this function is of crucial importance for real systems, it only plays

a minor role for our purposes. This is true since, as we will discuss in more detail

later on, for “typical” channels, by symmetry the performance of the system is

independent of the transmitted codeword. We therefore typically assume that

the all-zero codeword (which is always contained in a binary linear code) was

transmitted. Also, in terms of complexity, the encoding operation is not a dif-

ficult task. One possible option is to write the linear binary code in the form

C = {Gu : u ∈ Fk
2}, where G is the so-called generator matrix and where u is

a binary column vector of length k which contains the information bits. In this

form, encoding corresponds to a multiplication of a vector of length k with a n×k
binary matrix G and can hence be implemented in O(k × n) binary operations.

In practice the code is often chosen to have some additional structure so that

this operation can even be performed in O(n) operations. We will hence ignore

the issue of encoding in the sequel.

Transmission over a Channel: We assume that we pick a codeword x uni-

formly at random from the code C. We transmit x over a channel. This channel is

a physical device that takes bits as inputs, converts them into a physical quan-

tity, such as an electric or optical signal, transmits this signal over a suitable

medium, such as a cable or optical fiber, and then converts the physical signal

back into a number that can be processed, perhaps a voltage which is measured

or the number of photons that were detected.

During the transmission the signal is distorted. This distortion is either due

to imperfections of the system or due to unpredictable processes such as thermal

noise. Instead of considering this potentially very complicated process in all its

detail we use a simple mathematical model that summarizes the end-to-end effect

of all these physical processes. We call this mathematical model the “channel

model.”

Formally, the channel has an input alphabet. We will always assume that the

input alphabet is binary, X = {0, 1}. The channel also has an output alphabet

Y. Two common cases are Y = {0, 1} and Y = R. We assume that the channel
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is memoryless, which means that it acts on each bit independently. We further

assume that there is no feedback from the output of the channel back to the input.

In this case the channel is characterized by a transition probability p(y | x) where
y ∈ Yn is the output and where

p(y | x) =
n∏

i=1

p(yi | xi). (1.1)

This product form accurately models the relationship between channel input and

output only if the channel is memoryless and there is no feedback.

The following three channels are the most important examples, both from a

theoretical perspective, but also because they form the basis of real-world chan-

nels. These are the binary erasure channel (BEC), the binary symmetric channel

(BSC) and the binary additive white Gaussian noise channel (BAWGNC).

1− ϵ

1− ϵ

ϵ

ϵ

0

1

0

1

E

1− ϵ

1− ϵ

ϵ

ϵ

0

1

0

1

E

Figure 1.2 Binary erasure and symmetric channels with parameter ϵ. Both channels
have binary inputs. The output alphabet for the BEC is Y = {0, E, 1} and for the
BSC Y = {0, 1}

BEC. The BEC is a very special channel with output alphabet Y = {0, E, 1}.
As depicted in Fig. 1.2, the transmitted bit is either correctly received at the

channel output with probability 1−ϵ or erased by the channel with probability ϵ

and thus, nothing is received at the channel output. The erased bits are denoted

by “E”. For example, if x = 1 is transmitted then the set of possible channel

observation is {1, E}. We can write the transition probability in the somewhat

formal way

p(y|x) = (1− ϵ)δ(y − x) + ϵδ(y − E).

BSC. The output of the BSC is binary Y = {0, 1}. As seen in Fig. 1.2 the bit

is transmitted correctly with probability 1− ϵ or flipped with probability ϵ. The

transition probability is

p(y|x) = (1− ϵ)δ(y − x) + ϵδ(y − (1− x)).

BAWGNC. The output is a real number Y = R. When x ∈ {0, 1} is sent the

received signal is y = x + z with z a Gaussian random number with zero mean

and variance σ2. With these conventions the “signal to noise ratio” is σ−2 and

the transition probability

p(y|x) = (
√
2πσ)−1e−

(y−x)2

2σ2 .



1.1 Coding 13

One might wonder if these three simple models even scratch the surface of the

rich class of channels that one encounters in practice. Fortunately, the answer is

yes. Communications theory has built up a rich theory of how more complicated

scenarios can be dealt with assuming that we know how to deal with these three

simple models.

Decoding: Given the output y we want to map it back to a codeword x. Let

x̂(y) denote the function which corresponds to this decoding operation. What

decoding function shall we use?

One option is to first pick a suitable criterion by which we can measure the per-

formance of a particular decoding function and then to find decoding functions

which optimize this criterion. The most common such criteria are the block er-

ror probability P [x̂(Y ) ̸= X], and the bit error probability 1
n

∑n
i=1 P [x̂i(Y ) ̸= Xi]

(capital letters X and Y denote random variables associated to the channel in-

put and output). The decoding functions that minimize these two criteria are

the block MAP and the bit MAP decoder. For generic codes, no algorithms are

known that implement these decoders in less than exponential time. We will

discuss this in more detail in Chapter 3.

In practice, due to complexity constraints, it is typically not possible to im-

plement an optimal decoding function but we have to be content with a low-

complexity alternative. Of course, the closer we can pick it to optimal the better.

Shannon Capacity

So far we have defined codes, we have discussed the encoding problem, the process

of transmission, the decoding problem, and the two most standard criteria to

judge the performance of a particular decoder, namely the block and the bit

error probability.

It is now natural to ask what is the maximum rate at which we can hope

to transmit reliably, assuming that we pick the best possible codes and the

best possible decoder. Reliably here means that we can make the block or bit

probability of error as small as we desire. In fact, it turns out that the answer is

the same whether we use the block error probability or the bit error probability.

In 1948 Shannon gave the answer and he called this maximum rate the capac-

ity of the channel. For binary-input memoryless output-symmetric channels the

capacity has a very simple form. If the input alphabet is binary and the output

alphabet discrete, and if p(y|x), x ∈ X = {0, 1} and y ∈ Y, denotes the transition
probabilities, then the capacity of the associated channel can be expressed (in

bits per channel use) as

Cchannel = H
(1
2
p(·|0) + 1

2
p(·|1)

)
−
{1
2
H(p(·|0)) + 1

2
H(p(·|1)

}
(1.2)

where H(q(·)) denotes the entropy associated to a discrete distribution q(y),
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y ∈ Y . By definition

H(q(·)) = −
∑
y∈Y

q(y) log2 q(y). (1.3)

Let us illustrate Shannon’s formula for the three important channels introduced

above.1

For the BEC the distribution entering in the first entropy on the right hand side

of (1.2) is q(0) = q(1) = 1
2 (1−ϵ) and q(E) = ϵ. This givesH(q(·)) = (1−ϵ)+h2(ϵ)

where h2(ϵ) = −ϵ log2 ϵ − (1 − ϵ) log2(1 − ϵ) is called binary entropy function.

We still have to subtract the bracket which is the average of two entropies. For

the first of these q(x = 0) = p(0|0) = 1 − ϵ, q(1) = p(y = 1|0) = 0, and

q(E) = p(E|0) = ϵ, so H(p(·|0)) = h2(ϵ). Similarly H(p(·|1)) = h2(ϵ). The

average is h2(ϵ) and we conclude that the Shannon capacity of the BEC is

CBEC = 1− ϵ

That the capacity is at most 1−ϵ for the BEC is intuitive. For large blocklengths

with high probability the fraction of non-erased positions is very close to 1− ϵ.
So even if we knew a priori which positions will be erased and which will be

left unperturbed, we could not hope to transmit more than n(1 − ϵ) bits over

such a channel. What is perhaps a little bit surprising is that this quantity is

achievable: we do not need to know a priori what positions will be erased and

still can transmit reliably at this rate.

The capacities of the BSC and BAWGNC are given by the formulas,

CBSC = 1− h2(ϵ), CBAWGNC = 1−
∫ +∞

−∞
dy

e
−y2

2σ2

√
2πσ

log2
(
1 + e

y

σ2 − 1
2σ2
)
.

Their derivation is left as an exercise for the reader.

Questions

For the purpose of communication we are interested in codes that allow trans-

mission close to capacity using only low-complexity encoding and decoding al-

gorithms and have a very low probability of error. So perhaps the most natural

question is if the types of codes we discussed are suitable for this purpose. The

answer is a resounding yes, and indeed these are the codes that are used in all

practical systems. In order to arrive at this answer we will have to answer a se-

quence of related questions: What (low-complexity) decoding algorithm should

we use? How can we analyse the performance of such codes and how does the

performance depend on the code parameters?

We will be able to derive a fairly complete and satisfying picture. We will in

1 These three channels belong to the important class of symmetric binary input memoryless
channels. For such channels the capacity formula can be simplified down to

Cchannel = 1−
∑

y∈Y p(y|0) log2(1 +
p(y|1)
p(y|0) ). The sum stands for an integral when the

output is continuous. See exercises.
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particular see that, as the code length tends to infinity, the performance exhibits

a “threshold” behavior as shown in Fig. 1.3. I.e., we will be able to decode with

high probability if the channel quality is above this threshold, but will fail with

high probability if the channel quality is below this threshold. We will further

be able to determine this threshol for various decoding algorithm and so be able

to compare it to the Shannon limit.

P
(s

u
c
c
e
s
s
)

Channel Quality GoodBad

Figure 1.3 The probability of decoding error for a transmitted message versus the
channel quality. As the blocklength of the code gets larger, we expect to see a sharper
and sharper transition between range of the channel parameters where the system
“works” and where it “breaks down.”

1.2 Compressive sensing

Traditionally “sensing” and “compression” are two separated operations. E.g.,

if you take a photo, you first measure (sense) the light that impinges on the

image sensor of your camera. Modern cameras have image sensors with millions

of pixels and each pixel value measures various spectral components at a high

resolution (at least 8 bits). As a result, the “raw” image of a modern camera

is a large file. But you also know that you can compress an image significantly

without a noticeable loss of quality. This is so since the various pixel values are

not independent quantities but are highly correlated. This begs the question

whether it is really necessary to collect a large amounts of data if at the end a

much smaller amount suffices. In other words, can we combine the sensing with

the compression step? Indeed, we can, and this idea is known as compressive

sensing.

Basic problem

Here is perhaps the simplest version of compressive sensing.

Let xin ∈ Rn representing an “input signal” that we want to capture. We

assume that the number of non-zero components2

∥xin∥0 = |{i|xini ̸= 0, i = 1, . . . , n}| ≤ k
2 This is not a norm (it is not homogenous, i.e., scaling the signal does not scale the
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of the signal is at most a (fixed) fraction of n, so k = κn with κ < 1 (and usually

much smaller than one). Such signals are called k-sparse. The signal is captured

or measured thanks to an m × n “measurement matrix” A with real entries,

1 ≤ m < n, m = µn with 0 < µ < 1,

y = Axin.

We think of y ∈ Rm as the result of m linear measurements, one corresponding

to each row of A. Our basic aim is to reconstruct the k-sparse signal xin from

the least possible measurements y.

We know that at least one solution exists, namely xin, because the measure-

ments y have been produced by this input signal. But since m < n, and in fact

m is typically much smaller, we cannot simply solve the undetermined linear

system of equations since the solution will not be unique. But we know in addi-

tion that x has at most k non-zero entries entries with k < n (we do not know

which of these entries are non-zero), and it could conceivably be the case that

among k-sparse vectors the solution is unique. Therefore, we determine if the set

of possible signals, namely

{x : Ax = y and ∥x∥0 ≤ k}. (1.4)

has cardinality one. If this is the case we may in principle be able to reconstruct

our signal unambiguously.

One way to ensure the unicity of the solution is to take a measurement matrix

A satisfying a Restricted Isometry Property (RIP). We say that A satisfies the

RIP(2k, δ2k) condition if one can find 0 ≤ δ2k < 1 such that

(1− δ2k)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δ2k)∥x∥2, for all 2k-sparse vectors x ∈ Rn.

(1.5)

It is not difficult to see that when this condition is met, then the set (1.4) contains

a unique element given by

x̂0(y) = argminx:Ax=y∥x∥0. (1.6)

Indeed, first notice that evidently Ax̂0(y) = y so we only have to prove unicity.

Suppose x′(y) is another element in (1.4). Then, since both x′(y) and x0(y) are

k-sparse, their difference is 2k-sparse. The left hand inequality of the RIP(2k, δ)

condition states (1 − δ)∥x′(y)− x̂0(y)∥2 ≤ ∥Ax′(y) − Ax̂0(y)∥2 = ∥y − y∥2 = 0,

which of course implies x′(y) = x̂0(y).

Solving the optimization problem (1.6) essentially requires an exhaustive search

over
(
n
k

)
possible supports of the sparse vectors, which is intractable in practice.

One avenue for simplifying this problem is to replace the “ℓ0 norm” in (1.6) with

the ℓ1 norm. In other words we solve the convex optimization problem,

x̂1(y) = argminx:Ax=y∥x∥1. (1.7)

“norm”) but it is common to use the notation ∥ · ∥0 for reasons that will become clear

shortly. It is also common to abuse language and call it a “ℓ0-norm”.
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Note that this problem is convex since the function ∥x∥1 is convex on Rn and

the domain {x : Ax = y} is convex also. The following is one of a series of

fundamental results.

theorem 1.1 (Candès and Tao 2006) If A satisfies the RIP(2k, δ2k) condition

with δ2k <
√
2− 1, then the solution of (1.7) is unique and identical to (1.6).

This important result says that, for suitable measurement matrices, instead

of solving the ℓ0 problem, it suffices to solve the ℓ1 problem which is a convex

optimization problem, instead of the combinatorial search ℓ0 problem. There is

a prize we pay for going from ℓ0 to ℓ1, at least in terms of what the theorem

guarantees. For the ℓ0 problem we only need δ2k < 1, whereas for the ℓ1 problem

we need δ2k ≤
√
2− 1.

We will not prove Theorem 1.1 here but only offer some intuition through

a simple toy example. Suppose that n = 3, so x = (x1, x2, x3)
T , and that we

perform a single measurement y = a1x1+a2x2+a3x3. This equation corresponds

Figure 1.4 The ℓp balls

to the plane in figure 1.4. We seek to find a point on this plane, which minimizes

(xp1 + xp2 + xp3)
1/p, p ≥ 0. The case p = 0 is to be understood as the number

of non-zero components of (x1, x2, x3). As shown in figure 1.4 the solution is

found by “inflating” the “ℓp-balls” around the origin until the plane is touched.

It is clear that for a plane in generic position the solution is the same for all

0 ≤ p ≤ 1. In particular it is the same for p = 0 and p = 1. Note also that for

0 ≤ p ≤ 1 the solution only has a single non-zero component, so is “sparse”. In

contrast, for p > 1 the solution changes with p and all components are non-zero.

Note when p = 1 there are non-generic measurement matrices corresponding

to planes parallel to the faces of the ℓ1-ball for which the solution is not unique;

it is therefore clear that the matrix should satisfy some conditions that excludes

these non-generic cases.
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But what matrices satisfy the RIP condition (1.5)? It should come as no

surprise that a matrix satisfying the RIP condition should have a number of rows

m at least as large as k. In fact one can show that necessarily m ≥ Cδk log
n
k for

a suitable constant Cδ > 0. It is not easy to make deterministic constructions of

“good” measurement matrices approaching such bounds. The RIP condition is

not the only possible condition that allows to replace the ℓ0 by the ℓ1 norm, but

again they are not easily handled.

However the toy example naively suggests that in fact all we migth need are

random measurement matrices. This is indeed a fruitful idea, at least in the

asymptotic setting n,m → +∞ with κ = k
n , µ = m

n fixed. This is the route we

will follow in the sequel, very much in the spirit of random coding constructions.

Ensembles of Measurement Matrices

The m×n matrix A will be taken from the Gaussian ensemble where the matrix

entries are independent identically distributed Gaussian variables of zero mean

and variance 1/m. As in coding we will consider the asymptotic regime of a

large system size. This corresponds to n,m, k → +∞ with sparsity parameter

κ = k
n and measurement fraction µ = m

n fixed. Note that each line of A has an

expected ℓ2 norm O(1). This amounts to say that the average energy consumed

per measurement is normalized to O(1).3

One can show that there exists positive numerical constants c1, c2 such that

for m ≥ c1δ
−2k log( enk ) matrices from the Gaussian ensemble satisfy the RIP

condition with overwhelming probability 1− exp(−c2δ2m). We therefore do not

attempt to construct specific matrices but are content with typical random Gaus-

sian matrices. More general ensembles are also possible.

We also extend the ensemble formulation to the signal model. The simplest

signal distributions assume that the components xi are independently identically

distributed according to a law of the form

p0(x) = (1− κ)δ(x) + κϕ0(x), x ∈ R (1.8)

where ϕ0(x) is a continuous probability density. Depending on the model or

the application ϕ0(x) is known or unknown. The most realistic assumption for

applications is to consider that ϕ0(x) is unknown, and in that case we call Sκ
this class of sparse signals.

Noisy measurements and LASSO

A somewhat more realistic version of the measurement model takes noise into

account,

y = Ax+ z.

3 It is perhaps more natural to choose a scaling 1/n for the variance of A but the present

equivalent choice makes our life simpler in Chapter 8.
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Here z is a noise vector typically assumed to consist of m identical indepen-

dently distributed zero-mean Gaussian random variables with variance of σ2.

Because measurements have unit average power, the “signal to noise ratio” of

the measurement model is 1/σ2.

Again our aim is to reconstruct a k-sparse signal with as few measurements as

possible. The matrix A is chosen from the random Gaussian ensemble and the

signal from the class Sκ.
If we ignored the sparsity constraint then it would be natural to pick an

estimate x̂(y) which solves the least-squares problem minx∥Ax− y∥22. Solutions
are well known,

x̂(y) = A+y + (I −A+A)u, u ∈ Rm,

where A+ is the Moore-Penrose pseudo inverse,4 but in general these solutions

are not k-sparse.

To enforce the sparsity constraint, we can add a second term to our objective

function, and attempt to solve the following minimization problem,

x̂0(y) = argminx(∥Ax− y∥22 + λ∥x∥0), (1.9)

for a properly tuned parameter λ. Unfortunately this minimization problem is

intractable, again because it requires an exhaustive search over the
(
n
k

)
possible

supports of the sparse vectors.

We saw in the noiseless case that replacing the “ℓ0 norm“ by the ℓ1 norm

is a fruitful idea. We follow the same route here and consider the following

minimization problem

x̂1(y) = argminx(∥Ax− y∥22 + λ∥x∥1). (1.10)

This estimator is called the Least Absolute Shrinkage and Selection Operator

(LASSO). Again λ has to be chosen appropriately. This estimator can in principle

be calculated by standard convex optimizaton techniques, which is already a big

improvement over exhaustive search.

Although the LASSO estimator is popular, its a priori justification is not so

straightforward. Our discussion suggests that in the noiseless limit it reduces to

the pure ℓ1 estimator which we know gives for a certain range of parameters the

correct solution of the ℓ0 problem. This is one possible justification. In Chapter

3 we also discuss a more or less ”Bayesian justification“ of the LASSO in a

setting where the signal distribution is not known, but only the parameter κ is

assumed to be known. Interestingly, the analysis of the LASSO in Chapter 8

yields an exact region for the ℓ0-ℓ1 equivalence in the (κ, µ) plane. The frontier

of this region is known as the Donoho-Tanner curve who originally derived by

4 In the standard setting of linear estimation where m ≥ n and if A has linearly independent
columns then ATA is invertible and A+ = (ATA)−1A. The solution of least squares
x̂(y) = (ATA)−1Ay is then unique. See the exercises for the general definition of the

Moore-Penrose pseudoinverse, which always exists.
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methods of combinatorial geometry of polytopes. All this is ample justification

for studying the LASSO in detail.

Graphical representation

Analogously to coding one can set up a graphical representation for the mea-

surement matrix. We associate to A a bipartite graph G with vertices V ∪ C,
where V = {x1, . . . , xn} is the set of variable nodes corresponding to the n signal

components and C = {c1, . . . , cm} is the set of measurement nodes each node

corresponding to a row (a measurement) of A. There is an edge between xi and

cj if an only if Aji ̸= 0. For the random measurement matrices discussed above

this will essentially always be the case and therefore the graph is simply the

complete bipartite graph depicted in figure 1.5.

FIGURE

Figure 1.5 The factor graph corresponding to a random Gaussian 2× 4 measurement
matrix.

We could attribute a ”random weight“ to the edges, but we will seldom need

to do so. Therefore, unlike coding, here the graph is always the same. At this

point the graphical construction may seem slightly trivial and arbitrary, but it

will turn out to be a very useful way of thinking. The reason is that, much as in

coding theory, we will develop iterative algorithms exchanging messages along

the edges in order to reconstruct the signal.

Questions

We will consider the asymptotic regime where the total number of signal com-

ponents n tends to infinity while the fractions of non-zero components κ = k/n

and of measurements µ = m/n are kept constant.

For given sparsity κ, we want to determine the smallest fraction µ of measure-

ments so that with high probability we can recover xin from the measurements

y, assuming we have no limitations on the computational complexity. This sets

a theoretical limit on the minimal amount of measurements.

We then want to answer the same question given that we restrict ourselves to

low-complexity algorithms.

Finally, we would like to design, if possible, compressive sensing schemes
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which achieve the theoretical limits on the fraction of measurements under low-

complexity algorithms.

1.3 Satisfiability

SAT problem

Suppose that we are given a set of n Boolean variables {x1, . . . , xn}. Each variable

xi can take on the values 0 and 1, where 0 means “false” and 1 means “true”.

We define a literal to be either a variable xi or its negation x̄i. A clause is a

disjunction of literals, e.g.,

c = x1 ∨ x2 ∨ x̄3

where the operation “∨” denotes the Boolean “or” operation. An assignment

is an assignment of values to the Boolean variables, e.g., x1 = 0, x2 = 1, and

x3 = 0. Such an assignment will either make a clause to be satisfied or not

satisfied. For example the clause x1 ∨ x2 ∨ x̄3 with assignment x1 = 0, x2 = 1,

and x3 = 0 evaluates to 1, i.e., the clause is satisfied. A SAT formula, call it F ,

is a conjunction of a set of clauses. For example, consider the SAT formula

F = (x1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x̄4) ∧ x3.

where “∧” is the Boolean “and” operation.

The basic SAT problem is defined as follows. Given a SAT formula F , de-

termine the satisfiability of F , i.e., determine if there exists an assignment on

{x1, . . . , xn} so that F is satisfied. This is the SAT decision problem. If such an

assignment exists we might also want to find an explicit solution.

Why would anyone be interested in studying this question? Perhaps surpris-

ingly, many real-world problems map naturally into a SAT problem. For example

designing circuits, optimizing compilers, verifying programs, or scheduling can be

phrased in this way. The bad news is that Cook proved in 1973 that it is unlikely

that there exists an algorithm which solves all instances of this problem in poly-

nomial time (in n). More precisely, the SAT decision problem is NP-complete.

We say that a formula F is a K-SAT formula if every clause involves exactly

K literals. E.g., (x1 ∨x2 ∨ x̄3)∧ (x2 ∨x3 ∨ x̄4) is a 3-SAT formula. The following

facts are known. The 2-SAT decision problem is easily solved in a polynomial

number of steps. Problem 1.6 discusses a simple algorithm called unit-clause

propagation which solves a 2-SAT decision problem in at most 2n steps and

produces a satisfying assignment if one exists. On the other hand for K ≥ 3 the

K-SAT decision problem is NP-complete.

Graphical representation of SAT formulas

Given a SAT formula F , we associate to it a bipartite graph G. The vertices

of the graph are V ∪ C, where V = {x1, . . . , xn} are the Boolean variables and
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C = {c1, . . . , cm} are the m clauses. There is an edge between xi and cj if and

only if xi or x̄i is contained in the clause cj . Further we draw a “solid line” if cj
contains xi and a “dashed line” if cj contains x̄i.

example 2 (Factor Graph of SAT Formula) As an example, the graphical

representation of F = (x1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x3 ∨ x̄4) is shown in Fig. 1.6. □

Figure 1.6 The factor graph corresponding to the SAT formula of Example 2.

Ensemble of random K-SAT Formulas

Just like in the coding and compressed sensing problems, rather than looking

at individual SAT formulas, we will define an ensemble of such formulas and we

will then study the probability that a formula from this ensemble is satisfiable.

In particular, we will stick to the behaviour of random K-SAT formulas.

The ensemble F(n,m,K) is characterized by 3 parameters: K is the number

of literals per clause, n is the number of Boolean variables, and m is the number

of clauses. Notice that with K variables we can form
(
n
K

)
2K clauses by taking K

variables among x1, . . . , xn and then negating them or not. We define F(n,m,K)

by showing how to sample from it. To this end, pick m clauses c1, . . . , cm inde-

pendently, where each clause is chosen uniformly at random5 from the
(
n
K

)
2K

possible clauses. Then form F as the conjunction of these m clauses. In other

words, the ensemble F(n,m,K) is the uniform probability distribution over the

set of all possible formulas F constructed out of n Boolean variables by choosing

m clauses.

Threshold behavior

Now let us consider the following experiment. Fix K ≥ 2 (e.g., K = 3) and draw

a formula F from the F(n,m,K) ensemble. Is such a formula satisfiable with

high probability? It turns out that the most important parameter that affects

the answer is α = m
n . This ratio is called the clause density. Like in coding and

compressed sensing we are interested in the asymptotic regime where n,m→ +∞
and α is fixed.

Fig. 1.7 shows the probability of satisfiability of F as a function of both n and

5 Choosing a clause with or without replacement yields two different enesembles which are

for all pratical purposes equivalent in the large size limit
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α. As we see from this figure, as n becomes larger the transition of the probability

of satisfiability becomes sharper and sharper. This is a strong indication that

there exists a sharp threshold behavior, that is, there exists a real number αs(K)

such that

lim
n→∞

P [F is satisfied] =

{
1, α < αs(K),

0, α > αs(K).
(1.11)

Here P [−] is the uniform probability distribution of the ensemble F(n,m,K)

with m
n = α fixed.

As the density α increases one has more and more clauses to satisfy, so it

intuitively quite clear that the probability of satisfaction decreases as a function

of α. However the existence of a sharp threshold is much less evident, let alone its

computation. Such a threshold behavior was conjectured based on experiments

in 1992. For many years this was proved only for K = 2 for which αs(2) = 1.

For K ≥ 3 Friedgut proved that there exists a sequence αs(K,n), n ∈ N, such
that for all ϵ > 0

lim
n→∞

P [F is satisfied] =

{
1, α < (1− ϵ)αs(K,n),

0, α > (1 + ϵ)αs(K,n).
(1.12)

This result leaves open the possibility that the sequence of thresholds αs(K,n)

does not converge to a definite value as n→ +∞. Even though this result does

not settle the story completely, it is of considerable importance if we want to find

bounds on the threshold. E.g., suppose that we have an algorithm that allows

to find solutions of random K-SAT formulas with uniformly positive probability

(uniformly with respect to the size n of the formulas) for some range of densities,

say α < αalg(K). Then invoking the threshold behavior (1.12) guaranteed by

Friedgut’s theorem we conclude that the formula is almost surely satisfiable for

α < αalg(K).

The proof of a sharp threshold behavior (1.11) was proved recently for K large

enough (very large but finite), but for small K’s (except K = 2) a proof is still

a challenging problem and might require a new set of ideas.

The underpinnings of this proof for large K’s rest on the statistical mechan-

ics methods which also give the means to compute αs(K) (for example it is

known that αs(3) ≈ 4.259 to three decimal places). As we will see these meth-

ods yield much more information than just the threshold value. We will uncover

various other threshold behaviors, related not only to the satisfiability of ran-

dom formulas, but also to the “nature” and “organisation” of the solution space.

Understanding the nature of these threshold behaviors in K-SAT is an order of

magnitude more difficult than in coding theory and compressed sensing.

Random max-K-SAT

In the K-SAT decision problem, one is given a formula and is asked to determine

if this formula is satisfiable or not. An important variation on this theme is
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the max-K-SAT problem. In this problem one is interested in determining the

maximum possible number of satisfied clauses where the maximum is taken over

all possible 2n assignments of variables x1, . . . , xn ∈ {0, 1}n. Of course it is

equivalent to determine the minimum possible number of violated clauses where

the minimum is taken over all assignments of variables. We adopt this perspective

in the sequel because it makes the contact with traditional statistical mechanics

questions clearer.

We will be interested in the random version of max-K-SAT which we know for-

mulate more precisely. Take a formula at random from the ensemble F(n,m,K).

This formula contains m clauses labelled c1, . . . , cm. If we let 1c(x) be the indi-

cator function over assignments that satisfy clause c (the function evaluates to 1

if x satisfies c and 0 if x does not satisfy c) then the maximum possible number

of satisfied clauses is

max
x∈{0,1}n

m∑
i=1

1ci(x) (1.13)

In the random max-K-SAT problem we want to compute

lim
m→+∞

1

m
E
[

max
x∈{0,1}n

m∑
i=1

1ci(x)
]

(1.14)

where the expectation is taken over the ensemble F(n,m,K) (the existence of the

limit has been proven by methods that we will study in Chapter 12). Equivalently

we want to compute the average of the minimum possible number of violated

clauses

e(α) ≡ lim
m→+∞

1

m
E
[

min
x∈{0,1}n

m∑
i=1

(1− 1ci(x))
]

(1.15)

We define the max-K-sat threshold as

αs,max(K) = sup{α|e(α) = 0} (1.16)

We will give a non-rigorous computation of (1.15) and (1.16) in chapters 16 and

17. In fact, the recent proof for the sharp threshold behavior (1.11) (for very

large K) has its origin in such statistical mechanics computations.

Intuitively one expects that αs,max(K) = αs(K). It is an exercise to show that

one must have αs(K) ≤ αs,max(K). However the converse bound is not immedi-

ate because one could conceivably have a finite interval ]αs(K), αs,max(K)[ where

e(α) = 0 and at the same time a sublinear fraction of unsatisfied clauses. Never-

theless it is widely believed this does not happen and that αs(K) = αs,max(K).

At least we know that this is true for K = 2 and for large enough K.

Questions

One would like to determine if the random K-SAT problem exhibits a threshold

behaviour, and if so, determine this threshold αs.
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One wants to find low-complexity algorithms which are capable of finding

satisfying assignments, assuming such assignments exist, and determine up to

what clause density they work with high probability.
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Figure 1.7 The probability that a formula generated from the random K-SAT
ensemble is satisfied versus the clause density α.

Perhaps surprisingly, many of the above questions do not yet have a rigorous

answer and the satisfiability problem is by far the hardest of our three examples.

Nevertheless we will derive non-trivial statements about this problem and if one

admits non-rigorous methods, the problem is fairly well understood.

1.4 Notes

The theory of error correcting codes is a very large subject which dates back

to the 1940’s. General references are (Berlekamp 1984, Blahut 2003, Lin &

Costello 2004). Although Shannon’s channel coding theorem used the concept

of random codes, the first ”practical” code constructions were deterministic and

used algebraic tools. Random Low-Density Parity-Check codes were first pro-

posed by Gallager (Gallager 1962, Gallager 1963) who also proposed efficient

decoding algorithms and methods to analyse them. This theory did not find im-

mediate applications due to limitation in computing power. A revival of Gal-

lager’s ideas occurred after the invention of Turbo Codes (Berrou, Glavieux

& Thitimajshima 1993, Goff, Glavieux & Berrou 1994) and the rediscovery of

LDPC codes (MacKay & Neal 1996, MacKay 1999). We have only presented

the construction of regular Gallager ensembles. Such constructions are inspired

by the configuration model of random graphs (Bollabás 1998). Ensembles of bi-

partite graphs with irregular degrees were introduced in (Luby, Mitzenmacher,

Shokrollahi, Spielman & Stemann 1997, Luby, Mitzenmacher, Shokrollahi &

Spielman 2001) and by choosing appropriate degree distribution one gets ex-

cellent codes with capacity close to Shannon’s limit. The factor graph represen-

tations were introduced by (Tanner 1981) and have become ubiquitous.

The traditional basis of digital signal processing is the Whittaker, Nyquist,

Kotelnikov, Shannon sampling theorem which states that band limited signals
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can be reconstructed when sampled at a rate at least twice the bandwidth A

short history of this theorem whose various aspects were discovered many times

can be found in (Lukke 1999). While this theorem applies to any band lim-

ited signal, it was already realised long ago, notably in (Caratheodory 1907),

that much fewer samples are needed when the number of Fourier coefficients

is limited and the frequency range large. The use of the ℓ1 norm for recon-

structing ”impulsive signals” from a limited number of observations goes back

at least to (Beurling 1938). These and other works predated the modern com-

pressive sensing paradigm that emerged from a series of important recent papers

(e.g Candès 2006a, Candès 2006b, Candès, Romberg & Tao 2006, Candès &

Tao 2006, Donoho 2006). These works introduced the ”restricted isometry prop-

erty” and proved fundamental theorems in the spirit of Theorem 1.1 in noiseless

as well as noisy settings. Variants of the restricted isometry property as well as

constructions of suitable measurement matrices have been intensively explored.

We refer to the reviews in the book (Eldar & Kutyniok 2012) for further infor-

mation. The LASSO dates back to the 1990’s and was first introduced in the

context of linear regression models (Tibshirani 1996, Chen & Donoho 1995). It

is also referred to as ”Basis Pursuit Denoising”.

The satisfiability problem is one of the most important paradigms of com-

plexity theory (Garey & Johnson 1979, Papadimitriou & Steiglitz 1982). The

3-SAT problem was the first of a long list which was shown to be NP com-

plete (Cook 1971). Traditionally computer scientists have been interested in the

worst case analysis of this and similar problems. Interest in the random version

of such problems is more recent and was largely motivated by the ”experimen-

tal” discovery that typical random K-SAT formulas exhibit a phase transition

(Mitchell, Selman & Levesque 1992). A threshold behaviour was first proven in

the important work by (Friedgut 1999), and the existence of a sharp threshold

separating a satisfiable from an unsatisfiable phase in the limit of an infinite

number of variables has been proved for large enough K (Ding, Sly & Sun 2014).

An excellent reference discussing various aspects of computational complexity is

(Moore & Mertens 2011).

As stated in the introduction, the connections between statistical physics,

information theory and computer science have been recognised early on. Al-

ready one decade after Shannon laid the foundations of information theory

(Shannon 1948), Jaynes discussed connections between this theory and some of

the basic principles of statistical mechanics (Jaynes 1957), and Brillouin wrote

a classic book applying information theory concepts to a wide array of physi-

cal problems, e.g., in thermodynamics, measurements and the physical limits of

observations (Brillouin 1956). Ever since there have been numerous fundamen-

tal investigations on the physical aspects of computation and information. One

line of thought led to the concept of a ”quantum computer”, see (Loyd 2000)

for a review. Here we are concerned with a completely different thread that

originated in the 1980’s, namely analogies between ”combinatorial optimisa-

tion problems” and ”spin glasses”. Such connections were explicitly put for-
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ward in (Hopfield 1982) and (Fu & Anderson 1986) and a set of early refer-

ences can be found in (Mézard, Parisi & Virasoro 1987a). This school of thought

has flourished since then in many areas (e.g, neural networks) and since the

late 1990’s some of the most successful developments have occurred in commu-

nications, signal processing and random constraint satisfaction problems (e.g

Nishimori 2001, MacKay 2003, Mézard & Montanari 2009).

Problems

1.1 Shannon Capacity for Binary Input Symmetric Memoryless Chan-

nels. Derive the capacities of the BSC and BAWGNC from Shannon’s general

formula (1.2).

A binary input memoryless channel is said to be symmetric if one can find a

bijection π : Y → Y acting on the output alphabet such that p(y|1) = p(π(y)|0).
For the BSC we have π(0, 1) = (1, 0), for the BEC π(0, E, 1) = (1, E, 0), and for

the BAWGNC π(y) = −y. So these three channels are symmetric.

Show that for general symmetric channels Shannon’s capacity formula can be

written as

Cchannel = 1−
∑
y∈Y

p(y|0) log2
(
1 +

p(y|1)
p(y|0)

)
If the output alphabet is R (e.g., the BAWGNC) the sum is interpreted as an

integral. Check the special cases of the BEC, BSC, BAWGNC.

1.2 Configuration Model. The aim of this problem is to write a program

that can sample a random graph from the configuration model introduced in

section 1.1. Your program should take as input the parameters n, m, dv, and dc,

it should then check that the input is valid, and finally return a bipartite graph

according to the configuration model. Think about the data structure. If we run

algorithms on such a graph it is necessary to loop over all nodes, refer to edges

of each node, be able to address the neighbourd of a node via a particular edge

and store values associated to nodes and edges.

1.3 Norms and pseudo-norms. Let ∥x∥p = (
∑n

i=1 |xi|p)1/p for p > 0. Let

also ∥x∥0 = ♯(non zero x1, . . . , xn) and ∥x∥∞ = maxi |xi|. Show first that ∥x∥0 =

limp→0 ∥x∥p and ∥x∥∞ = limp→+∞ ∥x∥p. Explain why ∥ · ∥p is a norm for 1 ≤
p ≤ +∞ and is not a norm for 0 ≤ p < 1 (this is why for 0 ≤ p < 1 we call it a

pseudo-norm). Hint: refer to the figure 1.4.

1.4 Least square estimator. Show that the minimizer of ∥y−Ax∥22+α∥x∥2

where A is a real matrix and α > 0 fixed, is equal to x̂(α)(y) = (ATA+α)−1AT y

and is unique. When the matrix A has linearly independent columns (this is only

possible if m ≥ n) then ATA is invertible and limα→0(A
TA+ α)−1 = (ATA)−1.

Thus when A has full column rank the minimizer of ∥y−Ax∥22 is the least square

estimator x̂LS(y) = (ATA)−1AT y.

It is possible to prove, and we will admit it here, that limα→0(A
TA+α)−1AT ≡

A+ always exists for any real matrix A. It is also possible to show that this
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is the unique matrix which satisfies the four conditions: (i) AA+A = A, (ii)

A+AA+ = A+, (iii) (AA+)T = AA+, (iv) (A+A)T = A+A. The matrix A+ is

called the Moore-Penrose pseudoinverse of A.

Prove that the Moore-Penrose pseudoinverse always solves the least square

problem in the sense that

∥y −Ax∥22 ≥ ∥y −Ax̂
LS(y)∥22, x̂LS(y) = A+y.

Note that equality is satisfied for x = A+y + (I − A+A)u for any u. Thus in

general the least square minimiser is not unique. Show that if A is has full column

rank the minimizer is unique and equal to x̂LS(y) = (ATA)−1AT y.

1.5 Poisson Model. An important model of bipartite random graphs is the

Poisson model. For example the random K-SAT problem is often formulated on

this graph ensemble. Pick two integers, n and m. As before, there are n variable

nodes and m check nodes. Further, let K be the degree of a check node. For

each check node pick K variables uniformly at random either with or without

repetition and connect this check node to these variable nodes. For each edge

store in addition a binary value chosen according to a Bernoulli(1/2) random

variable.

This is called the Poisson model because the node degree distribution on the

variable nodes converges to a Poisson distribution for large n. This is also the

case for the formulation in Section 1.3 which is equivalent in the asymptotic

limit.

Write a program that takes n,m,K as input parameters and outputs a graph

instance from the Poisson model. Again, think of the data structure.

1.6 Unit Clause Propagation for Random 3-SAT Instances. The aim

of this problem is to test a simple algorithm for soving SAT instances. Generate

random instances of the Poisson model. Pick n = 105 and let K = 3. Let α

be a non-negative real number. It will be somewhere in the range [0, 5]. Let

m = ⌊αn⌋ the largest integer smaller than αn. For a given α generate many

random bipartite graphs according to the Poisson model. Interpret such bipartite

graphs as random instances of a 3-SAT problem. This means, the variables nodes

are the Boolean variables and the check nodes represent each a clause involving

3 variables. Associate to each edge a Boolean variable indicating whether in this

clause we have the variable itself or its negation.

For each instance you generate, try to find a satisfying assignment in the fol-

lowing greedy manner. This is called the unit clause propagation algorithm:

(i) If there is a check node of degree one in the graph (this corresponds to a

unit-clause), then choose one among such check nodes uniformly at random.

Set the variable to satisfy it. Remove the clause from the graph together with

the connected variable and remove or shorten other clauses connected to this

variable (if the variable satisfies other clauses they are removed while if not they

are shortened).
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(ii) If no such check exists, pick a variable node uniformly at random from the

graph and set the corresponding litteral to 0 or 1 uniformly at random. Remove

this variable node from the graph. For each constraint node connected by an

edge to this litteral do the following. If the clause is satisfied then remove the

edge and the clause (or constraint). If not, then remove only the edge.

Continue the above procedure until there are no variable nodes left. If, at the

end of the procedure, there are no check nodes left in the graph (by definition

all variable nodes are gone) then we have found a satisfying assignment and we

declare success. If not, then the algorithm failed (although the instance itself

might very well be satisfiable).

Plot the empirical probability of success for this algorithm as a function of α.

Roughly at what value of α does the probability of success becomes close to 0?



2 Basic Notions of Statistical
Mechanics

There is a special class of probability distributions called Gibbs distributions

which plays a prominent role in the analysis of our models. We show in the next

chapter how Gibbs distributions arise quite naturally in the context of coding,

compressed sensing and satisfiability. However, many insights and useful analo-

gies can be gained by understanding why Gibbs distributions play a prominent

role in the description macroscopic physical systems. It is the goal of this chapter

to expound on the second point. This also gives us the opportunity to introduce

some of the language and standard notions and settings of statistical mechanics.

Statistical mechanics describes the macroscopic (large scale) behavior of sys-

tems that are composed of a very large number of “elementary” degrees of free-

dom. For example condensed matter systems have a huge1 number of atoms,

molecules, magnetic moments or spins, etc. Similarly, we are interested in the

behavior of our models when the number of transmitted bits, of signal compo-

nents or literals is very large.2

In macroscopic physical systems a precise knowledge and description of the

microscopic dynamics of each degree of freedom, say by solving Newton’s differ-

ential equations for the positions and velocities of all molecules, is just impossible.

Fortunately this is usually not required in order to derive macroscopic proper-

ties of the system. The general approach of statistical mechanics is to replace

the microscopic dynamical description by a statistical one, based on appropriate

probability distributions. A universal probabilistic description - given by Gibbs

distributions - is known for systems that have reached the state of “thermo-

dynamic equilibrium”. It is not easy to precisely define what thermodynamic

equilibrium is; it is enough to think of it as a state of matter where the temper-

ature, pressure and chemical potential are homogeneous so that heat currents,

mechanical stresses, and particle currents are all absent. It turns out that the

precise nature of the underlying microscopic dynamics is largely irrelevant, e.g.,

whether it is deterministic or random, except for the existence of quantities that

are conserved under the dynamics (a typical example of a conserved quantity is

the energy of the system). In fact even the existence of a dynamics is not needed,

or at least it is not explicitly needed. This is noteworthy because in our models

1 For an order of magnitude, 1 cm3 of helium at normal conditions of 1 atm and 0o C
contains 2.7× 1019 atoms.

2 Here “large” depends on the the technology used. For example ...
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no natural dynamics is a priori given, and if for some reason we choose one, this

choice is not unique.

We warn the reader that Gibbs distributions do not describe systems that are

not in thermal equilibrium; such systems are said to be “out of equilibrium”

and their fundamental probabilistic descriptions, assuming they exist, are not

yet elucidated. Such systems range from the simplest stationary heat or electric

flows all the way to living systems.

Thermodynamic equilibrium can be characterized as a state of “maximal dis-

order” compatible with whatever “conserved quantities” are relevant. This gives

us a clue into the nature of the Gibbs distributions: these are the distributions

that maximize an entropy functional (in fact Shannon’s entropy) under the con-

straints provided by the conserved quantities. The notion of conserved quantity

might not be familiar to the reader, but this should not be a problem because

the most important one (and the one that is relevant to us) is the energy or

Hamiltonian of the system. One can just think of this quantity as some sort

of cost function. We already encountered one such cost function in the satis-

fiablity problem, namely the minimum possible number of violated clauses. In

compressed sensing the mean square errors (penalized by the ℓ0 or ℓ1 norms) are

also cost functions.

To lay the foundations on a concrete footing we will first describe “toy” models

of statistical mechanics, which as it turns out, belong to its most fundamental

paradigms. Based on these models we illustrate a simple derivation of Gibbs dis-

tributions from a maximum entropy principle. We then define standard notions

of free energy, marginals, correlation functions, thermodynamic limit and pro-

vide a first introduction to the concept of phase transition. There is no unique

way to introduce Gibbs distributions and the main body of this chapter goes

along a short path. But one should note this path uses the notion of Shannon

entropy which itself is not an obvious primary object for physical systems. The

founding fathers of statistical mechanics deduced Gibbs distributions from more

primary principles. The interested reader will find a derivation along such lines

in the last section; the impatient reader can skip it without harm.

2.1 Lattice gas and Ising models

The lattice gas and Ising models are very simple to formulate and have taught

us surprisingly much about statistical mechanics; their importance cannot be

understated. There is an immense body of theory that is known about such

models which we completely omit here (some of it is briefly reviewed in Chapter

4, Section 4.9). These models will serve us well to get a rapid and concrete

derivation of the Gibbs distribution. This section introduces their Hamiltonians

or cost functions, first in the traditional language of statistical mechanics, and

then with a “factor graph” representation.
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J

Λxi = 1

xi = 0

Figure 2.1 Left: a particle configuration in the lattice gas model. Full circles represent
occupied sites xi = 1 and empty circles unoccupied sites xi = 0. There can be at most
one particle per lattice site. Right: a magnetic configuration of the Ising model.
Positive signs indicate “up spins” si = +1 and negative signs “down spins” si = −1.

Lattice gas model

Consider a discrete d-dimensional grid (see Figure 2.1; naturally, d = 3 is an

important case but other values of d are of also of great relevance both theo-

retically and practically). Particles occupy the vertices of this grid with at most

one particle occupying any single vertex. We call V = {x1, . . . , xn} the set of

vertices and E the set of edges formed by pairs of nearest neighbord vertices.

The configuration of the system is described by a vector x = (x1, · · · , xn) where
xi = 1 if an atom is present at vertex i and xi = 0 if vertex i is empty. Let us

introduce a cost function usually called the Hamiltonian. Physically this function

gives the energy cost associated to a configuration x. We define

H(x) = −
∑

{i,j}∈E

Jijxixj −
∑
i∈V

µixi. (2.1)

where Jij and µi are in R. Each edge {i, j} is counted once in the sum (so

{i, j} = {j, i}). Only neighboring atoms “interact” and their “interaction energy”

is −Jij (because when vertices i and j are occupied xi = xj = 1, and their

intercation energy is −Jijxixj = −Jij).
In the canonical model Jij = J and µi = µ are constant, with J < 0 cor-

responding to a repulsive interaction and J > 0 to an attractive interaction

between neighboring atoms. The real number µ is an energy cost associated to

the presence or absence of a particle. For example in two dimensions the grid

may model the surface of some material which absorbs some vapour and one
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may think of µ as a binding energy between the atoms of the vapour and the

surface. This kind of energy is called a “chemical potential”.

Canonical Ising model

The canonical Ising model introduced by Lenz and Ising in 1928, is one of the

oldest and best studied models of statistical mechanics. We will refer to it in many

occasions. In this model the degrees of freedom describe “magnetic moments”

localized at the sites of a crystal. For our case these sites are the vertices of a d-

diemensional grid with vertex set V and edge set E. In the Ising model we retain

only “up or down directions” for the magnetic moments. These are modeled by

Ising spins which are binary variables si = ±1, i ∈ V . The Hamiltonian is

H(s) = −
∑

{i,j}∈E

Jijsisj −
∑
i∈V

hisi. (2.2)

where s = (s1, . . . , sn) and Jij , hi are in R. In the canonical Ising model Jij =

J and hi = h are constant throughout the lattice. For J > 0 (ferromagnetic

interaction) neighboring spins lower their energy when they “align” in the same

direction” (si = sj) while for J < 0 (anti-ferromagnetic interaction) they lower

their energy by “anti-aligning” (si = −sj). Here h has the interpretation of a

“magnetic field” applied on the system and biases the “direction” of the magnetic

moments.

Mathematically speaking the lattice-gas and Ising models are equivalent. One

can go from one to the other simply by performing the change of variable

xi =
1

2
(1− si), or si = 1− 2xi = (−1)xi

and redefining the various “interaction constants” Jij , µi, hi.

General Ising models

It is common to formulate the Ising model on general graphs G = (V,E) with

vertex set V = {1, . . . , n} and edge set E ⊂ V ×V . Motivations for such a gener-

alisation are diverse. In statistical or condensed matter physics the graph may be

a regular grid or lattice representing an underlying crystalline structure. It may

also represent an approximation of continuous space in various dimensions. But

there are also important applications of the model in other disciplines, e.g., im-

age processing, neural networks, learning, social networks. For such applications

the graphs do not necessarily have a spatial structure and may just be arbitrary.

A general Ising model has the Hamiltonian (2.2) where now the vertex and edge

sets refer to an arbitrary graph G = (V,E).

example 3 The canonical Ising model has V = Zd ∩ [−L
2 ,

L
2 ]

d, where d is

the “spatial dimension” and L is an odd integer. The box [−L
2 ,

L
2 ]

d is centered

at the origin and encloses Ld vertices. Vertices i ∈ V are vectors with integer
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components and {i, j} ∈ E consist of all nearest neighbord pairs, |i − j| = 1.

Further, hi = h for i ∈ V and Jij = J for {i, j} ∈ E. The model is called

ferromagnetic when J > 0 and anti-ferromagnetic when J < 0. □

example 4 In the Curie-Weiss model G is the complete graph on n vertices.

There are n(n − 1)/2 edges with interaction constant Jij = J/n, J > 0. In

addition the magnetic field is taken constant hi = h. This an important “exactly

solvable” model which we treat in detail in Chapter 4. □

example 5 In the Ising model on a tree G is a (finite) tree, in other words

a graph without loops. An important “exactly solvable” consists The case of a

regular tree of degree k (except for the leaf nodes which have degree one) and

Jij = J > 0, hi = h constitutes an important fully solvable model which we

analyze in Chapter 4. □

General binary spin systems

So far all examples have involved “pairwise interactions” between spins si and sj
linked to by and {i, j}. We can consider more general models with “multi-spin in-

teractions” (and this occurs all the time in coding and satisfiability for example).

For example on a grid the four spins of elementary loops (called “plaquettes”)

may interact through a term

−
∑

(i,j,k,l)∈P

Jijklsisjsksl

in the Hamiltonian, where P is the set of all elementary plaquettes of the grid

and Jijkl ∈ R.
The most general binary spin model has a Hamiltonian of the form

H(s) = −
∑
A⊂V

JA
∏
i∈A

si (2.3)

where JA ∈ R and the sum over A ⊂ V = {1, . . . , n} carries over all possible

subsets of V (the power set with 2|V | elements). The most general lattice gas

has a similar Hamiltonian. The pairwise Ising models correspond to the choice

JA = h ̸= 0 for A = {i}, i ∈ V and JA = Jij ̸= 0 for all A = {i, j} ∈ E the set

of edges, and JA = 0 otherwise. If we add a plaquette interaction we also have

JA = Jijkl ̸= 0 for all A = {i, j, k, l} ∈ P the set of all plaquettes.

The factor graph representation is a convenient representation of general hamil-

tonians (2.3). Here the factor graph is a bipartite graph with “variable nodes”

associated to spin variables s1, . . . , sn (or lattice gas variables x1, . . . , xn) and

“function nodes” associated to subsets A ⊂ V with JA ̸= 0. The factor graphs

associated to the Ising and lattice gas models on a grid, as well as the one with

plaquette interactions added, are illustrated on Fig. 2.2. Note that the factor

graph itself does not represent the underlying physical lattice but rather is a

convenient summary of the various interactions present in the model. We will

come back to this representation is more details in Chapter ??.
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FIGURE

Figure 2.2 Left: factor graph of the canonical Ising model. Right: factor graph of a
spin system with pair and plaquette interactions.

In Chapter 3 it will become clear that the LDPC codes and K-SAT models

have cost functions that are of the form 2.3. For compressed sensing the “spins”

are real numbers and one talks about ”continuous“ or ”scalar“ spins.

2.2 Gibbs distribution from maximum entropy

The Gibbs distributions date back at least to the beginning of the 20th century,

and presenting the historical derivations of Maxwell, Boltzmann, Gibbs, Einstein

and others would lead us much too far (see the notes for references). In the decade

following Shannon’s 1948 paper, Jaynes in 1957 showed that one can derive Gibbs

distributions from a ”maximum entropy principle“. This is the route we take here

because it is economical and serves our purpose well.

Let p(x) be a probability distribution which is supposed to describe the ther-

mal equilibrium state of a macroscopic system with degrees of freedom x =

(x1, . . . , xn). Here we keep in mind the lattice gas, Ising or generalized spin sys-

tems for concreteness (with |V | = n), but it will soon be clear that the develop-

ment here is very generic. The question is: how should we choose this probability

distribution?

This probability distribution must describe typical configurations of the de-

grees of freedom. If the system were to be completely isolated from the rest of

the universe then certainly its energy would be conserved. There could also be

other relevant conserved quantities depending on the nature of the system but

for our purposes we ignore these more general cases. In reality the system has

reached thermal equilibrium through its interactions with the environment, so

it is not isolated and the energy is not strictly conserved. However in thermal

equilibrium there are no macroscopic fluxes of energy between the system and

its environnement, and we assume that the average energy is fixed. Thus p(x)
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should satisfy the constraint ∑
x

p(x)H(x) = E (2.4)

where E is the average total energy, and the sum carries over all possible config-

urations of degrees of freedom. Of course there remains energy fluctuations due

to random exchanges between the system and the environnement but these are

expected to be of order of the surface separating the system from the environ-

nement, i.e., O(n(d−1)/d).

The maximum entropy principle postulates that the state of thermal equi-

librium3 maximizes the entropy but still satisfies the constraint (2.4). For the

entropy we take Shannon’s functional

S(p(·)) = −
∑
x

p(x) ln p(x) (2.5)

(here we use the letter S instead of H because the logarithm is Neperian). This

”guess work“ leads us to the following prescription: the distribution that de-

scribes the thermodynamic equilibrium state is the one that maximizes

S(p(·))− β
∑
x

p(x)H(x) (2.6)

where β is a Lagrange multipier enforcing the constraint (2.4).

Shannon’s entropy is a strictly concave functional of p(·) and the second term

in (2.6) is linear, therefore the functional (2.6) is strictly concave and has a

unique maximizer. To find it we must recall that
∑

x p(x) = 1, so we introduce

one more Lagrange multplier γ, and maximize

S(p(·))− β
∑
x

p(x)H(x) + γ
∑
x

p(x)

Setting the derivative with respect to p(x′) (for any fixed x′) to zero we find

p(x) = eγ−1e−βH(x).

The constant γ is fixed by the normalization condition and we find for the max-

imizer of (2.6)

pG(x) =
e−βH(x)

Z
(2.7)

where

Z =
∑
x

e−βH(x). (2.8)

The distribution (2.7) is called the Gibbs distribution and Z the partition function

(or sometimes the sum over states).

3 This is a state with no gradients of temperature, pressure, or chemical potential, on a

macroscopic scale. As such, it is ”maximally disordered“ and ”structureless“.
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What is the interpretation of the Lagrange multiplier β? For physical systems

β−1 = kBT where T is the temperature of the system and kB a constant - the

Boltzmann constant - such that kBT has units of energy. Of course in coding,

compressed sensing, or satisfiability, there is no physical temperature and the

interpretation may vary according to the problem at hand.

Let us now justify the physical interpretation β = 1/kBT where T is the

temperature of the system. In the process we also introduce important quantities.

We define the Gibbs entropy

S(β) ≡ S(pG(·)) = −
∑
x

pG(x) ln pG(x) (2.9)

and the internal energy

E(β) ≡ −
∑
x

pG(x)H(x). (2.10)

as functions of β. Replacing (2.7) in (2.9) we get

S(β) = βE(β) + lnZ . (2.11)

To make contact with the temperature we have to look at the entropy as a

function of the average energy E,4

S(E) = β(E)E + lnZ(β(E)) (2.12)

where β(E) is computed by inverting the relation E(β) = E. Differentiating

(2.12) with respect to E,

dS(E)

dE
=β(E) +

dβ(E)

dE
E +

d lnZ

dβ

dβ(E)

dE

= β(E) +
dβ(E)

dE
E − E(β(E))

dβ(E)

dE

= β(E) (2.13)

In thermodynamics the inverse temperature 1/T is equal to the derivative of

the (experimentally measurable) ”thermodynamic entropy“ with respect to the

internal energy of the system. Thus, if we identify the Gibbs and thermodynamic

entropies,5 the identity (2.13) suggests the interpretation β = 1/kBT .
6 One

commonly says that β is the ”inverse temperature“.

4 It is common in statistical mechanics and thermodynamics to use the same letter S for the
entropy as a function of β, E or even p(·).

5 This identification is not at all obvious and can here be viewed as a postulate.

Alternatively it can be deduced from Boltzmann’s postulate briefly discussed in Section 2.7
6 T the temperature in degree Kelvin and kB Boltzmann’s constant in Joules per degree

Kelvin which enters here because Gibbs entropy has no physical unit whereas

thermodynamic entropy has units of Joules per Kelvin
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2.3 Free energy and variational principle

On the way of our derivation of the Gibbs distribution we encountered a few

important facts that we highlight in this section. But first we introduce a notation

that is standard in statistical mechanics.

Bracket notation

Let A(x) be any function of the configurations x of the system. These functions

are often called observables. The average with respect to pG(x) is denoted by the

bracket ⟨−⟩,

⟨A(x)⟩ ≡ 1

Z

∑
x

A(x)e−βH(x) . (2.14)

The normalization factor in such averages is always given by the partition func-

tion (2.8). It will become apparent in the next Chapter how convenient it is

to have a reserved notation for the Gibbs average ⟨−⟩, and distinguish it from

expectations E over other random objects.

Free energy

A notion of paramount importance is the free energy defined by

F (β) = − 1

β
lnZ . (2.15)

The important relationship (2.11), namely

F (β) = E(β)− β−1S(β) (2.16)

suggests the thermodynamic interpretation of the free energy. This is the amount

of energy in the system that is not in ”disordered form“ and can be extracted in

the form of mechanical work, hence the adjective ”free“.

Computing, exactly or approximately, the free energy is often a major goal

and when this is possible we learn a great deal about the model or system at

hand. In particular from the free energy we can calculate the internal energy by

differentiating βF (β) with respect to β. Indeed (2.8) and (2.10) implie

E(β) = ⟨H(x)⟩ = − d

dβ
lnZ =

d

dβ
(βF (β)). (2.17)

We can also compute the Gibbs entropy by differentiating F (β) with respect to

1/β. From (2.7) and (2.9)

S(β) = −⟨ln pG(x)⟩

= lnZ − β⟨H(x)⟩ = βF (β)− β d

dβ
(βF (β))

= −β2 d

dβ
F (β) =

d

d(1/β)
F (β) (2.18)
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Finally, the energy fluctuations are obtained by differentiating twice lnZ,

⟨H(x)2⟩ − ⟨H(x)⟩2 = − d2

dβ2
(βF (β)) . (2.19)

Gibbs variationnal principle

Recall that we deduced the Gibbs distribution as the one which maximizes the

functional (2.6). This can be formalized as follows. Define the Gibbs free energy

functional as

F(p(·)) ≡
∑
x

p(x)H(x)− β−1S(p(·)) (2.20)

This is a convex functional which satisfies the lower bound

F (β) ≤ F(p(·)) (2.21)

with equality attained for p(·) = pG(·). This general inequality is called the Gibbs

variational principle. In practice it is often used to compute upper bounds to the

free energy F (β) by wisely choosing ”trial distributions“ for p(·). These upper

bounds sometimes turn out to be useful approximations to the free energy or

may even be sharp.

It is instructive to cast the variational principle in a language that is familiar to

information theorists and statisticians. The Kulback-Leibler divergence between

two distributions p(·) and q(·) is defined as

DKL(p||q) ≡
∑
x

p(x) ln

(
p(x)

q(x)

)
(2.22)

and satisfies DKL(p||q) ≥ 0 with equality when p = q (see exercises). Now, note

that for q = pG we have (using (2.7), (2.15) and (2.20))

DKL(p||pG) =
∑
x

p(x) ln
( p(x)
pG(x)

)
= −S(p)−

∑
x

p(x) ln pG(x)

= −S(p) + β
∑
x

p(x)H(x) + lnZ
∑
x

p(x)

= βF(p(·))− βF (β) (2.23)

The ”free energy difference“ between a trial distribution and the Gibbs distri-

bution is equal (up to a factor β) to the Kullback-Leibler divergence. Also,

F (β) ≤ F(p(·)) and DKL(p||pG) ≥ 0

are one and the same inequality. It is fitting that DKL(p||q) ≥ 0 is often called

the ”Gibbs inequality“.
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2.4 Marginals, correlation functions and magnetization

Assume that a system is described by a Gibbs distribution. In practice, in order

to answer many basic questions, it is often sufficient to compute (exactly or ap-

proximately) the first few marginals or even only the averages of a few important

observables. In this section we collect a few related definitions and remarks.

Marginals

The definition of marginals is just the usual probabilistic one. More precisely the

”first order“ marginal, is defined as

νi(xi) =
∑
∼xi

pG(x) (2.24)

where
∑

∼xi
means that we sum over all xj for j = 1, . . . i − 1, i + 1, . . . n. In

other words we sum over all variables except xi. The ”second order“ marginal is

νi,j(xi, xj) =
∑

∼xi,xj

pG(x). (2.25)

where we sum over all variables except xi, xj . Note that the marginals are nor-

malized probability distributions.7

To illustrate the use of marginals, suppose we want to compute the averages

of the observables, total number of particles
∑

i∈V xi and energy H(x), for the

lattice gas model. By linearity of the Gibbs bracket

⟨
∑
i∈V

xi⟩ =
∑
i∈V

⟨xi⟩ and ⟨H(x)⟩ =
∑

{i,j}∈E

Jij⟨xixj⟩ −
∑
i∈V

hi⟨xi⟩

If the marginals are known we then can use

⟨xi⟩ =
∑
xi

xiνi(xi) and ⟨xixj⟩ =
∑
xi,xj

xixjνi,j(xi, xj) (2.26)

The reader should check these two identities.

Correlation functions

In the previous section we saw that the internal energy, energy fluctuations and

entropy can be computed by differentiating the free energy. Something similar

is also true for the averages (2.26). Consider the following perturbation of the

Hamiltonian where we add ”source terms“

H(x)→ H(x) +
n∑

i=1

λixi (2.27)

7 Marginals (2.24), (2.24) are often called one-point and two-point functions in the

statistical mechanics literatture
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where λi are real numbers. It is sometimes the case that if we know how to com-

pute the free energy for the unperturbed Hamiltonian then we can also compute

it for small values of λi’s. When this optimistic situation is met, such pertur-

bations may be turned into a useful theoretical tool. Indeed, suppose we have

access to lnZ(λ), for λ = (λ1, . . . , λn). Then we can compute the following Gibbs

brackets

⟨xi⟩ =
∂

∂λi
lnZ(λ)|λ=0, ⟨xixj⟩ − ⟨xi⟩⟨xj⟩ =

∂2

∂λi∂λj
lnZ(λ)|λ=0. (2.28)

It is a general fact that higher order derivatives yield higher order cumulants.

In statistical mechanics these cumulants are called ”truncated correlation func-

tions“. For example the covariance ⟨xixj⟩ − ⟨xi⟩⟨xj⟩ is the two-point truncated

correlation function and the average ⟨xi⟩ is the one-point function. It is a good

exercise to compute the third order derivative (with respect to λi, λj , λk) to see

what kind of truncated correlation function is obtained.

Finally we note that for binary variables (e.g., xi ∈ {0, 1} or si ∈ {+1,−1} as
is the case for a lattice gas, an Ising spin system, coding or SAT) the marginals

νi(xi) can be recovered from the averages ⟨xi⟩. For example, for xi ∈ {0, 1}
we have ⟨xi⟩ = 0.νi(0) + 1.νi(1) = νi(1) and from the normalization condition

νi(0) = 1 − ⟨xi⟩. For si ∈ {+1,−1} we have ⟨si⟩ = νi(1) − νi(−1) and 1 =

νi(1) + νi(−1), thus νi(1) = 1
2 (1 + ⟨si⟩), νi(−1) = 1

2 (1 − ⟨si⟩). Similarly one

can reconstruct νi,j(xi, xj) from one and two-point correlation functions (see

exercises).

Magnetization

An observable that plays a specially important role in Ising spin systems is the

magnetization of a spin configuration mn(s) =
1
n

∑
i∈V si. The average magneti-

zation (also simply called magnetization) is the expectation with respect to the

Gibbs distribution.

m(β) ≡ ⟨m(s)⟩ = 1

n

∑
i∈V

⟨si⟩. (2.29)

According to the remarks of the previous paragraph, when the Hamiltonian con-

tains a term h
∑

i∈V si the average magnetization can be obtained as a derivative

of the free energy with respect to the magnetic field,

m(β) = − 1

β

∂

∂h
lnZ = − ∂

∂h
f(β) (2.30)

In general one can always add an infinitesimal magnetic field to the Hamiltonian,

differentiate the free energy, and finally set this additional field to zero.

As a last remark we note that for certain models with a symmetry between

sites it is often the case that ⟨si⟩ is independent of i, so that ⟨m(s)⟩ = ⟨si⟩.
For example if we replace the square grid by a complete graph in the Ising

model and take interaction constants independent of edges and vertices we have
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a permutation symetry between sites, so ⟨si⟩ is obviously independent of i. This

is the Curie-Weiss model treated in chapter 4.

2.5 Thermodynamic limit and notion of phase transition

The regime of validity of statistical mechanics is the thermodynamic limit, namely

the asymptotic limit of large systems where the number of degrees of freedom

tends to infinity, n → +∞. This is also the limit in which sharp phase transi-

tions are well defined. Here a provide a first rather informal discussion of these

concepts, which we will encounter again in coding, compressive sensing and con-

straint satisfaction, and which will be defined more precisely on a case by case

basis.

Thermodynamic limit

For reasonably well defined models we expect that lnZ, S(β) and ⟨H(x)⟩ all scale
like n, for large n. Such quantities are called extensive. Their thermodynamic

limit, if it exists, is defined as

f(β) ≡ lim
n→+∞

1

n
lnZ, s(β) ≡ lim

n→+∞

1

n
S(β), e(β) ≡ lim

n→+∞
⟨H(x)⟩

(2.31)

Taking the limit of (2.11) we obtain

f(β) = e(β)− β−1s(β) . (2.32)

Relations (2.17), (2.18), (2.19) are also true for the limiting quantities scaled by

1/n, provided one can permute d/dβ and limn→+∞. This is the case as long as

f(β), s(β) and e(β) are ”sufficiently smooth“ functions of β. The issue here is a

real one and is connected to the subject of phase transitions.

The thermodynamic limit for the correlation functions and the Gibbs distri-

bution itself is not a simple matter. One cannot simply use the definition (2.7)

and naively take the limit n→ +∞ since the numerator and denominator both

tend to infinity (generically exponentially fast). So what is the meaning of the

Gibbs distribution in the thermodynamic limit? One way to proceed would be

to compute all marginals for finite n and only then take their limits,

lim
n→+∞

νi(xi), lim
n→+∞

νi,j(xi, xj), lim
n→+∞

νi,j,k(xi, xj , xk), . . . (2.33)

The limiting Gibbs distribution can then be defined as the distribution with has

this set of marginals. Because of phase transition phenomena such limits are not

always defined in a unique way.
Say more here?
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Phase transitions

Let us now say a few words about phase transitions, a subject to which we

will come back in due course. The free energy f(β) is always a continuous and

convex function of β. To see this note that for finite n, F (β)/n is an analytic and

convex function of β. Convexity can be seen from the positivity of the variance

of the Hamiltonian in (2.19). Moreover the limit of a sequence (indexed by n) of

continuous convex functions is continuous and convex, thus f(β) is continuous

and convex (provided this limit exists!). However such a general argument cannot

guarantee more than continuity, and indeed the limiting free energy f(β) may

develop non-analyticities. Such non-analytic points on the β axis are called phase

transition points or thresholds. Typically these points are isolated and correspond

to lack of differentiability at some order.8

Points where the first derivative of f(β) has a jump are called first order

phase transition points; those where the first derivative is continuous but the sec-

ond derivative is discontinuous are called second order phase transition points.9.

Phase transitions of higher order are also possible: a phase transition of n-th

order is one where the first n − 1 derivatives of f(β) are all continuous but the

n-th has a jump discontinuity. This classification of phase transitions is due to

Ehrenfest and dates back to the early days of statistical physics. We stress that

this is not the only possible classification, nor the most modern one, however it

is one that will suit our needs quite well.

Temperature is not the only parameter with respect to which the free energy

can be non-differentiable. For example in the canonical Ising model there are

first order phase transitions with respect to the magnetic field h. This helps

us understand the statement made above about the non-unicity of the Gibbs

distribution in thermodynamic limit. Indeed we saw that the magnetization is

obtained as the derivative of the free energy with respect to h; thus since at a first

order phase transition point this derivative is discontinuousm the magnetization

can take two distinct values, which means that one should define two one-point

marginals and hence two limiting Gibbs distributions. Hence typically at a first

order phase transition point we expect non-unicity of the limiting marginals and

Gibbs distribution.

In Chapter 4 we solve explicitly useful toy models - the Curie-Weiss model and

the Ising model on a tree - which will allow us to discuss phase transitions more

concretely. Furthermore a mini-review of the phase transitions in the canonical

Ising and lattice gas models is found as an aside at the end of that Chapter 4.

8 More exotic such as for example an essential singularity, where all derivatives exist but the

Taylor expansion does not converge, are possible, but will not be encountered in our
problems.

9 Such points necessarily form a set of measure zero by a theorem of Alexandrov on limits of

convex functions
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2.6 Spin glass models - random Gibbs distributions

In the next chapter we will see that our three problems, coding, compressive

sensing and satisfiability, can be formulated as a particular class of statistical

mechanics models, the so-called spin glass models. In this paragraph we provide

a first glimpse on the very large and subtle topic of spin-glasses.

One of the ambitions of statistical mechanics is to describe the rich variety of

”phases“ of condensed matter, e.g, gases, liquids, crystalline solids, metals, in-

sulators, semi-conductors, superconductors, superfluids, magnetism, liquid crys-

tals, polymers, glasses, emulsions etc. In this list, ”ordinary glass“, although

empirically known and manufactured since very ancien times, is scientifically ill-

understood and is arguably one of the most intriguing phases of matter. Ordinary

glass is an amorphous material where the geometrical arrangement of atoms is

frozen as in a solid, but at the same time is irregular as in a liquid. It is believed

that in a sense ordinary glass is a “frozen liquid” with a viscosity so huge that

it does not flow for all practical purposes. There also exist magnetic materials

which have a glassy behaviour with their magnetization responding very slowly

to external magnetic fields. Here we will not dwell on the various physical types

and properties of glassy materials and we only limit ourselves to simple models.

Spin glass models are Ising or generalized spin systems (e.g., (2.2), (2.3)) with

random interaction constants.10

example 6 The usual Edwards-Anderson model has Hamiltonian (2.2) with

random i.i.d Bernoulli coupling constants, P(Jij = ±J) = 1/2, and hi = h is

constant. In another variant one can take iid Gaussian coupling constants. The

analysis of this model is still far from being rigorously understood. □

example 7 The random field Ising model also has Hamiltonian (2.2), but now

the interaction is constant Jij = J > 0 and the magnetic field is i.i.d Bernoulli,

P(hi = ±h) = 1/2 This is also a very non-trivial and open questions remain. □

example 8 In the Sherrington-Kirkpatrick model G is the complete graph on

n vertices with n(n − 1)/2 edges (like in the Curie-Weiss model). The coupling

constants Jij are iid Bernoulli with P(Jij = ±J/
√
n) = 1/2 or i.i.d Gaussian

N (0, J
2

n ). The magnetic field is generally taken constant. The scaling of the

coupling constants by 1
√
n is necessary in order to have fluctuations of O(

√
n)

for the Hamiltonian on the complete graph. The analysis of this model in Chapter

7 will serve us well as a steping stone towards compressed sensing. □

Variants of these models use other distributions for the interaction constants,

for example Gaussians. One can also take more complicated models with more

general interactions, e.g. JA’s in (2.3) may be random variables, or the underlying

10 Such models where first introduced in the 1970’s in an attempt to capture glassy
properties of magnetic materials, the idea being that their glassy behavior is related to
physical interactions of varying intensity and sign between magnetic moments, and it was

proposed that these interactions be modelled as random variables.
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graph may be random. The study of spin glass models has turned out be very

non-trivial and has been a source of many fundamental concepts in statistical

mechanics of so-called disordered systems. Fortunately, the spin glass models that

will be relevant for our three problems are defined on complete or locally tree-

like graphs and as we will see the absence of “low dimensional geometry” makes

them somehow much easier to study than the Edwards-Anderson and random

field Ising model. easier to study.

The Gibbs distribution associated to a spin glass Hamiltonian has two levels

of randomness. First we have the randomness of the Hamiltonian itself, i.e. the

interaction constants or the underlying graph. Once the Hamiltonian is sampled

from a specified ensemble we have a fixed instance of a Gibbs distribution which

is a probability distribution over the spin (or lattice gas) variables. So the study

of spin glass models is the study of ensembles of random Gibbs distributions.

A word about some standard terminology is in order here.11 The random in-

teraction constants JA of the Hamiltonian are called quenched variables because

once the instance is specified they are fixed or ”frozen“ once for all. The spin or

lattice gas degrees of freedom s1, . . . , sn or x1, . . . , xn are called annealed vari-

ables because they ”adapt“ themselves into typical configurations of the Gibbs

measure.

A word about notation is also in order. It is very convenient to have two sep-

arate notations to distinguish averages with respect to quenched and annealed

variables. The expectations with respect to the Gibbs distribution are always

denoted by the bracket ⟨−⟩ and those with respect to the quenched variables by

E with possible subscripts describing the ensemble. Thus if A(x) is an observable

(say the magnetization) the total average over annealed and quenched variables

is denoted E[⟨A(x)⟩]. Let us insist on two elementary facts. First, ⟨A(x)⟩ is a ran-

dom object depending on all quenched variables. Second, it would be meaningless

to permute the two expectations E and ⟨−⟩.
Quenched randomness is ubiquitous in many engineering optimization prob-

lems where one has to deal with particular instances that belong to a model

ensemble. This is the point of view that we took in the definition of the coding,

compressive sensing and satisfiability problems. As we will see in the next Chap-

ter, once an instance of the ensemble is specified, the Gibbs distribution appears

quite naturally in the mathematical formulation. So in a sense the connections

between our models and the statistical mechanics of spin glasses is not surpris-

ing; in fact they are very natural. Such connections have been recognized since

the 1970’s for various computer science problems, e.g., the travelling salesman,

graph partionning, and neural networks (see the notes for references).

11 This terminology comes from the manufacturing process of ordinary glass.
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2.7 Gibbs distribution from Boltzmann’s principle12

We already pointed out that here is no unique way to introduce the Gibbs dis-

tribution. Rather, as with any physical law, it has to be guessed from experi-

ments, plausible assumptioms, and modeling, which all lead to conclusions that

are experimentally validated. From a physical point of view the maximum en-

tropy principle is perhaps not very satisfying because Shannon’s entropy is not

a “primary” physical or at least “simple” quantity. In this section we provide a

derivation, based on two basic principles, and which is perhaps closer in spirit

to the original ones by Maxwell, Boltzmann, Gibbs, Einstein and others in the

early 20-th century.

For concreteness the reader may keep in mind the lattice gas model throughout

the arguments of this section. We suppose that the particles have a dynamics

with “trajectories on the lattice,” xi(t), i = 1, . . . , n, parametrized by time t.

Uniform microcanonical measure

Let [0, T ] be the time interval over which we measure an observable quantity

A(x(t)) and let τ be a characteristic microscopic time scale, for example the

time scale on which a single particle jumps from a position to a neighboring one.

In practice we have T ≫ τ , so we think as T being very large (T/τ → +∞).

For an isolated system the energy is conserved. Thus during the measurement

interval the state of the system x(t) will wander across the energy surface ΓE ⊂
{0, 1}|V | = {x | H(x) = E}. Let t(x)/T be the fraction of time it spends in state

x.

Our first principle states that when T ≫ τ , the fraction of time t(x)/T spent

in state x, is given by the uniform distribution on the energy surface ΓE . In other

words for t(x)/T we take,

µE(x) =
1(x ∈ ΓE)

W (E)
(2.34)

where the normalization factor is

W (E) =
∑

x∈{0,1}|V |

1(x ∈ ΓE). (2.35)

The measure (2.34) is called the microcanonical distribution. In words the first

principle states that an isolated system spends an equal fraction of time in all

states of belonging to the energy surface.

A fundamental consequence is that we can replace time averages of observables

by configurational averages,

1

T

∫ T

0

dtA(x(t)) ≈
∑

x∈{0,1}|V |

µE(x)A(x), T ≫ τ (2.36)

12 This section is not needed for the main development and can be skipped in a first reading.
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The idea here is that an experiment (or a measurement) returns a time average

(the left hand side) and that as theoreticians we can compute this average from

the microcanonical average (the right hand side). In particular we can esssentially

ignore the underlying microscopic dynamics.

Often equ. (2.36) is formalized and called the ergodic hypothesis. The ergodic

hypothesis states that the dynamics exactly satisfies this identity in the limit

T → +∞, for almost all initial conditions x(0) (note that the right hand side

does not depend on the initial condition). Although the ergodic hypothesis has

played a very important historical and foundational role, it has never been proved

for macroscopic systems of interest in statistical mechanics. Its physical relevance

is also not completely clear, and as such the hypothesis does not explicitly specify

the relevant class of observables, initial conditions, and relation between system

size and time scales. Nevertheless, the ergodic hypothesis has developped into

a beautiful branch of mathematics (ergodic theory) for dynamical systems with

few degrees of freedom.

Boltzmann’s principle

Consider the normalization W (E) of the microcanonical measure. Generically

this has an exponential behavior in the number of degrees of freedom. The Boltz-

mann entropy is defined as

SB(E) = lnW (E). (2.37)

This is a purely combinatorial object in the sense that W (E is the number of

microscopic states belonging to the energy surface ΓE .

example 9 Let us consider the lattice gas model introduced in the previous

example for the non-interacting case J = 0. Since the energy surface is the set

ΓE = {x |
∑n

i∈1 xi = E/µ} there must be E/µ lattice nodes with xi = 1 among

a total of n sites. Hence

W (E) =

(
n

E/µ

)
≃ exp

(
nh2

( E
µn

))
, (2.38)

where h(u) = −u lnu− (1−u) ln(1−u) is the binary entropy function expressed

with the natural logarithm. In the thermodynamic limit we obtain

s(e) = lim
n→∞
E/n=e

1

n
SB(E) = h

(
e

µ

)
, (2.39)

where e = E/n is the energy per particle. In this simple example the entropy s(e)

is a concave function of e. For physically sensible Hamiltonians the Boltzmann

entropy must be concave; but this is not always the case in computer science and

coding problems where the cost functions are not necessarily physical. □

There is a purely thermodynamic and experimentally measurable notion of

entropy elucidated in the 19-th century, along with the notions of heat and
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work, by Carnot, Clausius, Joule, Helmholtz, Kelvin and others. For a system in

thermodynamic equilibrium with homogeneous temperature T and pressure p,

the thermodynamic entropy Sther(E, V ) is a function of the total energy E and

volume V satisfying

∂Sther

∂E
=

1

T
,

∂Sther

∂V
=
p

T
. (2.40)

From T and p one can in principle recover Sther. The units of Sth are Joules per

degree Kelvin.

Boltzmann’s principle postulates equality of the thermodynamic and Boltzmann

entropies,

Sther = kB lnW (E) . (2.41)

Here, kB is Boltzmann’s constant with units of Joules per degree Kelvin (this

constant is needed because we defined SB as a pure number). Boltzmann’s prin-

ciple is one of the most far reaching laws of physics: it identifies a thermodynamic

measurable quantity with a purely combinatorial counting object.13 Combining

this identity with the first equation in (2.40) we get

∂SB
∂E

=
1

kBT
. (2.42)

In the next paragraph we will see that this identification is a crucial ingredient

in the derivation of the Gibbs distribution.

Derivation of the Gibbs distribution

The microcanonical distribution (2.34) only characterizes an isolated system with

fixed energy E. However, real macroscopic systems are not isolated. One should

also notice that in practice, in order to reach thermal equilibrium it is necessary

to put systems in contact with a “thermal bath,” i.e., an infinite reservoir at a

constant temperature.

For simplicity, we take the lattice gas as our big reservoir and suppose it

is isolated with total energy E. The real system of interest is a much smaller

but still macroscopic system Σ ⊂ V (see Figure 2.3). We label the degrees of

freedom in Σ as (x1, . . . , xm) and those outside Σ by (xm+1, . . . , xn). The regime

of interest is 1 ≪ m ≪ n. We are interested in computing only averages of

observables A(x1, . . . , xm) which depend on the degrees of freedom of the smaller

system Σ. Of course we can compute them with the microcanonical distribution

µE(x1, . . . , xn) =
1((x1, . . . , xn) ∈ ΓE)

W (E)
, (2.43)

but clearly, since the observable depends only on x1, . . . , xm, we only need the

marginal of this distribution over the degrees of freedom of Σ.

13 Even that matter is constituted of discrete entities that can be counted, atoms and

molecules, was far from universally accepted in Boltzmann’s days.
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S

Λ

∂S

Figure 2.3 The system S is embedded in a thermal bath V . The total system V is
considered as an isolated system and its total energy E is conserved. We compute the
induced measure on S.

We now show that the marginal of (2.34) is the Gibbs distribution with inverse

temperature 1
kBT = ∂SB(E)

∂E . This is the temperature of the thermal bath.

The marginal distribution for Σ reads

µΣ(x1, . . . , xm) =
∑

xm+1,...,xn

µE(x1, . . . , xn)

=

∑
xm+1,...,xn

1((x1, . . . , xn) ∈ ΓE)∑
x1,...,xn

1((x1, . . . , xn) ∈ ΓE)
. (2.44)

The total energy E is a sum of the energy inside Σ, the energy outside Σ and an

interaction part between the inside and the outside,

E = H(x1, . . . , xn) = HΣ(x1, . . . , xm) +HV \Σ(xm+1, . . . , xn) +Hint. (2.45)

Generically HΣ is of order m (the volume of Σ), HV \Σ is of order n −m (the

volume of the outside of Σ) and Hint is of order the surface of Σ. In d dimen-

sions the surface of Σ is of order m(d−1)/d << m << n − m, thus neglecting

the interaction in (2.45) we conclude that: if (x1, . . . , xn) belongs to the energy

surface ΓE then (xm+1, . . . , xn) belongs to the energy surface ΓE−HΣ(x1,...,xm
).
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With these remarks (2.44) becomes

µΣ(x1, . . . , xm) =

∑
xm+1,...,xn

1((xm+1, . . . , xn) ∈ ΓE−HΣ(x1,...,xm))∑
x1,...,xm

∑
xm+1,...,xn

1((xm+1, . . . , xn) ∈ ΓE−HΣ(x1,...,xm))

=
exp(SB(E −HS(x1, . . . , xm))∑

x1,...,xm
exp(SB(E −HΣ(x1, . . . , xm))

=
exp(SB(E)−HΣ(x1, . . . , xm) ∂

∂ESB + . . . )∑
x1,...,xm

exp(SB(E)−HS(x1, . . . , xm) ∂
∂ESB + . . . )

=
exp (−HΣ(x1, . . . , xm)/kBT )∑

x1,...,xm
exp (−HΣ(x1, . . . , xm)/kBT )

,

The second equality uses the definition of the Boltzmann entropy. The third

equality uses a Taylor expansion to first order (since n ≫ m implies E ≫
HΣ(x1, . . . , xm)). The last equality is the point where Boltzmann’s principle

is used. The final result is exactly the Gibbs distribution for the small system Σ

with a temperature equal to the one of the thermal bath.

This derivation shows that the Gibbs distribution and the microcanonical dis-

tributions are “equivalent” in the sense that we can compute the average of

the observable A(x1, · · · , xm) directly from one or the other distribution. This

is related to the subject of “equivalence of ensembles” in statistical mechanics:

the microcanonical distribution (also called the microcanonical ensemble) and

the Gibbs distribution (also called the canonical ensemble) are equivalent. For

this equivalence to hold an important assumption was that the interaction Hint

between the system and its complement can be neglected. For physical finite

dimensional systems with local interactions (finite range or fast decaying with

distance) between particles this is not a problem.14 However if one deals with

“infinite dimensional” systems (meaning that d→ +∞ or that the graph G can-

not be metrically embedded in a finite dimensional space) this assumption breaks

down. In our coding, compressed sensing and satisfiability problems the under-

lying graphs are in a sense infinite dimensional and the equivalence of ensembles

does not hold.

2.8 Notes

The ambition of statistical mechanics is to explain the great variety of phases of

condensed matter, their properties and the transitions among the phases. One

can easily imagine this is a rich and huge discipline just by contemplating a far

from exhaustive list of examples of phases of matter: gases, liquids, solids, metals,

plasmas, magnets, insulators, superfluids, superconductors, Bose-Einstein con-

densates, crystals, quasi-crystals, emulsions, glasses etc. Experimentalists keep

on finding new phases, e.g., by lowering the temperature and/or increasing the

14 Physical systems where this breaks down are gravitational systems.
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pressure. The subject is more than a hundred years old and the present chapter

has of course not even scratched its surface. We only give some pointers to a

small subset of classic texts.

For the reader interested by the rich and fascinating history of statistical me-

chanics, as well as the debates on foundational issues, we recommend (Brush

1983). The derivation based on the maximum entropy principle goes back to

(Jaynes 1957). Good introductions to statistical physics are (e.g Schroeder 2000,

Thompson 1988); a more advanced and classic graduate level text is (Huang

1987). For treatises with emphasis on foundational issues see (e.g. Penrose 2005,

Gallavotti 1999). The Ising model, which was introduced in 1928 by Lenz and

Ising, has a long and distinguished history reviewed in (Brush 1967). More gener-

ally, the class of spin models on regular lattices forms an unavoidable portion of

the discipline and their study has led to a large body of mathematically rigorous

results precisely defining and characterizing the notions of “phases” and “phase

transition”. A comprehensive treatise is (Simon 1993). Statistical mechanics of

disordered systems is a subject of its own; and “glass” is just one example of

disordered system. In the seventies spin glass models where put forward to in-

vestigate the special types of behavior and phase transitions that occur in this

area, see (Fisher & Hertz 1991). Many of the techniques developed in this course

have their origin in the replica and cavity theories of so-called “mean field” spin

glass models such as the SK model. The classic reference covering the body of

work spanning the seventies and eighties is (Mézard et al. 1987a). Connections

to neural networks, graph partionning and other optimization problems are also

found in this reference. In recent years there has been a lot of progress in the

mathematically rigorous aspects of the theory (Talagrand 2011).

Problems

2.1 Gibbs distribution. Give the details of the derivation leading to (2.7)

and (2.8).

2.2 Energy fluctuations. Derive the formula (2.19) for energy fluctuations.

2.3 Positivity of Kullback-Leibler divergence. Prove in two different

ways that DKL(p||q) ≥ 0 with equality if and only if p(x) = q(x) for all x. Hint:

use lnu ≤ u− 1 for u > 0 or the convexity of f(u) = u lnu.

2.4 Correlation functions from derivatives of partition function.

Check the formulas (2.28) and also

∂3

∂λiλjλk
lnZ(λ)|λ=0 =⟨xixjxk⟩ − ⟨xixj⟩⟨xk⟩ − ⟨xjxk⟩⟨xi⟩

− ⟨xixk⟩⟨xj⟩+ 2⟨xi⟩⟨xj⟩⟨xk⟩

2.5 Marginals for binary spins. Consider any spin system with binary

variables si ∈ ±1. Express the marginals νi(si) and νi,j(si, sj) in terms of the

averages ⟨si⟩, ⟨sj⟩ and ⟨sisj⟩.
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2.6 Ising model in one dimension: transfer matrix method. The aim

of this problem is to solve the one-dimensional Ising model by the transfer matrix

method. The Hamiltonian of the one-dimensional Ising model on a ring (circle)

with n sites

H = −J
n−1∑
i=1

sisi+1 − Jsns1 − h
n∑

i=1

si

Consider the “transfer matrix”

T =

(
eβJ+βh e−βJ

e−βJ eβJ−βh

)
(i) Show that the partition function can be expressed as ZN = tr (Tn) where tr

is the sum over eigenvalues (the trace).

(ii) Find the eigenvalues of T and show that the free energy per spin is in the

thermodynamic limit

f(β, h) = −β−1 ln[eβJ cosh(βh) + (e2βJ sinh2(βh) + e−2βJ )1/2].

(iii) Compute the magnetization (the easiest way is to use (2.30)) and plot it m

as a function of h for various values of β. Convince yourself both on the plot and

from the analytic formula that this curve does not display a phase transition for

any temperature T > 0.



3 Formulation of Problems as Spin
Glass Models

The three problems introduced in Chapter 1 can be reformulated in a statistical

physics language. Both coding and compressive sensing are inference problems,

and from a Bayesian point of view Gibbs distributions appear quite naturally.

For the random satisfiability problem, which is not an inference problem, the

Gibbs distribution may seem less natural. The simplest and perhaps most nat-

ural distribution that one would settle to study is the uniform one over the set

of all satisfying assignments.1 However, given a formula, the set of satisfying as-

signments is not known and even worse, we y do not know if it is empty. So it is

difficult to get a handle (or even define) the uniform distribution, and instead we

introduce a Gibbs distribution which has the advantage of being well defined for

all formulas. One hopes to get a good approximation of the uniform distribution

when the inverse temperature β tends to infinity.

In all cases we end up with spin glass models. What do we mean by this? Take

for example the coding or satifiability examples. We can think of the bits which

are to be transmitted, or the Boolean variables which take one of two possible

thruth values, as spins. This explains why we talk about spin systems. In com-

pressed sensing the signal components are continuous and this model falls in the

class of systems with “continuous spins”. Thus the microscopic “spin” degrees of

freedom are bits, Boolean variables or signal components. Moreover each problem

has its own cost function or Hamiltonian over the spin assignments. We already

encountered two such cost functions in compressive sensing and satisfiability (see

Equs. (1.10) and (1.13)). But where is the “glass”? In coding the way we have

defined our code ensemble, a parity check constrains a random subset of the bits

so the graph and interactions are random. The same is true for satisfiability.

In compressed sensing the measurement matrices are random which results in

random interaction constants between the continuous spins (note that the graph

itself is not random but bipartite complete). In all our models the randomness

is quenched: once we pick an instance from the appropriate ensemble we have a

fixed Gibbs distribution. In this sense our models fall in the general category of

“spin glass models”.

To summarize, our reformulations will lead us to random Gibbs distributions

or spin glass models. For each problem we will identify a Hamiltonian function

1 In a sense this distribution is a microcanonical measure introduced in Sec. 2.7.
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over “spins” with underlying graphs and interaction constants belonging to a

random ensemble.

3.1 Coding as a spin glass model

Let C be a code from Gallager’s (dv, dc) ensemble of block length n. Recall that

dv is the degree of variable nodes, dc is the degree of check nodes, and n is the

number of variable nodes. We have ndv = mdc where m is the number of parity

checks.

Assume that we transmit the codeword x = (x1, . . . , xn) through a binary,

memoryless symmetric channel without feedback, and let y = (y1, . . . , yn) be

the received word. We will use the spin variable notation for the codebits. This

means that we write si = (−1)xi (or si = 1− 2xi). The channel is described by

transition probabilities

p(y|s) =
n∏

i=1

p(yi|si) (3.1)

The three examples of channels to which we will refer most often are the BEC,

BSC, and BAWGNC introduced in Sect. 1.1. While (for us) the input alphabet

is always binary, the received symbols live in discrete or continuus alphabets

depending on the channel. To have a unified discussion we sometimes abuse

notation and use the generic summation symbol
∑

y to mean “sum” or “integral”

over the alphabet of received bits.

We will assume that the transmitted (input) codeword sin is selected uniformly

at random from C. Thus the joint distribution for (s, y) is p(y|s)1(s ∈ C)/|C| and
the posterior probability distribution of s given the received word y is

p(s | y) =
p(y|s)1(s∈C)∑
s p(y|s)1(s∈C)

. (3.2)

MAP decoding

Let ŝi(y) be a decoding estimate (based on all channel outputs) for the i-th bit.

Since sin is picked uniformly at random from the code, the probability that bit

i is wrongly decoded, called bit probability of error, is

1

|C|
∑
sin∈C

P[ŝi(Y ) ̸= sini ]. (3.3)

Thus we define average bit probability of error as

Pb =
1

n

n∑
i=1

1

|C|
∑
sin∈C

P[ŝi(Y ) ̸= sini ] (3.4)
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As explained in Chapter 1, a central task is to compute the average bit probability

of error for various codes and decoders, and satisfy various performance and

complexity requirements.

Among all possible estimators the bit-MAP estimate (MAP stands for “maxi-

mum a posteriori”) wil play an important role. By definition

ŝMAP
i (y) = argmaxsi νi(si|y) (3.5)

where νi(si|y) is the marginal of the posterior p(s|y). This estimator is optimal in

the sense that it minimizes the “bit probability of error” (see below for a proof).

However, in general, we do not have low complexity algorithms to compute it

efficiently. Nevertheless we will see that it has a very natural interpretation in

terms of the “magnetization” of a spin glass model. Even more interestingly, in

Chapter 10 we will discover through such connections that it is intimately related

to other low complexity estimators.

Although we will not deal much with it, we mention the block-MAP estimate

and the associated block probability of error

ŝMAP(y) = argmaxs p(s | y), PB =
1

|C|
∑
sin∈C

P[̂s(Y ) ̸= sin].

The block-MAP estimator is also optimal in the sense that among all possible

block estimators it minimizes the block probability of error PB . We will see

that block-MAP decoding is equivalent to finding the minimum energy states

of a Hamiltonian. We will also see that there is a natural “finite temperature”

decoder which interpolates between the bit-MAP and block-MAP decoders.

Before proceeding let us prove an important fact, namely that the bit-MAP

estimator is optimal. This is most easily seen from the following representation

for the bit probability of error,2

1

|C|
∑
sin∈C

P[ŝi(Y ) ̸= sini ] =
1

|C|
∑
sin∈C

∑
y

p(y|sin)1(ŝi(y) ̸= sini )

=
∑
y

p(y)
∑
s

p(s|y)(1− 1(ŝi(y) = si))

= 1−
∑
y

p(y)
∑

si=±1

νi(si|y)1(si = ŝi(y))

= 1−
∑
y

p(y) νi(ŝi(y)|y).

Clearly, the last expression shows that the choice (3.5) for ŝi(y) minimizes the

bit probability of error (3.3). The optimality of the block-MAP estimate is left

as an exercise for the reader.

2 Here p(y) ≡
∑

s p(y|s)1(s∈C)/|C|.
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The posterior distribution as a spin glass model

We now show that the posterior distribution p(s | y) is a random Gibbs distribu-

tion. Recall that a code is represented by a bipartite factor graph with variable

nodes i = 1, . . . , n and checks3 a = 1, . . . ,m; like in Fig. 1.1. We call ∂a the set

of variable nodes connected to check a. A code word x has to satisfy all parity

check constraints
∑

i∈∂a xi = 0, a = 1, . . . ,m. In spin language this is equivalent

to
∏

i∈∂a si = 1 for all checks. Thus the prior distribution over codewords can

be written as

1(s ∈ C)
|C|

=
1

| C |

m∏
a=1

1

2
(1 +

∏
i∈∂a

si). (3.6)

Replacing the channel law (3.1) and (3.6) in the posterior (3.2) we get

p(s|y) =
∏n

i=1 p(yi|si)
∏m

a=1
1
2 (1 +

∏
i∈∂a si)∑

s

∏n
i=1 p(yi|si)

∏m
a=1

1
2 (1 +

∏
i∈∂a si)

(3.7)

Now we divide the numerator and denominator by
∏n

i=1 p(yi| − 1) and use

p(yi|si)
p(yi| − 1)

= ehisi+hi (3.8)

where we have introduced the loglikelihood variable4 associated to channel ob-

servation yi

hi =
1

2
ln
p(yi|+ 1)

p(yi| − 1)
. (3.9)

This yields our final representation

p(s|y) = 1

Z

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)
n∏

i=1

ehisi (3.10)

where the normalizing factor in the denominator is

Z =
∑
s

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)
n∏

i=1

ehisi . (3.11)

It is equivalent to describe the channel outputs by h = (h1, . . . , hn) or y =

(y1, . . . , yn). We will often interchange them in our notations when this does not

lead to ambiguities. For example we can write p(s|y) = p(s|h) for the posterior.

For the transition probability of the memoryless channel we have to be more

careful. In terms of loglikelihood variable we denote it c(hi|si), and formally

p(yi|si)dyi = c(hi|si)dhi (3.12)

3 We will usually denote variable nodes by letters i, j, k, . . . and parity checks by a, b, c, . . .
4 In the coding theory literature (or in statistics) it is usual to define likelihood variable

without the factor 1/2. Here the “1/2” yields a somewhat nicer connection to statistical

mechanics quantities. The loglikelihood is analogous to a “magnetic field”.
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(by conservation of mass). The explicit expressions of c(hi|si) for the BEC, BSC
and BAWGNC are found in example 10.

The posterior (3.10) is a random Gibbs distribution, or in other words a spin

glass model. Here the word “random” relates to the randomness of the channel

outputs as well as the choice of code or factor graph. For each channel realization

h and each code C picked from an ensemble (say Gallager’s ensemble) we have

a distribution over the spins s ∈ {−1,+1}n. In the terminology of physics the

randomness associated with the code (or factor graph) and channel realisations

is “quenched”. This is because in a given experiment (here the transmission and

reception of a message) the code and channel realisations are fixed, or frozen.

The spins on the other hand are “annealed” degrees of freedom which fluctuate

and adapt themselves in typical configurations.

What are the distributions of the quenched randomness? The distribution

over the codes is the uniform distribution over Gallager’s ensemble. For the

configuration model introduced in Chapter 1 this is the uniform distribution

over all permutations among ndv sockets. Expectations with respect to codes of

the ensemble are denoted EC . The channel outputs are distributed according to

c(h|sin) when sin is the input codeword, and the correspondings expectations are

denoted Eh|sin . Averages over all quenched variables (both the code and channel

outputs) are generically denoted by E.
This is a good point to recall (see Sect. 2.6) that averages with respect to the

Gibbs distribution are denoted by the bracket ⟨−⟩, and are distinguished from

expectations E over quenched variables. These two averages cannot be exchanged.

What is the Hamiltonian corresponding to the Gibbs distribution (3.10)? To

answer this question it is enough rewrite this expression as e−βH(s)/Zβ . If we set

β = 1 we have

H(s) =
m∑

a=1

ln
{1
2
(1 +

∏
i∈∂a

si)
}
−

n∑
i=1

hisi (3.13)

Setting β to a different value would simply amount to scale the Hamiltonian by

the inverse of that value. The Hamiltonian has two parts. The second part is

a magnetic field term, where the magnetic fields hi are i.i.d random variables

distributed according to c(hi|sini ). The first part is a sum of interactions between

spins involved in a parity check. If a parity check is satisfied ln{. . . } = 0 and there

is no energy cost; if a parity check is violated ln{. . . } = +∞ and there is infinite

energy cost. Equivalently, the interaction terms can also be represented as Ja(1−∏
i∈∂a si) with Ja formally equal to +∞. Summarizing, the posterior distribution

used in bit-wise MAP decoding can be thought of as a Gibbs distribution with

inverse temperature set to the special value β = 1 and Hamiltonian of the general

form (2.3).
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Bit-MAP decoder and magnetization

The bit-MAP decoder has a natural relation to the magnetization of the spin

glass. Indeed (3.5) is equivalent to

ŝMAP
i (h) = sign

(
νi(si = 1|h)− νi(si = −1|h)

)
= sign⟨si⟩ . (3.14)

So the bit-MAP estimate for the i-th bit is given by the sign of the (local)

magnetisation ⟨si⟩,

⟨si⟩ =
1

Z

∑
s

si

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)
n∏

i=1

ehisi

=
∂

∂hi
lnZ (3.15)

Using P[ŝMAP
i (h) ̸= sini ] = Eh|sin [1(ŝi(h) ̸= sini ) the average bit probability of

error (3.4) becomes

Pb =
1

n

n∑
i=1

1

|C|
∑
sin∈C

1

2

(
1− Eh|sin

[
sini sign(⟨si⟩)

])
. (3.16)

The BEC, BSC and BAWGNC have a special symmetry property which allows

to simplify this expression. In the next section we show that for a general class

of symmetric channels the terms in the sum (3.16) are independent of the input

word. For such channels there is no loss in generality to assume that the trans-

mitted word is sini = 1 for all i = 1, . . . , n, or equivalently xin = 0 the ”all-zero

codeword”. In conclusion for the class of symmetric channels (and a given code)

the average bit error probability is given by

Pb =
1

n

n∑
i=1

1

2

(
1− Eh|1

[
sign(⟨si⟩)

])
. (3.17)

where we recall that Eh|1 is the expectation with respect to c(h|sin = 1).

Interpolating between bit-MAP and block-MAP decoders

With Gibbs ddistributions in mind, it is natural to generalize the bit-MAP de-

coder by taking β ̸= 1. More precisely consider replacing the posterior with

pβ(s|h) = e−βH(s)/Zβ where the Hamiltonian is still (3.13) but β is general,

pβ(s|h) =
1

Zβ
e−βH(s) =

1

Zβ

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

eβhisi (3.18)

with the partition function Zβ the sum over all s ∈ {−1,+1}n of the numerator.

The general temperature decoder is then defined from the marginals of (3.18),

ŝi(h;β) = argmax νi,β(si|h) = sgn⟨si⟩β , (3.19)
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where the bracket ⟨−⟩β is the average with respect to (3.18). Obviously for β = 1

this is the bit-MAP decoder. Taking the limit β → +∞ it is not difficult to see

that sgn⟨si⟩β → argminH(s) or equivalently argmax p(s|h). Thus in the zero

temperature limit we recover the block-MAP decoder. For 1 ≤ β ≤ +∞ the

general temperature decoder interpolates between the bit-wise and block MAP

decoders.

3.2 Channel symmetry and gauge transformations

A binary input channel is said to be symmetric when the transition probability

satisfies p(yi|si) = p(−yi| − si). From (3.9) and (3.12) we note

c(h|1)
c(−h|1)

=
p(y|1)
p(−y|1)

=
p(y|1)
p(y| − 1)

= e2h

so that a symmetric channel can also be defined by the identity

c(−hi|1) = c(hi|1)e−2hi . (3.20)

example 10 For the BEC, BSC, BAWGNC we check explicitly that p(yi|si) =
p(−yi| − si). One also computes c(hi|1) and finds

c(h|1) = (1− ϵ)δ+∞(h) + ϵδ(h), BEC(ϵ)

c(h|1) = (1− ϵ)δ(h− ln
1− ϵ
ϵ

) + ϵδ(h− ln
ϵ

1− ϵ
), BSC(ϵ)

c(h|1) = 1√
2πσ−2

e−(h− 1
σ2 )2/ 2

σ2 , BAWGNC(σ2)

The identity (3.20) is explicit on these expressions. □

Let us now prove identity (3.17). Consider first Eh|sin
[
sini sign(⟨si⟩)

]
in (3.16).

The expectation Eh|sin is an integral over hi’s, and the bracket ⟨−⟩ contains sums

(in a numerator and denominator) over si’s. In the inetgrals and sums we may

perform the change of variables

si → τisi, hi → τihi, i = 1, . . . , n (3.21)

for any fixed code word τ ∈ C. Now we note two crucial facts. First, under

this transformation the posterior (3.10) remains invariant, and therefore ⟨si⟩ →
τi⟨si⟩, where ⟨−⟩ is the same expectation on both sides of the equality. Second,

because of channel symmetry Eτihi|sini = Ehi|τisini . Thus

Eh|sin
[
sini sign(⟨si⟩)

]
= Eτ⋆h|sin [s

in
i τisgn⟨si⟩] == Eh|τ⋆sin

[
sini τisign(⟨si⟩)

]
(3.22)

where we used the notation v ⋆ u for a vector with components viui, i = 1, . . . , n

(⋆ is known as the “Hadamard product”). Now, we can choose τ = sin which

implies Eh|sin
[
sini sign(⟨si⟩)

]
= Eh|1

[
sign(⟨si⟩)

]
as well as (3.17).

The idea of using the transformation (3.21) turns out to be very useful in
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the present framework. Since codewords τ ∈ C form a group,5 the set of such

transformations also forms a group. Moreover these transformations are local

in the sense that for each i the variables get multiplied by different factors.

Transformations with these two group and locality properties are ubiquitous in

modern physics and are generally called gauge transformations. In the present

context the invariance of the Gibbs distribution under gauge transformations can

be traced back to channel symmetry. The use of such transformations allows to

derive a number of useful consequences and identities. We will have the occasion

to derive them as we proceed with the theory, but some of them can be found

in the exercises. The independence of the error probability on the transmitted

codeword, proved here, is one of them.

It is important to note that the invariance of the Gibbs distribution under

gauge transformations is a consequence of the linearity of the code. For non-

linear codes such an invariance would typically not be present. Also, for the

random satisfiability problem where the constraints are “non-linear”, and there

is no obvious group structure, we do not have (or know) any useful gauge trans-

formations. This is one of the reasons why this problem is a much harder one.

3.3 Conditional entropy and free energy in coding

Without loss of generality we assume from now on that the all all-zero codeword

is transmitted. Thus we set sin = 1. The channel outputs are distributed as

p(y|sin = 1).

We explained in Chapter 2 that a lot can be learned from the free energy

− 1
n lnZ associated to the posterior (3.10) (recall β = 1 for bit-MAP decod-

ing). For example differentiating with respect to hi yields the magnetization ⟨si⟩
(see Equ. (3.15)). For spin glass models the free energy is random but concen-

trates in the thermodynamic limit n→ +∞. Although this can be non-trivial to

prove, we do have examples with effective proof techniques; these will be intro-

duced in Chapter 13. We are therefore primarily interested in average free energy

− 1
nE[lnZ] over the code ensemble and the channel outputs.

We will now show an important relation to the conditional entropy H(X|Y ),

i.e. the average entropy of the posterior p(s|y),

H(X|Y ) = −
∑
y

p(y|1)
∑
s

p(s|y) ln p(s|y) (3.23)

This relation shows that computing the average free energy or the conditional

entropy is basically equivalent. In part III we will develop powerful methods to

compute the average free energy, and this will automatically allow us to compute

5 In the bit language the group operation is of course the modulo two sum ⊕. In the spin

langugae it is the Hadamard product ⋆.
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the conditional entropy (averaged over the code ensemble) and in particular the

MAP threshold of the code ensemble.6

For transmission over a symmetric channel and any fixed linear code (not

necessarily an LDPC code) we have

1

n
H(X|Y ) =

1

n
Eh|1[lnZ]−

∫ +∞

−∞
dh c(h|1)h. (3.24)

Observe that this relation is valid for a fixed code. Of course it remains valid

when we further average over the code ensemble.

The last term in (3.24) depends only on the channel. For the BSC it is equal

to (1 − 2ϵ) ln 1−ϵ
ϵ and for the BAWGNC 1/σ2. For the BEC there is a little

ambiguity here. Formally
∫ +∞
−∞ dh c(h|1)h is infinite, but this infinity is cancelled

with another infinity in lnZ. Indeed the weight factors ehisi in Z diverge when

si = 1 and hi = +∞. To proceed more neatly one should redefine the partition

function replacing ehisi by ehisi−hi , so that the new Z is finite and the last term

in (??) is not present. This must in principle be done for any channel having a

non-zero weight on hi = +∞, but is more a nuisance than a real problem.

The proof of (3.24) is a good occasion to illustrate once a again the use of

gauge transformations and channel symmetry. Replacing (3.10) in (3.23)

H(X|Y ) =
∑
y

p(y|1) lnZ(y)−
∑
y

p(y|0)
∑
s

p(s|y) ln
{ m∏

a=1

1

2
(1 +

∏
i∈c

si)

}

−
∑
y

p(y|0)
∑
s

p(s|y)
n∑

i=1

hisi

= Eh|1[lnZ]−
n∑

i=1

Eh|1[hi⟨si⟩] (3.25)

To get the last equality we noticed that the second term vanishes because p(s|y)
is supported on code words and ln(1) = 0. Finally we replaced the expectation

wity respect to p(y|1) by Eh|1. To arrive at (3.24), it remains to show the identity

Eh|1[hi⟨si⟩] = Eh|1[hi] (3.26)

This is part of a whole class of relationships, called Nishimori identities, which

follow from gauge invariance and channel symmetry. We will encounter a number

of them in subsequent chapters. Using a gauge transformation si → τisi, hi →
τihi and the channel symmetry in the form c(τihi|1) = c(hi|1)ehiτi−hi we have

Eh|1[hi⟨si⟩] = Eτ⋆h|1[hi⟨si⟩]

= Eh1[hi⟨si⟩
n∏

j=1

ehjτj−hj ] (3.27)

6 Say that we will see this can be accessed from entropy or error prob.
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Summing over all code words τ ∈ C,

Eh1[hi⟨si⟩] =
1

|C|
Eh|1

[
hi⟨si⟩Z

n∏
j=1

e−hj

]

=
1

|C|
Eh|1

[
hi
∑
s

si

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
j=1

ehjsj−hj

]

=
1

|C|
∑
s

{
si

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)Eh|1

[
hi

n∏
j=1

ehjsj−hj

]}

=
1

|C|
∑
s

{
si

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)Ehi|1

[
hie

hisi−hi

]∏
j ̸=i

Ehj |1

[
ehjsj−hj

]}
(3.28)

The identity (3.26) then follows from

Ehi|1[e
hisi−hi ] = 1, Ehi|1[hie

hisi−hi ] = siEhi|1[hi] (3.29)

and
∑

s

∏m
a=1

1
2 (1+

∏
i∈∂a si) = |C|. Formulas (3.29) are trivial when si = 1. For

si = −1 that they follow from channel symmetry, c(−hi|1) = c(hi|1)e−2hi .

3.4 Compressive Sensing as a spin glass model

Recall that we are considering the model

y = Ax+ z, (3.30)

where the measurement matrix A is an m× n real valued matrix with i.i.d zero

mean Gaussian entries with variance 1/m, the noise z = (z1, . . . , zm) consists of

m i.i.d zero-mean Gaussian entries of variance σ2, and the signal x = (x1, . . . , xn)

consists also of n i.i.d entries distributed with the prior p0(x). We will assume

this prior belongs to the sparse class Fκ, that is

p0(x) = (1− κ)δ(x) + κϕ0(x) (3.31)

where 0 < κ < 1 and ϕ0 is a continuous positive and normalized density. The

expected number of non-zero entries in the signal is k = κn.

The conditional probability of observing y given x is

p(y | x) = 1

(2πσ2)n/2
e−

1
2σ2 ∥y−Ax∥2

2 , (3.32)

and the joint distribution, taking the prior into account, has the form

p(x, y) =
1

(2πσ2)n/2
e−

1
2σ2 ∥y−Ax∥2

2

n∏
i=1

p0(xi) . (3.33)

We discuss two scenarios. In the first one the prior is known, i.e., ϕ0 is known,

and in the second scenario which is more realistic the prior is not known but one
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knows that it belongs to the sparse class Fκ. In other words κ is assumed to be

known but not ϕ0. Furthermore we have in mind the regime of n,m→ +∞ with

κ = k/n and µ = m/n fixed.

Known prior: MMSE estimator

When the prior is known a reasonable way to estimate the signal is to use the

minimum mean square estimator (MMSE) estimator. This estimator is optimal

in the sense that it minimizes the mean square error (MSE). The MSE is a

functional

MSE(x̂(·)) = E[(x̂(Y )−X)2] (3.34)

defined over the ”space” of estimators x̂(y) : Rm → Rn. The expectation is with

respect to the joint distribution (3.33) and the entries of A. A standard exercise

shows that the minimum is attained by the MMSE estimator,7

x̂MMSE
i (y) = EX|y[Xi] =

∫
dnxxi p(x | y), i = 1, . . . , n, (3.35)

where

p(x|y) =
p(x, y)∫
dnx p(x, y)

(3.36)

is the posterior associated to (3.33). This estimator makes explicit use of the prior

p0(x). Analogously to the case of coding, we will shortly interpret the posterior as

a (random) Gibbs distribution and the MMSE estimator as a ”magnetization“.

Unknown prior: LASSO estimator

A popular choice for the estimator is the LASSO (least absolute shrinkage selec-

tion operator)

x̂LASSO(y) = argminx

{
1

2
∥y −Ax∥22 + λ∥x∥1

}
, (3.37)

where the real parameter λ has to be chosen suitably. Since the prior is unknown

natural guiding principle is to choose the best possible λ for the worse possible

prior. Formally we have to compute the so-called minimax risk,

inf
λ>0

sup
p0∈Fκ

E[(x̂LASSO(Y )−X)2] (3.38)

The expectation is again (like in (3.34)) over the joint distribution (3.33) and

the random matrix ensemble. Computing the minimax risk allows to fix λ in

a principled way, and the numerical value of the risk constitutes a reasonable

performance measure.

As explained in Chapter 1 it is not so easy to unambiguously justify a priori

7 We use dnu =
∏r

i=1 ui for any vector u = (u1, . . . , ur).
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the choice of the LASSO. For one thing, it has remarkable properties. In fact it

turns out that the variational problem (3.38) can be solved analytically exactly.

Quite remarkably we will find that, independently of the noise level, the minimax

risk is finite in the same region of parameters (κ, µ) for which ℓ0-ℓ1 equivalence

holds. At the boundary of this region the minimax risk diverges. This boundary

has been called the Donoho-Tanner curve and will be derived in Chapter 8.

We will shortly give a different, somewhat more phenomenological justification

for using LASSO which does not require to wait and develop the whole theory,

and stems more or less naturally from the statistical mechanics interpretation.

MMSE and LASSO as spin glass models

The posterior (3.36) used for MMSE estimation is explicitly,

p(x | y) = 1

Z

m∏
a=1

e−
1

2σ2 (ya−Aa·x)
2

n∏
i=1

p0(xi), (3.39)

where ya, a = 1, . . . ,m are the components of y and Aa the line vector equal

to the a-th row of the matrix A. In other words Aa · x =
∑n

i=1Aaixi. The

normalisation factor is given by

Z =

∫
dnx

m∏
a=1

e−
1

2σ2 (ya−Aa·x)
2

n∏
i=1

p0(xi) . (3.40)

The interpretations in terms of spin-glass concepts are analogous to the case of

coding. The posterior (3.39) can be though of as a random Gibbs distribution

and (3.40) as a partion function. This time the ”spin variables“ xi ∈ R belong

to a continuous alphabet, and one often speaks of “continuous spins”. The dis-

tribution is random because of the measurement matrix A and the observations

y. These are the quenched variables.

The estimator (3.35) is the average of xi with respect to the Gibbs distribution

and in statistical mechanics notation is written as the bracket ⟨xi⟩. One can

interpret it as a “magnetization” for the continuous spins. In order to compute

it all we need in principle is the marginal p(xi|y) given by integrating (3.39) over

all spin variables except xi. To sum up we have,

x̂MMSE
i (y) = ⟨xi⟩ =

∫
dnxxi p(x | y) =

∫
dxi xi p(xi | y), (3.41)

What are the Hamiltonian and the inverse temperature associated to the Gibbs

distribution in the present context? Writing (3.39) in the form e−βH(x)/Zβ we

find that a natural answer is to take

H(x) = 1

2σ2

m∑
a=1

(ya −Aa · x)2 −
n∑

i=1

ln p0(xi) (3.42)

and β = 1 (just as in coding any other other value of β would amount to rescale

the Hamiltonian by the inverse of that value).
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In coding we discussed a ”finite temperature decoder“ and noticed that it

interpolates between the bit-MAP and block-MAP decoders. With the Hamil-

tonian view it is immediate to do something similar here. Let us define for any

β > 0,

pβ(x|y) =
1

Zβ
e−βH(x) =

1

Zβ

m∏
a=1

e−
β

2σ2 (ya−Aa·x)
2

n∏
i=1

(p0(xi))
β (3.43)

with Zβ the corresponding normalization factor given by the integral over all

xi’s of the numerator. We define a βMMSE estimator as the magnetization at

inverse temperature β,

x̂βMMSE
i (y) = ⟨xi⟩β =

∫
dnxxi pβ(x | y) =

∫
dxi xi pβ(xi | y). (3.44)

For β = 1 this is simply the usual MMSE estimator. In the limit of zero temper-

ature, β → +∞, the integral over dnx is concentrated on the spin configurations

that minimize the Hamiltonian, in other words

lim
β→+∞

x̂βMMSE
i (y) = argminxH(x)

= argminx
(1
2
∥y −Ax∥2 − σ2

n∑
i=1

ln p0(xi)
)
. (3.45)

Here we minimise a quantity closely analogous to the usual least square estimator

but penalized by a term − ln p0(x) which enforces the prior information.

Now we can formulate another justification for the LASSO. When the prior

is unknown but it is only known that the signal is sparse the Laplacian prior

p0(x) ∝ e−
λ
σ2 |x| is a simple, and as it turns out, tractable model for the ensemble

of possible priors. This ensemble is parametrized by a single parameter λ. As

discussed before, the optimal value of λ (as a function of κ and µ) is determined

from the minimax principle. In a sense, this point of view naturally leads to

the AMP algorithm developed in Chapter 8. Summarizing, the LASSO can be

viewed as a zero temperature limit of MMSE estimation generalized to arbitrary

temperatures.

3.5 Free energy and conditional entropy in compressive sensing

In this paragraph we assume that the prior is known and consider the Gibbs

distribution associated to the usual MMSE estimator (with β = 1). We show

that the average free energy −EY [lnZ]/n (for any fixed measurement matrix

A) and mutual information I(X;Y ) are essentially one and the same object.

This relation is analogous to the one found for coding in section 3.3. There is

one technical difference: because the distribution of X has a continuous part it

is more convenient to work directly with the mutual information rather than

conditional entropy in order to avoid pitfalls related to the differential entropy.
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Consider the mutual information for a fixed measurement matrix,8

I(X;Y ) = EY

[
ln

{
p(x, y)

p0(x)p(y)

}]
(3.46)

where EY is the expectation with respect to p(y) =
∫
dnx p(x, y). From (3.33)

we find

ln

{
p(x, y)

p0(x)p(y)

}
= − 1

2σ2
∥y −Ax∥22 − lnZ(y) (3.47)

The last term contributes −EY [lnZ] to the mutual information. To derive the

contribution of the first term we write down explicitly the integrals,

1

2σ2

∫
dnx

∫
dmy p(x, y)∥y −Ax∥22

=
1

2σ2

∫ n∏
i=1

dxip0(xi)

∫
dy ∥y∥22

e−
1

2σ2 ∥y∥2
2

(2πσ2)n/2

=
n

2
. (3.48)

(The second line is obtained by a shift y → y + Ax in the y-integral for each

fixed x). Putting everything together we find the very simple relationship

I(X;Y ) = −EY [lnZ]−
n

2
(3.49)

This relation can be further averaged over the random matrix ensemble.

3.6 Random K-SAT as a spin glass model

We briefly recall the formulation of the random satisfiability in Section 1.3. Pick

a formula at random from the ensemble F(n,m,K); the formula corresponds to

a biparttite factor graph with dashed and full edges (see Fig. 1.6). As for coding

and compressed sensing we shall adopt the notation i, j, k, . . . for variable nodes

and a, b, c, . . . for constraint nodes. In the random max-K-SAT problem our

main task is to calculate the average minimum fraction of violated clauses. More

precisely, consider the number of violated clauses for an assignment x, then take

the best possible assignment that minimizes the number of violated clauses and

average over the ensemble of random formulas. This yields the average minimum

fraction of violated clauses

em(α) =
1

m
E
[
min
x

m∑
a=1

(1− 1a(x))
]
. (3.50)

where 1a is the indicator function for the set of assignments which satisfy clause

a. In Chapter 13 we prove that the thermodynamic limit, limm→+∞ em(α) with

8 This is also the Kullback-Leibler divergence or relative entropy between p(x, y) and

p0(x)p(y).
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m/n = α fixed, exists and is calculated using the cavity method developped in

Chapters 16 and 17. This leads to a prediction for the threshold of the random

max-K-SAT problem, αs,max(K) defined in Equ. 1.16. As explained there it is

believed (although not proved for small K ≥ 3) that αs,max(K) = αs(K) and we

will generally not distinguish between the two.

The problem here is not directly formulated in terms of a Gibbs distribution,

but a natural and fruitful idea is to consider the Gibbs distribution associated

to the cost function

m∑
a=1

(1− 1a(x)). (3.51)

In particular, by studying the Gibbs distribution for very low temperatures we

can get hold of em(α) and also much more. But before, it is instructive to look

more closely at the zero temperature purely Hamiltonian formulation.

Hamiltonian formulation in the spin representation

We set si = (−1)xi . Furthermore if clause a contains the literal xi (resp. x̄i)

we associate a weight Jai = +1 (resp. Jai = −1) to the edge ai of the factor

graph. Thus, for example on Fig. 1.6 full edges have Jai = +1 and dashed

edges have Jai = −1. Moreover the Jai are Bernoulli(1/2) random variables.

With these conventions we see that the i-th variable satisfies clause a when

si = (−1)xi = −Jai and does not satisfy it when si = (−1)xi = +Jai. Therefore

1− 1a(x) =
∏
i∈∂a

1

2
(1 + siJia) (3.52)

and the cost function, or Hamiltonian, of K-SAT takes the form

H(s) =
m∑

a=1

∏
i∈∂a

1

2
(1 + siJia) . (3.53)

Expanding the product in each term we see that this Hamiltonian involves “mul-

tispin interactions” of the form (2.3). This Hamiltonian is random in the sense

that the underlying factor graph is random, and furthermore this randomness is

quenched because once the formula has been chosen from the ensemble we stick

to it. In terms of this spin-glass Hamiltonian the average minimum fraction of

violated clauses (3.50) is expressed as

em(α) =
1

m
E
[
min
s
H(s)

]
. (3.54)

The spin assignments that minimize the Hamiltonian (3.53) are often called

ground states. Ground states with zero energy (or zero cost) satisfy H(s) = 0 and

a look at (3.53) shows that they are solutions of the K-sat formula. Of course the

converse is also true. An important problem is to count them, which amounts to
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evaluate

N0 =
∑
s

1(H(s) = 0) =
∑
s

m∏
a=1

(
1−

∏
i∈∂a

1

2
(1 + siJia)

)
. (3.55)

It is often useful to take a broader view and count the number of spin assignment

of total energy (or cost) E, in other words those that violate E clauses,

NE =
∑
s

1(H(s) = E) . (3.56)

At this point there is a natural connection with the notions of Boltzmann en-

tropy and microcanonical distributions introduced in Section 2.7. The Boltz-

mann entropy here is equal to lnNE and the microcanonical distribution is

1(H(s) = E)/NE . There is however a difficulty with these concepts for constraint

satisfaction problems such as K-SAT. Indeed a formula sampled from the ensem-

ble F(n,m,α) might not have any assignments which violate E clauses, in which

case NE = 0. Even worse for large enough densities we have minsH(s) > E with

a probability approaching 1 as n,m → +∞ with α fixed. One of the main ad-

vantages of the finite temperature formulation discussed in the next paragraph

is that we can work with quantities that remain well defined for all formulas and

densities from the outset.

Finite temperature formulation

The set of solutions of a K-sat formula, equivalently the set of ground states, is

not easy to determine. One way to approach this problem would be to sample

from this space according to a simple distribution. The simplest distribution

one could imagine is the uniform one over solutions 1(H(s) = 0)/N0 (this is the

microcanonical distribution for zero energy). We immediately face a problem here

because, as just remarked above, some formulas from F(n,m,K) do not have

any solution (and for high enough α this happens with overwhelming probability

when n is large) so the uniform distribution is not well defined.

From the point of view of statistical mechanics there is a very natural reg-

ularisation of the uniform distribution. Namely one takes the (random) Gibbs

distribution at positive temperature β−1 > 0,

pβ(s) =
1

Zβ
e−βH(s) =

1

Zβ

m∏
a=1

e−β
∏

i∈∂a
1
2 (1+siJia) (3.57)

with the partition function

Zβ =
∑
s

m∏
a=1

e−β
∏

i∈∂a
1
2 (1+siJia) . (3.58)

In the zero temperature limit, formally at least, pβ(s)→ 1(H(s) = 0)/N0.

We saw in Section 2.3 that from the free energy F (β) = − 1
β lnZ at finite
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temperature, we can compute the internal energy E(β) = ⟨H(s)⟩ = d
dβ (βF (β)),

and also the Gibbs entropy S(β) = β(E(β) − F (β)) = d
dβ−1F (β). To obtain

ground state energy, (3.50) or (3.54), and deduce the threshold αs,max(K) we

look at the zero temperature limit of the average energy per clause or of the

average free energy per clause,

em(α) = lim
β→+∞

1

m
E[E(β)] = lim

β→+∞

1

m
E[F (β)]. (3.59)

The proof of (3.59) does not involve any subtlety because E is an average over a

finite number of possible formulas in F(n,m,K) and the statistical sums over s

also involve a finite number of terms, so essentially the limit can be taken term

by term. Similarly the zero temperature limit of the entropy is

lim
β→+∞

1

n
E[S(β)] =

1

n
E[lnNmins H(s)] . (3.60)

Note that there is always at least one minimiser for finite n so Nmins H(s) ≥ 1

and this entropy is non-negative. In the satisfiable phase, i.e., for clause densities

below the satisfiability threshold with overwhelming probability (for n large)

minsH(s) = 0 (and N0 > 0), so (3.60) approaches E[lnN0|F is satisfiable]/n for

n large.

In writing the above formulas we have swept an important point under the

rug. In practice we are able to compute the free energy and related quantities

only in the asymptotic regime of the thermodynamic limit. So a priori we have

access to the zero temperature quantities only after the limit n→ +∞ is taken.

So in principle in order to use the finite temperature regularisation one must

show that the limits β → +∞ and n → +∞ can be exchanged. This is not so

obvious but can be shown at the level of (3.59) by the interpolation methods

developped in Chapter 13.

3.7 Notes

The connection between coding and spin glasses dates back to (Sourlas 1989).

It was slowly developed in a few early papers proposing the finite temperature

decoder (Ruján 1993, Nishimori 1993, Sourlas 1994) and in (Amic & Luck 1995)

which treated convolutional codes as a spin system. A surge of interest then

appeared in the statistical physics community in the early 2000’s soon after

LDPC and turbocodes codes had come in the forefront among coding theorists.

A good review with many references discussing LDPC and turbocodes from the

spin glass perspective is (Kabashima & Saad 2004). Here we have followed closely

the presentation in (Macris 2007a). Gauge symmetry in spin glass theory was

introduced by (Nishimori 1980) and a good account, as well as applications to

error correcting codes, is found in the monograph (Nishimori 2001).

The interest of statistical physicists towards the random K-SAT problem date
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back to the mid 90’s. In (Kirkpatrick & Selman 1994) the phase transition was ob-

served based on numerical experiments, and the first analytical treatments using

the replica method were proposed by (Monasson & Zecchina 1997, Monasson &

al 1999). These early approaches can be found in the monograph (Nishimori 2001)

but the correct phase diagram was then derived in a long series of subsequent

works. A comprehensive treatment is found in (Mézard & Montanari 2009) and

we return to this ongoing subject in part III where the reader can also find more

details on the literature.

Compressive sensing in a more recent topic. Its connection with statistical

physics developed quite quickly, and a good review is (Montanari 2012). Similar

relationships have also been studied in the realm of communication with a “code

division multiple access channel” with binary inputs (e.g. Nishimori 2001, Tanaka

2002, Macris & Korada 2010).

Problems

3.1 Nishimori identities for coding. Use the technique of gauge transfor-

mations to prove the identities Eh|1[⟨si⟩2p−1] = Eh|1[⟨si⟩2p] for all integers p ≥ 1.

These identities are valid for any fixed linear code.

3.2 Special identities for a Gaussian channel. In the case of a BAWGNC(σ2)

identity (3.26) specializes to Eh|1[hi⟨si⟩] = σ−2. We propose a different proof that

is specific to the Gaussian channel.

(i) First check by explicit calculation that σ2c(h)h = − ∂
∂hc(h) + c(h).

(ii) Then use integration by parts and the Nishimori identity of the previous

exercise (for p = 1) to derive Eh|1[hi⟨si⟩] = σ−2.

3.3 Relation between mutual information and average free energy

in coding.We explore a different derivation of relation (3.24) which directly uses

the mutual information and avoids the Nishimori identities. Relate the entropy

H(Y ) directly to the average free energy Eh|1[lnZ] and deduce a relation between

the mutual information I(X;Y ) = H(Y )−H(Y |X) and the average free energy.

Use then I(X;Y ) = H(X)−H(X|Y ) to recover (3.24).

3.4 MMSE estimation. Consider the MSE functional (3.34) and prove that

(3.35) is a minimiser.

3.5 LASSO for the scalar case. Let x and y scalar variables interpreted

as “signal” and “measurement”. Derive the explicitly expression of the LASSO

estimator x̂LASSO(y) = argminx(
1
2 (y − x)

2 + λ|x|). The result is called the “soft

thresholding estimator” and is an important input in the analysis of the vector

case in Chapter 8.

3.6 Crude upper bound on the satisfiability threshold αs(K). Sample

a formula F from the random ensemble F(n,K,M) and consider the number of

solutions N0 (the partition function at zero temperature),

(i) Prove the Markov inequality P[F is satisfiable] ≤ E[N0].

(ii) From Equ. (3.55), show that E[N0] = 2n(1− 2−K)m.
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(iii) Deduce the upper bound αs(K) < (ln 2)/| ln(1−2−K)|. ForK = 3 this yields

αs(3) < 5.191. It is conjectured that αs(3) ≈ 4.266; a value calculated using

a sophisticated form of the cavity method (see Chapter 16). The asymptotic

behavior of this simple upper bound for K → +∞ is 2K ln 2, which is known to

be correct. However, even the first correction beyond the leading order is false.



4 Two Exactly Solvable Models

Before we start analysing our three basic problems, it is instructive to consider

two very simple models for which the analysis can be carried out explicitly with

fairly little effort. Despite their simplicity, both models share similarities with

our three problems, at the technical as well as conceptual levels. This way we

will encounter many useful concepts in their simplest incarnation.

We first consider the Curie-Weiss model. This is an Ising spin system defined

on a complete graph (example 4 in Chapter 2). The model is admittedly special,

but it has two advantages. First, it has a simple explicit solution. Secondly,

and equally important, it still displays many of the interesting features of more

complicated models such as variational expressions for the free energy, fixed point

equations, and phase transitions.

The second exactly solvable model is the Ising model on a tree (example 5 in

Chapter 2). We will see that the solution can be phrased in terms of another of our

favourite themes, namely “iterative equations.” We will also see that the model

displays phase transitions similar to those of the Curie-Weiss model, despite the

apparent differences in their Hamiltonians. This will throw some light on the

universality of the phase transition phenomenon.

Analogous, but more complicated solutions and phase transitions occur in

coding, compressive sensing and satisfiability models. It is perhaps natural that

these models share some common features with the ones of this chapter. Indeed,

coding and satisfiability are defined on sparse graphs that are locally tree like,

and ompressed sensing is defined on a (bipartite) complete graph. On the other

hand the situation is also considerably more complicated and interesting for at

least two reasons. One is that in coding and satisfiablity the graphs are locally

tree like but have loops. In satisfiability, for example, we will see that the presence

of loops induces phase transitions not present on a tree. A second reason is that

the Gibbs distributions are random and non-trivial spin glass concepts will come

to bear on their analysis.

4.1 Curie-Weiss model

The Curie-Weiss model is an Ising spin system defined on a complete graph with

vertex set V = {1, . . . , n} and edge set E constituted of all n(n − 1)/2 pairs of
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s2

s1

s4

s3

Figure 4.1 A complete graph with 4 nodes.

distinct vertices. An example is shown in Figure 4.1. The Hamiltonian is

H(s) = −J
n

∑
{i,j}∈E

sisj − h
∑
i∈V

si (4.1)

where J > 0 (ferromagnetic case) and h ∈ R. In the first sum {i, j} is an un-

ordered pair so each edge is counted only once. Note that the interaction constant

is divided by n to ensure that both terms in the Hamiltonian scale linearly in

the system size; this is necessary in order to have an interesting thermodynamic

limit.

The Gibbs distribution has the usual form p(s) = e−βH(s)/Z with the partition

function given by the sum over all spin configurations s ∈ {−1,+1}n

Z =
∑
s

e
βJ
n

∑
{i,j}∈E sisj+βh

∑
i∈V si . (4.2)

Recall from Chapter 2, β = 1/kBT where T is the temperature and kB Boltz-

man’s constant, so the behaviour of the Gibbs distribution depends on the di-

mensionless ratios J/kBT = βJ and h/kBT = βh.1 For example, if we take h = 0

for simplicity, at high temperatures kBT ≫ J (or βJ ≪ 1) we get an almost

uniform measure, whereas in the low temperature case kBT ≪ J (or βJ ≫ 1)

only configurations of minimum energy, where most spins are aligned, count. Not

surprisingly, we will see that kBT ≈ J (or βJ ≈ 1) is a regime of great interest.

We will first calculate the free energy and then the magnetization. This will

allow us to study the singularities of these functions, in other words the phase

transitions displayed by the model.

4.2 Variational expression of the free energy

Recall that the free energy in the thermodynamic limit is given by

f(β, J, h) = − lim
n→+∞

1

nβ
lnZ, (4.3)

1 One often defines dimensionless parameters K = βJ , H = βh, however here we find it

convenient to keep the β, J , h dependence as explicit as possible.
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thus our main task is to compute the exponential growth rate of Z when n →
+∞. The key point is the identity∑

{i,j}∈E

sisj =
1

2

( n∑
i=1

si
)2 − 1

2
n. (4.4)

which is valid because the sum over the edges of the complete graph carries over

all n(n−1)/2 pairs of distinct vertices. Introducing the “magnetization of a spin

configuration”

mn(s) =
1

n

n∑
i=1

si,

with the help of (4.4) we can express the Hamiltonian as

H(s) = −n
(J
2

(
mn(s)

2 + hmn(s)
)
+
J

2
. (4.5)

Thus

Z = e−
βJ
2

∑
s

enβ
(

J
2 mn(s)

2+hmn(s)
)
. (4.6)

The partition function can be computed by first summing over all spin config-

urations with a fixed magnetization mn and then by summing over all possible

magnetizations mn ∈ { jn |j = −n,−n+ 1, . . . , n− 1, n}. We get

Z = e−
βJ
2

∑
mn

N (mn) e
nβ
(

J
2 m2

n+hmn

)
. (4.7)

where N (mn) is the cardinality of the set {s :
∑n

i=1 si = nmn}. This is easily

computed (see Example 3 in Chapter 2 for an analogous calculation). Given mn,

let n+ and n− be the number of positive and negative spins respectively. Since

n+ + n− = n and n+ − n− = nmn we have n+ = 1+mn

2 n and therefore

N (mn) =

(
n

1+mn

2 n

)
≈ enh2(

1+mn
2 ), (4.8)

where h2(p) = −p ln p− (1− p) ln(1− p) the binary entropy function (expresed

with the natural logarithm). The last approximation is asymptotically exact for

n→ +∞ and is obtained using Stirling’s formula. Equations (4.7) and (4.8) lead

to

Z ≈ e−
βJ
2

∑
mn

enβ
(

J
2 m2

n+hmn+β−1h2(
1+mn

2 )
)
. (4.9)

Since mn ∈ { jn |j = −n,−n + 1, . . . , n − 1, n} the right hand side of (4.9) is a

Riemann sum which tends for n→ +∞ to

Z ≈ e−
βJ
2 n

∫ +1

−1

dmenβ
(

J
2 m2+hm+β−1h2(

1+m
2 )
)
. (4.10)
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The integrand has the form e−nβΦ(m) thus the asymptotic behavior of the in-

tegral for n → +∞ can be evaluated by the Laplace method. The dominant

contribution comes from a small neighborhood of the value(s) of m where Φ(m)

is minimized. This gives us

f(β, J, h) = min
−1≤m≤1

{
−J
2
m2 − hm− β−1h2(

1 +m

2
)
}

≡ min
−1≤m≤1

Φ(m). (4.11)

With a little bit more effort this formula can be converted into a theorem.

Equation (4.11) teaches us that the free energy is given by the solution of a

variational problem. The function Φ(m) which is minimized has various names

in the literature. Here we will call it the potential function. We will see that

the free energies of the coding, compressive sensing and satisfiability problems

are all given by such variational expressions involving (often quite complicated)

potential functions or even functionals.

The reader should be warned that the free energies of low dimensional models

(such as the canonical Ising model on regular grids) the excat expressions for

free energies are usually not computable. In particular, they are not given by

variational expressions involving the minimization of potential functions of a

small number of variables. However this still is a fundamental and useful concept

used in approximation schemes or semi-phenomenological theories and in such

contexts the potential function is called a “Landau free energy” or a “mean field

free energy.“ We shall consistently adopt the terminology ”potential function“

which seems to have been adopted in the coding theory literature.

4.3 Average magnetization

Recall from Chapter 2 that in the thermodynamic limit the magnetization is

defined by the Gibbs average

m(βJ, βh) = lim
n→+∞

⟨ 1
n

n∑
i=1

si⟩ = lim
n→+∞

⟨mn(s)⟩ . (4.12)

This is a generic definition. As we will shortly see for h = 0 one must exercise

care because the limits h→ 0± are different due to a discontinuity of m(βJ, βh)

when βJ > 1. We will see that this is intimately related to the existence of a

phase transition. But for the moment let us just compute (4.15) for h ̸= 0.

This computation is easily performed by repeating the calculations of the
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m

Φ(m)

ln 2

m

Φ(m)

Figure 4.2 Left: Φ(m) for βJ < 1 and h > 0. Right: Φ(m) for βJ > 1 and h > 0. For
h < 0 the plot is obtained by a symmetry about the vertical axis.

previous section. Indeed using (4.4) we obtain

⟨mn(s)⟩ =
∑

smn(s)e
−βH(s)∑

s e
−βH(s)

=

∑
smn(s)e

nβ
(

J
2 mn(s)

2+hmn(s)
)

∑
s e

nβ
(

J
2 mn(s)2+hmn(s)

) , (4.13)

and we have already found the asymptotic behaviour (4.10) of the denominator

as n → +∞. It is then quite clear that the same arguments applied to the

numerator lead to the asymptotics

⟨mn(s)⟩ ≈
∫ +1

−1
dmme−nβΦ(m)∫ +1

−1
dme−nβΦ(m)

. (4.14)

Now for h ̸= 0 the free energy function Φ(m) always has a unique global mini-

mum. This is illustrated on Figure 4.2, and will be proven by analysis in Section

4.5. Thus, applying the Laplace method to the numerator and denominator of

(4.14) one finds that the unique global minimum is selected as n→ +∞, and

m(βJ, βh) = argmin−1≤m≤1Φ(m) . (4.15)

The case h = 0 is more subtle and interesting. Figure 4.3 shows that Φ(m)

has a unique minimum for βJ < 1, but has two degenerate minima for βJ > 1.

In the later case, i.e., (βJ > 1, h = 0), if we would blindly apply the Laplace

method we would find a weighted average over the two minimizers, and because

of the symmetry Φ(m) = Φ(−m) when h = 0, this weighted average vanishes.

This however is not the correct prescription to compute the ”physically relevant“

magnetization. In a real sample (or at least on some macroscopic piece of it) the

symmetry is broken by an infinitesimal value of the magnetic field pointing in a
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Φ(m)

Figure 4.3 Left: Φ(m) for βJ < 1 and h = 0. Right: Φ(m) for βJ > 1 and h = 0.

definite direction. The correct way to capture this effect is to define

m±(βJ) = lim
h→0±

m(βJ, βh) = lim
h→0±

lim
n→+∞

⟨ 1
n

∑
i∈V

si⟩ . (4.16)

When we apply the Laplace method, since h is infinitesimally positive or negative

only one global minimum is selected, and we get a non-vanishing magnetization

(positive or negative) corresponding to one of the two minima on Figure 4.3.

Equivalently, the function m(βJ, h) given above by (4.15) is discontinuous on

the half-line (βJ ≥ 1, h = 0).

The order of the limits in (4.16) is crucial, and for a good physical reason. In

a macroscopic system (e.g. a magnet) the symmetry is broken by infinitesimal

residual magnetic fields h = 0± that select the magnetization of macroscopic

domains within the sample (the so-called ”Weiss domains“). One can also prepare

the whole sample in a state of positive (resp. negative) magnetization by first

applying a positive (resp. negative) magnetic field, then lower the temperature

such that βJ > 1 and finally remove the magnetic field h→ 0+ (resp. h→ 0−).

Definition (4.16) correctly describes the magnetization under such conditions for

the Weiss domains of the whole sample. In a Weiss domain one does not get to

choose the orientation of the magnetic field (in other words which of the two

limits h→ 0± applies) and the symmetry is said to be ”spontaneously broken“.

The corresponding magnetization (4.16) is called a ”spontaneous magnetization“.

We conclude this section with a very important relationship between the free

energy f(β, J, h) and the magnetization m(βJ, βh). As we mentioned in Chapter

2, Gibbs averages can be obtained by differentiating the free energy. Here we

have

⟨
n∑

i=1

si⟩ =
1

β

∂

∂h
lnZn. (4.17)

Dividing by n and taking the thermodynamic limit n→ +∞ we find

m(βJ, βh) = − ∂

∂h
f(β, J, h). (4.18)
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The careful reader may question the interchange of thermodynamic limit and par-

tial differentiation. In fact this is permitted as long as h ̸= 0 or (βJ < 1, h = 0)

and (4.18) is correct. On the half-line (βJ ≥ 1, h = 0) the magnetization

m(βJ, βh) is discontinuous and the free energy is non-differentiable. More pre-

cisely the free energy has different left and right derivatives and the precise

version of the relation between magnetization and free energy is

m±(βJ) = − lim
h→0±

∂

∂h
f(β, J, h) (4.19)

Let us now prove (4.18) away from (βJ ≥ 1, h = 0). According to (4.11) the

free energy is obtained by evaluating the potential function Φ(m) at its unique

global minimum m(βJ, βh),

f(β, J, h) = −J
2
m(βJ, βh)2 + hm(βJ, βh)− β−1h2(

1 +m(βJ, βh)

2
). (4.20)

We differentiate by carefully taking into account the explicit and implicit h-

dependencies in Φ(m),

− ∂

∂h
f(β, J, h) = m(βJ, βh) +

∂

∂h
m(βJ, βh)

∂Φ

∂m

∣∣∣∣
m(βJ,βh)

= m(βJ, βh) (4.21)

To get the last equation we used that (∂Φ/∂m)|m(βJ,βh) = 0 and that ∂m/∂h is

well defined and bounded when the parameters are not on the line (βJ ≥ 1, h =

0). This last point follows from the detailled analysis in section 4.5.

Finally let us point out that (4.19) follows from (4.21) by taking the limits

h→ 0±.

4.4 Phase diagram and phase transitions

Consider the free energy function Φ(m) and look at the minimiser m(βJ, βh).

As explained in the previous section for h ̸= 0 this minimizer is unique and

there is no ambiguity, so we think of this case. Instead of plotting m(βJ, βh) as

a function of βJ and βh, we plot m(βJ, βh) as a function of 1/(βJ) = kBT/J

(”temperature“ axis) and βh = h/kBT (the ”magnetic field“ axis). Figure ??

shows the resulting plot.
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βh

m(βJ, βh)

Figure 4.4 A phase transition of first order. The magnetization has a jump
discontnuity when 0 ≤ kBT/J < 1 and h = 0.

Why are we interested in this figure? As discussed in the previous section this

function represents the average magnetization, a quantity describing the global

behavior of the system as a function of the parameters. For some values of

the parameters (βJ, βh) the system behaves smoothly when we slightly perturb

these parameters. But for some other parameters the system behavior changes

abruptly. These are so-called phase transitions. A look at the figure reveals two

different types of phase transitions.

First and second order phase transitions

When we move along the h-axis, the magnetization m(βJ, βh) has a jump dis-

continuity when we cross the line segment (kBT/J < 1, h = 0). This jump of

the magnetization is plotted on Figure 4.4 (which shows the cross section with

(kBT/J < 1 fixed and h varying). This is called a first order phase transition.

At the tip of the line segment (kBT/J < 1, h = 0), i.e., at the point (kBT/J =

1, h = 0) the magnetization is continuous but not differentiable. For example if

we move along the temperature axis or along the magnetic field axis across the

point (kBT/J = 1, h = 0), the function m(βJ, βh) changes continuously, but its

derivatives with respect to temperature or magnetic field jump. This is shown on

Figure 4.5 where we move accross the point (kBT/J = 1, h = 0) by varying the

temperature or the magnetic field. Such behavior is called a second order phase

transition (or sometimes a continuous phase transition).

Finally, for all values of (βJ, βh) away from the segment (kBT/J ≤ 1, βh = 0)

the function m(βJ, βh) changes smoothly and is in fact analytic (i.e. infinitely

differentiable with an absolutely convergent Taylor expansion).

To understand the terminology ”first“ and ”second“ order, recall Equ. (4.18).

At a first order transition, where the magnetization jumps, the first derivative

of the free energy is discontinuous. At a second order phase transition the mag-

netization is continuous but its first derivative is discontinuous, so equivalently

the second derivative of the free energy is discontinuous.
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(βJ)−1 = 1

(βJ)−1

|m(βJ;βh)|

Figure 4.5 Phase transitions of second order as a function of temperature. Left:
m± ∝ ±|1− kBT/J |1/2 for βJ → 1−. Right: mpm ∝ ±|βh|1/3. Both behaviours are
continuous but non-differentiable.

The phase diagram

Let us now consider a sligthly different perspective and explain some more ter-

minology. We look at Figure ?? again, but this time we consider the picture

“from the top,” i.e., we only show the temperature and magnetic field axis. This

is shown in Figure 4.6 and is commonly called a phase diagram. On this diagram

we have indicated the various ways to change parameters and the corresponding

phase transition.

The line segment (kBT < 1, h = 0) is called the coexistence line. This name

is easily explained. If we approach this line from the top or the bottom, i.e.,

we consider the limit h → 0±, then we get two (opposite) values m± for the

magnetization. So “on the line” we can think of having two possible “coexisting”

phases.

The tip of the line (kBT/J = 1, h = 0) is called the critical point. Across this

point the magnetization is continuous but non-differentiable. For example if we

set h = 0 and vary only the temperature one finds

m± ∝ ±|1−
kBT

J
|1/2

for kBT/J → 1−; if one sets kBT/J = 1 and varies only the magnetic field one

finds

m± ∝ ±|βh|1/3

for h→ 0± (see Section 4.5 for a derivation). This sort of power law behaviour is

called a critical behavior and is characterized by critical exponents, here 1/2 and

1/3. Critical exponents do not depend on the details of the Hamiltonian but only

on general features such as the dimensionality of the graph and the symmetry

of the model (see Section 4.9 for more details).
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(βJ)−1 = 1

second order

second order

first order

no transition

(βJ)−1

βh

Figure 4.6 On the coexistence line (0 ≤ βJ)−1 < 1, h = 0) two thermodynamic phases
with (opposite) magnetizations m±(βJ) may coexist. Crossing this line corresponds
to a first order phase transition. The line terminates at the critical point
((βJ)−1 < 1, h = 0). Going through the tip ia a second order phase transition. In the
rest of the phase diagram the magnetization varies smoothly (is analytic).

Continuity and concavity of the free energy

The variational expression (4.11) for the free energy has a very important prop-

erty. We are minimizing a function Φ(m) which is linear in h and β−1 = kBT .

The outcome f(β, J, h) is necessarily concave in h and T (see exercise). This

property is not particular to the Curie-Weiss model but must always hold if the

model is to be “physically acceptable”.2 This is a very important guiding prin-

ciple because most of the time even if the model is physically sound one cannot

compute exactly the free energy and a non-concavity indicates that we have to

correct our approximations or modify the end result by an educated guess. More

about this in Chapter 12!

Note that in our coding, compressive sensing and satifiability models are not

physical systems and there is no absolute a priori requirement that their “free

energies” should satisfy this guiding principle. Nevertheless it is true that this

requirement must be satisfied at least with respect to the temperature T . This is

true for a mathematical reason. Indeed the generic definition of the free energy

(for a finite system) is f = − 1
n lnZ with Z =

∑
s e

−H(s)/kBT . It can easily be

checked from formula (2.19), which relates the variance of the Hamiltonian to the

second derivative of the free energy with respect to T , that f is a concave function

of T . More generally, the same argument can be made for other parameters λ

that enter linearly3 in the Hamiltonian through some term of the form λA(s),

2 Thermodynamics teaches us that at when a system has reached the state of thermal
equilibrium the “thermodynamic potentials” must be concave as a function of the
“intensive parameters” (e.g. temperature, magnetic field, chemical potential) and convex

as a function of “extensive parameters” (e.g. volume, number of particles). The free energy
considered here (the “Gibbs free energy”) depends on intensive quantities and must be
concave.

3 such λ’s are called “intensive” parameters



82 Two Exactly Solvable Models

because the second derivative of the free energy with respect to λ is equal to

minus the variance ⟨A(s)2⟩ − ⟨A(s)⟩2. An example is the magnetic field h which

enters through the term h
∑n

i=1 si. To summarize, concavity of the free energy

must hold even for non-physical systems at least with respect to parameters that

enter linearly in the Hamiltonian. This is an important guiding principle that an

approximation scheme must respect.

Concavity of the free energy has a few interesting consequences. First the limit

of a sequence of concave functions is concave and continuous (concave functions

are continuous on open sets). Thus the free energy never has jumps as a function

of the temperature and/or magnetic field, even in the thermodynamic limit.

Phase transitions manifest themselves only as discontinuities in the derivatives

of the free energy. A first order phase transition is one where the first derivative

jumps, a second order transition is one where the first derivative is continuous

but the second derivative jumps. More generally if the first n− 1 derivatives of

the free energy are continuous and the n-th derivative has a jump one say the

phase transition is of order n (there exist phase transitions of ”infinite order”

where all derivatives of the free energy are continuous but the function has a

non-analyticity). This classification of phase transitions due to Ehrenfest. It is

not the only one, nor the most modern one,4 but it is one that suits our purposes.

Phase transitions that occur as singularities in the derivatives of the free

energies are also often called static or thermodynamic phase transitions. This

nomenclature allows to distinguish them from abrupt changes in the behaviour

of algorithms or of some dynamics. The later type of abrupt changes are called

dynamical or algorithmic phase transitions. We stress that they are not visible

as singularities in the derivatives of the free energy and cannot be discovered by

computing only the free energy. Also, they depend on the algorithm at hand.

However we will see that there are some dynamical transitions that are in some

sense “fundamental”. What makes some dynamical transitions “fundamental”

because of their intimate connection to static transitions.

For the Curie-Weiss model, so far, we have only discussed static phase transi-

tions (of first and second order). In the next section we turn to the mathematical

analysis of the fixed point equation and will discover as a by-product a special

line in the phase diagram - the so called spinodal line - which is related to algo-

rithmic phase transitions of message passing algorithms studied in part II.

4.5 Analysis of the fixed point equation

We have plotted the three-dimensional picture of m(βJ, βh) and from this we

can in principle see all phase transitions. But there is value in rederiving our

conclusions in a more quantitative and classical way using calculus. By doing so,

4 Phase transitions can also be classified according to changes in “symmetry” or even

according to “topological” properties of the states of matter.
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we not only will add details to our picture, but we also encounter new notions

which will reappear in later chapters

Curie-Weiss mean field equation

We solve the variational problem (4.11) by writing down the stationarity condi-

tion dΦ(m)/dm = 05 and obtain the fixed point equation

m = tanh(β(Jm+ h)). (4.22)

Of course this equation may have many solutions, and one has to select the ones

which minimize Φ(m). If no solution is present then the minimum is attained at

the boundaries of the interval over which we minimize, i.e., m = ±1. This case

happens only for β = +∞ (zero temperature) and will not concern us too much

in the following.

Equ. (4.22) is also called the Curie-Weiss mean field equation. Let us explain

the terminology here. Equation (4.22) expresses the magnetization as that of an

hypothetical single spin seeing an effective magnetic field Jm + h. Indeed the

Hamiltonian of this single spin would be −(Jm+ h)s and its magnetization

m = ⟨s⟩ =
∑

s=±1 se
−β(Jm+h)s∑

s=±1 e
−β(Jm+h)s

= tanh(β(Jm+ h)) (4.23)

One can think of Jm as a mean magnetic field felt by a each spin on the vertices

of the complete graph, and which adds up to the external field h.

This way of thinking is at the basis of the “mean field theory” of magnetism

pioneered by Curie and Weiss and is also at the basis of the generic “mean

field approximations” for general Ising spin systems. In the Curie-Weiss model it

turns out that the mean field theory is exact. For Ising models on low dimensional

regular grids such theories are not exact but often give a valuable first insight.6

It must not be thought that mean field equations are always easy to derive,

let alone assess wether they are exact or not. We will see that the solutions of

all our problems are intimately related to mean field equations but that these

are considerably more subtle to derive than in the Curie-Weiss model (let alone

assess whether they are exact or not).

Solutions of the Curie-Weiss equation

Now our task is to find solutions of the Curie-Weiss equation (4.22) and select

the ones that minimize Φ(m). The easiest way to determine the whole set of

solutions is to look at the equivalent equation

h(m) = −Jm+ (2β)−1 ln(
1 +m

1−m
). (4.24)

5 Differentiating explicitly leads to β(Jm+ h)− 1
2
ln( 1+m

1−m
) = 0. Then one uses the identity

tanh{ 1
2
ln( 1+m

1−m
)} = m to obtain 4.22.

6 The interested reader can find more information about this point in Section 4.9.
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Figure 4.7 Solutions of the Curie-weiss equation for βJ < 1 (left), βJ = 1 (middle),
βJ > 1 (right). These are three instances of the curve (4.24) with m on the vertical
axis and h on the horizontal axis.

Here the magnetic filed is viewed as a function of m ∈ [−1,+1]. This function

has two vertical asymptotes h(m)→ +∞, m→ ±1. From

dh

dm
= (1− βJ(1−m2))/β(1−m2)

we immediately see that: (i) for βJ < 1 the curve is monotonously increasing;

(ii) for βJ = 1 an inflexion point with two degenerate stationary points develops

at m = 0, h(0) = 0; (iii) for βJ > 1 the curve has a local maximum and a local

minimum at

msp = ±
√
1− (βJ)−1, hsp = ±h

(√
1− (βJ)−1

)
.

The points (hsp,msp) are called spinodal points, a terminology that we explain a

bit later. The curves h(m) are plotted on Figure 4.7 for the three distinct cases

βJ < 1, βJ = 1 and βJ > 1, with the m-axis vertical and the h-axis horizontal

(this choice of axis is teh conventional one in the present context). We discuss

each case separately.

For βJ < 1 (high temperatures) the solution of the Curie-Weiss equation

is unique for all h and the free energy function Φ(m) is convex with a single

minimum as shown on Figures 4.2 and 4.3.

In the case βJ > 1 (low temperatures) we have to distinguish between various

values of the magnetic field: |h| > |hsp| and |h| < |hsp|. When |h| > |hsp| (large
field) the solution of the Curie-Weiss equation is again unique and Φ(m) is convex

with one minimum. On the other hand for |h| < |hsp| (small field) there are three

solutions m− < m0 < m+. We remark that d2Φ
dm2 = dh

dm and a look at the plot of

h(m) shows that dh/dm|m± > 0 whereas dh/dm|m0 < 0. Thus the two extremal

solutions m± are (locally) minima of Φ(m) and . the middle solution is a (local)

maximum. This is depicted on Figure 4.3. The free energy is given by the global

minimum, that is Φ(m−) for h ∈ [−hsp, 0[ and Φ(m+) for h ∈ [0, hsp, 0[.

So far we have left out two borderline cases. For βJ = 1 the inflexion point of

h(m) means that Φ(m) is convex (but not strictly convex) with two degenerate

minima at m = 0, and the free energy is Φ(0) = 0. Finally for βJ > 1 and
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h = ±|hsp| the solution m0 is degenerate with m∓, Φ(m) has a an inflexion

point at m0 = m∓ and a minimum at m±, and the free energy is given by

Φ(m±).

Now that we have derived in detail all solutions of the Curie-Weiss equation

we can fill in a few gaps in our previous description of first and second order

phase transitions.

First order transition, metastability and spinodal decomposition

In the low temperature phase, βJ > 1, the (equilibrium) magnetization given

by the global minimizers of Φ(m) is the discontinuous function of h shown on

Figure 4.4 This function is the part of the curve in Figure 4.7 (right plot) that

corresponds to the global minimum of Φ(m). It exhibits a jump at h = 0 which

constitutes the first order phase transition.

But what is the physical interpretation of the rest of the curve on Figure 4.7?

We distinguish two parts corresponding to different physical phenomena: the
Make the curve 4.7

with dotted parts to

refer to it more easily

in this paragraph

thick-dotted and the thin-dotted pieces of the curve.

First we interpret the thick-dotted piece. Imagine that we have a piece of

iron that we prepare in a state of positive magnetization which corresponds to

the global minimum of Φ(m). Now we diminish the magnetic field very slowly

starting from h positive and large. Under the right conditions as h slowly be-

comes negative and as long as it stays greater than −|hsp| the magnetization will

not jump to the negative branch but will follow the positive branch which corre-

sponds to the local minimum of Φ(m). As h goes from positive to negative values

in [−|hsp|, 0] the global minimum of the free energy function transforms into a

local minimum, and if this transformation occurs sufficiently slowly the system

remains trapped in this same potential well. Similarly if we start with a nega-

tive magnetization state at large negative magnetic fields and slowly increase h,

as long as h ∈ [0, |hsp|] the magnetization remains negative and trapped in the

local minimum of Φ(m). Local minima of the free energy function (equivalently

the positive magnetization branch for h ∈ [−|hsp|, 0[ and the negative branch

for h ∈ [0, |hsp|]) are called metastable states. These are called ”metastable”

because in physical systems they have a finite lifetime, and decay through a pro-

cess known as nucleation. Because of thermal fluctuations clusters of spins with

their magnetization in the stable global minimum appear, and when a nucleus

of sufficient size forms it grows and the stable magnetization state takes over.

The lifetime is essentially determined by the probability that a nucleus with suf-

ficient size forms. We should stress that in the Curie-Weiss model the lifetime

of metastable states is in fact infinite because on a complete graph a nucleus

cannot grow whatever its size. We will come back to this mechanism in Chapter

14.

Let us now discuss the thin-dotted piece of the curve in Figure 4.7. This part

has a negative slope for |h| < |hsp| and corresponds to the solution m0 which

is a local maximum of Φ(m). This is an unstable solution which a physical sys-
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Figure 4.8 Left: coexistence and spinodal lines in the h− T plane. Right: equilibrium
magnetisation and spinodal line in the m− T plane. In the region between the
equilibrium and spinodal lines a physical system supports metastable states. In the
interior of the spinodal line a homogeneous state is unstable and spinodal
decomposition into domains of equilibrium magnetozation occurs.

tem cannot sustain,7 and the system will spontaneously transition towards its

natural equilibrium state. If a piece of material is forced in such an unstable

magnetization state by applying a sudden quench,8 the magnetisation cannot

remain homogeneous and regions with opposite equilibrium magnetisations will

spontaneously develop. These regions are separated by domain walls where the

magnetization transitions between the two equilibrium values m±. This pro-

cess proceeds homogeneously throughout the system because there is no energy

barrier, and the energy gained in the regions where the magnetization takes equi-

librium values goes into the formation of the domain walls. This phenomenon is

called the spinodal decomposition.

Figure 4.8 summarises the discussion above. In the (T, h) phase diagram the

dotted line hsp = ±h
(√

1− (βJ)−1
)
as a function of T is called the spinodal

line. Metastable states can exist only within the region bounded by this line;

outside of this region there are no metastable states. In the (T,m) plane we

have the equilibrium line m± (also called bimodal line), the spinodal line msp =

±
√
1− (βJ)−1 which marks the limit of metastability, and inside we have the

region of instability where a spinodal decomposition occurs.

Metastability and spinodal decomposition constitute important chapters of

non-equilibrium statistical physics. These phenomena are difficult to approach

from first principles because they are dynamical processes that go beyond the

pure Gibbs equilibrium description. An important and natural approach to esti-

mate the lifetime of a metastable state is based on the analysis of Markov Chain

Monte Carlo (MCMC) dynamics satisfying a detailed balance condition such

that the Gibbs state is a stationary distribution. For the Curie-Weiss model that

7 This would correspond to a magnetization that decreases with increasing magnetic field,

which is unphysical.
8 For example one can start at high temperatures and h = 0 so that the magnetization is

initially zero and suddenly cool the system below the critical temperature to obtain an

unstable state with m = 0, the maximum of Φ(m) at h = 0.
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concerns us here the lifetime of metastable states is infinite (more precisely the

mixing time of MCMC dynamics diverges with the system size) and in a sense

this is why we have accessed them without any dynamical description. The local

minima of the potential function contain the information about the metastable

states. Moreover, the domain walls that occur in a spinodal decomposition are

described by the unstable part of the curve.

In our problems (coding, compressed sensing and satisfiability) we will see in

due time that there are algorithmic analogs of metastability and spinodal lines.

Algorithms can remain trapped in metastable states and spinodal lines indicate

the limits of existence of these trapping states.

Second order transition and critical behaviour

As one traverses the tip of the coexistence line the magnetisation varies in a

continuous but non-differentiable way as shown on Figure 4.5. Here we derive

these critical behaviours and the associated exponents.

First we look at the behaviour of the magnetization for h = 0 as a function

of (βJ)−1 = kBT/J . For βJ close to βJ = 1 all solutions of the Curie-Weiss

equation are close to zero, so we expand around m = 0,

m = tanhβJm ≈ βJm− (βJ)3

3
m3 + . . . (4.25)

For βJ < 1 the only real solution is m = 0, and for βJ > 1 we have two extra

solutions which are the ones that minimise the free energy function

m± ≈ ±3(βJ − 1)1/2 ∝ |1− T

Tc
|1/2, βJ → 1+ orT → Tc = J/kB . (4.26)

Next we set βJ = 1 (or T = Tc) and look what happens for h → 0±. Again

expanding the Curie-Weiss equation around m = 0 we find

m = tanh(m+ J−1h) ≈ m+ J−1h− 1

3
(m+ J−1h)3 + . . . (4.27)

which yields

m ≈ ±(3J−1|h|)1/3 ∝ ±|h|1/3, h→ 0±. (4.28)

4.6 Ising model on a tree

We consider a regular finite tree with a total of n vertices and “coordination

number” k ≥ 3.9 All vertices have degree k, except for the leaf nodes which

have degree 1. The tree is depicted on figure 4.9. On this figure we have singled

9 For k = 2 the tree is a line and the model is solved by the transfer matrix method in the
exercises of Chapter 2. The present method of solution also works in this case and is the
subject of an exercise. Recall however that there is no phase transitions for strictly positive

temepratures.
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out the “central” node o, furthermore there are L “concentric levels” with the

neighbords of the root forming level 1, and so on till the leaf nodes forming level

L. Denoting by VL and EL the vertex and edge sets for the tree with L levels,

the Hamiltonian is simply

HL = −J
∑

{i,j}∈EL

sisj − h
∑
i∈VL

si (4.29)

were J > 0, h ∈ R (each edge is counted once in the first sum). We call this

model the tree-Ising model for short.

Our goal is to compute the magnetization of the central node in the limit

L→ +∞, that is

mo(β, h) ≡ lim
L→+∞

⟨so⟩L

Here we are not directly interested in − logZ/βn and will not compute this

quantity for the tree. Why is this so? For k ≥ 3 the leaf nodes form a positive

fraction, namely (k − 2)/(k − 1), of the total number of vertices.10 In the limit

of large coordination number k → +∞ this fraction even goes to one. As a

result − lnZ/βn contains the ”spurious” effect of leaf nodes whose contribution

dominate in the thermodynamic limit. However this is not what we want to

capture with this model. Indeed our coding and satisfiability problems are defined

on random graphs which are locally tree like but at the same time have all

their nodes equivalent. It is therefore much more relevant for us to compute the

magnetization of the root node of the tree which is ”deep inside” the graph.

In fact a model that is very relevant for us is an Ising model on a random k-

regular graph (this graph ensemble can be described by the Gallager (k, 2) factor

graphs). On a random regular graph all vertices are equivalent and the average

free energy E[logZ]/βn is indeed a very relevant object that we wish to compute.

A rigorous derivation however requires more advanced methods that will only

be developed in part III. Because the k-regular random graphs are locally tree

like, a computation of the magnetization mo(β, h) of the central node of the tree

is a good start. We show in Section 4.7 how this computation suggests a quick

heuristic derivation of the average free energy of the random graph ensemble.

Recursive equations for the magnetization

On the tree with L levels the magnetization of the root node o is by definition

⟨so⟩L =
1

ZL

∑
s

so e
−βHL (4.30)

We can compute this average from a recursive equation obtained by summing

over leaf nodes. A spin si attached to a leaf node interacts only with the spin

10 The total number of vertices on the tree is

n = 1 + k + k(k − 1) + k(k − 1)2 + · · ·+ k(k − 1)L−1 = 1 + k
(k−1)L−1

k−2
, and the number of

leaf nodes is k(k − 1)L−1. For L → +∞ we find k(k − 1)L−1/n → (k − 2)/(k − 1).
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Figure 4.9 A finite tree with coordination number k. All vertices except for the leafs
have k neighbords. The dotted circles represent the levels ℓ = 1, . . . , L.

sp(i) at the parent node p(i). So the spins at the leafs occur in the Gibbs weight

only in a term of the form

eβ
∑

i at level L(Jsp(i)+h)si (4.31)

and the statistical sum over si ∈ {−1,+1} can be performed. This yields the

contribution ∏
i at level L

(
eβJsp(i)+βh + e−βJsp(i)−βh

)
(4.32)

and each term in this product equals

eβh
(
cosh(βJ) + sp(i) sinh(βJ)

)
+ e−βh

(
cosh(βJ)− sp(i) sinh(βJ)

)
∝ cosh(βh) cosh(βJ) + sp(i) sinh(βh) sinh(βJ))

∝ 1 + sp(i) tanh(βh) tanh(βJ)

∝ esp(i) atanh
{
tanh(βh) tanh(βJ)

}
. (4.33)

In the last two terms we have not written explicitely the proportionality constants

(independent of sp(i)) because they cancel out in the ratio (4.30). Now, since each

parent node p(i) at level L− 1 has k− 1 children i at level L, the product (4.32)

is proportional to ∏
i at level L−1

esi(k−1) atanh
{
tanh(βh) tanh(βJ)

}
(4.34)

and (4.30) becomes

⟨so⟩L =
1

Z
(1)
L−1

∑
s

so e
−βH(1)

L−1 (4.35)

where H1
L−1 is the Hamiltonian of a tree-Ising model with L− 1 levels

H(1)
L−1 = −J

∑
(i,j)∈EL−1

sisj − h
∑

i∈VL−2

si − u1
∑

i at level L−1

si (4.36)

and a “renormalized” magnetic field acting on the spins of level L− 1

u1 = h+ β−1(k − 1) atanh
{
tanh(βh) tanh(βJ)

}
(4.37)
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This renormalized magnetic field acting on spins at level L−1 can be interpreted

as the “bare field” plus the sum of k−1 “effective fields” created by the interaction

with the k − 1 children spins. Iterating this calculation L − 1 times we find an

Ising model defined on the root o and its k neighbords with Hamiltonian

H(L−1)
1 = −J

k∑
i=1

sosi − uL−1

k∑
i=1

si (4.38)

where uL−1 is calculated iteratively from

uℓ = h+ β−1(k − 1) atanh
{
tanh(βuℓ−1) tanh(βJ)

}
, u0 = h (4.39)

for ℓ = 1, . . . L−1. Finally, we calculate the magnetization of the root spin using

the Hamiltonian H(L−1)
1 , and we find

⟨so⟩L = tanh
(
βh+ k atanh

{
tanh(βuL−1) tanh(βJ)

})
(4.40)

Note that the “renormalized” field that acts on the root spin is equal to the

“bare field” h plus the sum of k “effective fields” created by the interaction with

its k neighbords at level 1.

The magnetization in thermodynamic limit is given by taking n → +∞, or

equivalently L → +∞. Thus we have to compute u∞ from the recursion (4.39)

with the initial condition u0 = h, and then evaluate the magnetization

mo(β, h) = lim
L→+∞

⟨so⟩L

= tanh
(
βh+ k atanh

{
tanh(βu∞) tanh(βJ)

})
. (4.41)

It is possible to write down an explicit fixed point equation for the magnetization

by expressing tanh(βu∞) as a function of mo(β, h) and replacing in the fixed

point condition of the recursion (4.39) (see exercises).

Analysis of the recursive equation (4.39)

Before we turn our attention to the phase transitions we must determine the

fixed point of the iteration (4.39). We first discuss the set of solutions of the

associated fixed point equation

f(u) = g(u) (4.42)

where f(u) = u − h and g(u) = β−1(k − 1) atanh
{
tanh(βu) tanh(βJ)

}
. Both

functions are obviously monotone increasing (tanh and atanh are monotone in-

creasing), and g(u) has two horizontal asymptotes at infinity limu→±∞ g(u) =

±(k− 1)J , and a slope at the origin equal to limu→0 g(u)/u = (k− 1) tanh(βJ).

It is also easy to see that the maximum slope of g(u) is attained at u = 0. We

distinguish two cases: (k − 1) tanh(βJ) < 1 and (k − 1) tanh(βJ) > 1.

The high temperature case (k − 1) tanh(βJ) < 1 is illustrated on Figure 4.10.

Since the maximum slope of g(u) is less than one it follows that there is only one

solution to the fixed point equation (4.42), and the iterations (4.39) necessarily
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Figure 4.10 Fixed points and iterations for (k − 1) tanh(βJ) < 1 and h > 0

converge to this unique fixed point. These iterations are shown as a dotted line on

Fig. 4.10. In particular, for h = 0 it is obvious to see that the iterations initialized

with u0 = h = 0 yield uℓ = 0 for all ℓ. Thus the spontaneous magnetization

vanishes: limh→0mo(βJ, h) = mo(βJ, 0) = 0.

The low temperature situation (k − 1) tanh(βJ) > 1 is richer. Here the slope

of g(u) at the origin is greater than one so multiple fixed points are possible.

As shown on Figure 4.11 for |h| < hsp Equ. (4.42) has three solutions while for

|h| > hsp it has only one solution. The value of h can be analytically computed

from the condition that f(u) and g(u) are tangent (this is left as an exercise).

The question that remains to be answered when there are multiple fixed points

is: how do we choose the correct one? In the Curie-Weiss case, for h ̸= 0, the

correct solution was selected by minimizing the free energy, and for h = 0 it

was determined by a limiting process h → 0±. Here, when h ̸= 0, the correct

solution is enforced by the initial condition of the iteration (4.39). Figure 4.11

(dotted line) shows that starting with u0 = h > 0 the iterations always converge

to the maximal solution u+ > 0. Similarly if h < 0 starting from u0 = h < 0 the

iteration always converges to the minimal solution u− < 0. The most interesting

case is h = 0. The iterations initialized with u0 = h = 0 trivially give uℓ = 0

for all ℓ and this does not give the correct “physical” magnetization. We already

discussed at length how to solve this conundrum: physically the symmetry is

broken by an infinitesimal magnetic field h = 0±. This means that the physi-

cally correct magnetization, m± = limh→0± mo(β, h) is again determined by the

maximal fixed points u±. Said differently, for (k−1) tanh(βJ) > 1 and h = 0 the

trivial fixed point u = 0 is unstable: iterations initialized with an infinitesimally

positive or negative value of u0 are driven to the non-trivial stable fixed points

u±.
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Figure 4.11 Fixed points and iterations for (k − 1) tanh(βJ) > 1 and h > hsp (left),
0 < h < hsp (right).

Phase transitions and phase diagram

Using the preceding results one finds a phase diagram with the same qualitative

features than the one of the Curie-Weiss model (see Figure 4.6). In the (T, h)

plane there is a coexistence line given by (k − 1) tanh(βJ) > 1 and h = 0. The

tip of the line on the h = 0 axis is at (k − 1) tanh(βJ) = 1 or equivalently

kBTc = J
2 {ln(k/(k − 2))}−1. This tip is the critical point. When we fix the

temperature below the critical point and vary h accross the coexistence line the

magnetization has a jump equal tom+−m− ̸= 0 wherem± = limh→0± m(βJ, h).

This is the first order phase transition just as in the Curie-Weiss (Figure 4.4).

Going accross the critical point we find that the magnetization vanishes con-

tinuously but is not differentiable. This is a second order phase transition and

the critical exponents, 1/2 and 1/3 governing the magnetization behaviour as a

function of temperature and magnetic field, are the same than in the Curie-Weiss

model (see Figure 4.5 and equations (4.26), (4.28)). To see this one may linearize

the fixed point equation (4.42) around u = 0 (because close to the critical point

this equation admits only small solutions) and deduce the leading behavior of

the magnetization (see exercises).

Finally let us point out that the spinodal lines in the (T, h) and (T,m) planes

can be calculated analytically by looking at the condition that f(u) and g(u) are

tangent when (k − 1) tanh(βJ) > 1.

4.7 Free energy for the random k-regular graph

The magnetization of the root node in the tree can be used to derive the average

free energy of the Ising model on a random k-regular graph. Here we provide

a heuristic derivation which is made rigorous in part III once we have more

advanced tools at our disposal. The important point we wish to illustate already
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now, is that the average free energy is given by the minimum of a potential

function and the structure of the solution is similar to the Curie-Weiss model

(even if more tecnically involved).

On the random k-regular graph all vertices are equivalent and therefore

− 1

βn

∂

∂h
E[lnZ] =

1

n

n∑
i=1

E[⟨si⟩] = E[⟨so⟩] (4.43)

where o is any randomly chosen node. A random graph is locally tree-like, which

means that the restriction of the graph to a distance d from o is with probability

1 − O(kd/n) a tree. In the k-regular case the tree has coordination number k.

We therefore expect that

lim
n→+∞

E[⟨so⟩] = mo(β, h) . (4.44)

where the right hand side is the magnetization of the root node on an infinite

regular tree. From (4.43) and (4.44) we calculate the average free energy by

integrating the magnetization,

− lim
n→+∞

1

βn
E[lnZ]|h2

h1
=

∫ h2

h1

dhmo(β, h) (4.45)

For h1 → −∞ all spins polarise towards si = −1, thus the free energy is simply

equal to the energy of this configuration,11 −J |E|+h1n which equals (−Jk/2+
h1)n because kn = 2|E| on a k-regular graph. Therefore replacing h2 → h and

h1 → −∞ in (4.45) we find

− lim
n→+∞

1

βn
E[lnZ] = −Jk

2
+ h+

∫ h

−∞
dh′ (mo(β, h

′) + 1). (4.46)

Remarkably the integral can be computed and one finds12

− lim
n→+∞

1

βn
E[lnZ] = Ψ(u∞) (4.47)

where

Ψ(u) =− k

2β
ln cosh(βJ) +

k

2β
ln
(
1 + tanh(βJ)(tanhu)2

)
− 1

β
ln
{
eβh(1 + tanh(βJ) tanh(βu))k + e−βh(1− tanh(βJ) tanh(βu))k

}
(4.48)

and u∞ is the fixed point of the recursion (4.39). One can also check that this

fixed point equation is precisely the stationarity condition for Ψ(u) and u∞ is a

minimum.

Summarizing, the free energy on the random k-regular graph is given by

11 With all spins polarized to the value si = −1 there is no entropic contribution.
12 The direct computation of the integral is a bit lengthy, but the result can be checked by

carefully differentiating Ψ(u∞) with respect to h which appears explicitly in (4.48) and

implicitly in u∞(h).
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minu Ψ(u), where Ψ(u) plays the role of a natural potential function for this

model. Moreover the minimum of the potential function yields the magnetiza-

tion through Equation (4.41).

4.8 Mean field behaviour13

All the qualitative aspects of the phase transitions for the Curie-Weiss and tree-

Ising models are identical. The precise location of their critical points and spin-

odal lines are different, but the qualitative nature of the first and second phase

transitions are the same. In particular, the critical exponents (that govern the

power law behavior of the magnetization at the critical point) take the same val-

ues. Note also that for the model on a tree the critical exponents do not depend

on the coordination number k ≥ 3. Given that the Curie-Weiss and tree-Ising

models are on face value quite different, this might seem slightly surprizing.

In this respect, it is worth pointing out that there is a direct way to connect

the Ising model on a tree with coordination number k → +∞ to the Curie-weiss

model. To get a well defined limit when k → +∞ the coupling constant in the

Hamiltonian is rescaled as J → J/k. Then from (4.39) and (4.41) we recover the

Curie-Weiss equation m = tanh(βh + βJm) when k → +∞ (see exercises). In

this limit, not only the two models are qualitatively equivalent, but also their

phase diagrams become rigorously identical.

There is a deeper and very generic way to understand why models whose solu-

tion is governed by a potential function and a fixed point equation must, under

mild assumptions, have qualitatively identical phase diagrams. Such models are

called ”mean field models“ and the arguments that we now outline constitute

the basis of the ”mean field theory“ of phase transition. This generic theory goes

back to Landau and is often also called ”Landau theory.“

Suppose that a spin model possesses a Z2 symmetry group14 in the sense

that the Hamiltonian is invariant under the transformation h → −h, si → −si,
i ∈ V . This hypothesis holds for the Curie-Weiss and tree-Ising models (and also

for the canonical Ising model on Zd). Suppose also that the solution of the model

is governed by a fixed point equation

m = t(h,m)

for some smooth function t(h,m), monotone increasing in h and m, and which

depends also on β. This is true for the Curie-Weiss and tree-Ising models (but for

the canonical Ising model on a square grid there is no such fixed point equation).

Because of the Z2 symmetry, when (m,h) satisfies the fixed point equation then

(−m,−h) must also be a solution. Thus t(h,m) must be an odd function of

(h,m). In particular t(0,m) is an odd function of m and thus (h = 0,m = 0)

13 This section is not needed for the main development and can be skipped in a first reading.
14 Here we stick to the simplest situation. Mean field theory can be developed for general

symmetry groups and predictions will typically depend on the group.
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must always be a trivial solution (for all β). Now suppose furthermore that there

exist a second order transition with a critical point,15 say T = Tc and h = 0

(in our examples Tc is given by βcJ = 1 or (k − 1) tanh(βcJ) = 1). Then, by

definition of the second order transition, the magnetization vanishes continuously

at the critical point and for T ↑ Tc, h→ 0± it is small. Therefore we perform a

Taylor expansion

t(m,h) = a(T )m+ b(T )m3 − c(T )h+ . . .

where only odd powers contribute since the function is odd (we have dropped

terms of higher order h3,m2h,mh2, . . . which do not change the arguments be-

low). Landau’s theory makes mild assumptions on the temperature dependence

of the coefficients in this expansion. We require that m = 0 is a triple solution

at the critical point (T = Tc, h = 0), which branches out into three distinct

solutions m− < m0 = 0 < m+ for T < Tc. This implies a(Tc) = 1 and a(T ) > 1

for T < Tc. We therefore assume that generically a(T ) ≈ 1 + a′(Tc)(T − Tc)

with a′(Tc) < 0. Furthermore one can argue from statbility requirements that

b(T ) > 0 and c(T ) > 0.

With these assumptions for h = 0 and T ≈ Tc the fixed point equation becomes

a′(Tc)(T − Tc)m+ b(Tc)m
3 ≈ 0

For T > Tc the only solution is m = 0, and for T < Tc we have two extra non

trivial solutions m ∝ ±(1 − T/Tc)1/2. Similarly at T = Tc and h ≈ 0 the fixed

point equation becomes

b(Tc)m
3 − c(Tc)h ≈ 0

which implies m ∝ sign(h)|h|1/3. These power law behaviours have precisely the

same critical exponents than those of the Curie-Weiss and tree-Ising models.

To summarize Landau’s mean field theory assumes reasonable forms of the

fixed point equation (or the potential function) close to the critical points, dic-

tated by symmetry and stability requirements, and predicts critical exponents

which are independent of the microscopic details of the underlying Hamiltonian

(such as the coordination number k for example). One of the main developments

in modern statistical mechanics has been the realization that this is also largely

true in situations where Landau’s mean field arguments break down. Let us give

a glimpse of this last point.

Typically the range of validity of mean field theory is confined to models de-

fined on high dimensional graphs for which the numbers of neighbords of a vertex

grows fast enough with the graph-distance to the vertex (as is the case for the

complete graph and the tree). For such systems one can neglect spatial fluctua-

tions of the local magnetization and phase transitions are controlled by a fixed

point equation involving a uniform magnetization. For finite dimensional models

on regular grids (say Zd) there is no such fixed point equation that rigorously

15 There are systems described by a fixed point equation which have only first order phase

transitions and no critical points. An example is provided in exercise 4.6.



96 Two Exactly Solvable Models

gives the true free energy. One has to take into account the fluctuations of the

local magnetization into account. The renormalization group theory which takes

into account fluctuations and yields correct critical exponents in low dimensions,

scores as one of the big successes of statistical mechanics. Roughly speaking

above some ”critical dimension” d ≥ dc, fluctuations do not matter much, and

mean field or Landau theory yields correct critical exponents independent of d

(though the quantitative details of the phase diagram such as the precise value

of the critical temperature are only approximate). Below this critical dimension

d < dc, fluctuations matter, Landau’s theory breaks down, and the critical expo-

nents depend on d. The renormalization group theory predicts that models can

be classified in ”universality classes“ with identical critical exponents depend-

ing only on general features such as the symmetry group of the Hamiltonian

and the dimensionality of space, but not on other details of the Hamiltonian.

This ”universality“ explains why an oversimplified model such as the canonical

Ising model in three spatial dimensions correctly predicts the critical exponents

observed in very different physical systems such as alloys, fluids and magnets.

Despite its shortcomings Landau’s theory (or extensions of it) often forms a

good basis for the renormalization group treatment. The mean field analysis cor-

responds to an approximation that neglects fluctuations, but in doing so already

gives a good idea of what the phase diagram look like.

4.9 Phase transitions in the canonical Ising model16

In Chapter 2 we introduced the canonical Ising model on a regular grid Zd. Mod-

els with a low dimensional regular underlying graph have geometrical features

that are absent in the Curie-Weiss, tree-Ising, and in our three basic problems.

It turns out the solutions and mathematical methods of analysis for low dimen-

sional models are for the most part quite different than thsoe discussed here.

Nevertheless there is value in briefly reviewing a few fundamental results on the

canonical Ising model.

The one dimensional Ising model introduced by Lenz and Ising in 1925 can

be exactly solved. For example one can apply the solution on a tree to the case

k = 2, or one can use the ”transfer matrix” method outlined in exercise 2.6.

The free energy per spin as well as the magnetization in the thermodynamic

limit are perfectly analytic for any β−1 > 0 and h ∈ R. Therefore there are

no phase transitions for any strictly positive temperature. In particular there

is no spontaneous magnetization, i.e., limh→0± m(βJ, βh) = 0 for all positive

temperatures β−1 > 0.17 Note that there is a ”zero temperature” first order

16 This section is not needed for the main development and can be skipped in a first reading.
17 General theorems ensure that this is true for a wide class of one dimensional models with

sufficiently short range interactions. If the coupling constant decays faster than
Jij ∼ |i− j|−α, α > 2 there is no phase transition at any positive temperature

(Ruelle 1969)e.g.
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phase transition in the sense that limβ→+∞ f(β, J, h) = −J − |h| which yields

a spontaneous magnetization equal to ±1 when h → 0± (this can be seen from

the expression of the free energy in exercise 2.6 or more directly by minimising

the Hamiltonian).

In all dimensions d ≥ 2 there are bona fide first and second order phase

transitions at finite temperatures. This was not understood until the (essentially)

rigorous proof by Peierls in 1930 who showed the existence of a phase transition

in two dimensions. The phase diagram similar to Figure 4.6 in the (T, h) plane

displays a coexistence line (T < Tc, h = 0) which terminates at a critical point

(T = Tc, h = 0). Away from the coexistence line and critical point the free energy

and magnetization are analytic.

The first order transition consists of a jump in the first derivative of the free

energy across the coexistence line. Equivalently there is a non-vanishing spon-

taneous magnetization m± = limh→0± m(βJ, βh) for β > βc. Because of the

Z2 symmetry of the model m− = −m+. The symmetry also implies that for

β < βc where the free energy and magnetization are analytic we must have

limh→0± m = 0.

At the critical point the first derivative of the free energy is continuous but the

second derivative has a jump. More precisely the magnetization has power law

behaviours governed by critical exponents commonly denoted β and δ, m± ∝
±|1− T/Tc|β for T ↑ Tc and m± ∝ ±|h|1/δ for h→ 0± and T = Tc. As pointed

out in the previous section the critical exponents depend on the dimension for

d < dc and are given by the mean field exponents for d > dc. For the Ising model

dc = 4.

In two dimensions for h = 0 the analytical expressions of the free energy and

spontaneous magnetization are known and where first described by Onsager in his

celebrated 1948 solution (the complete derivation of the spontaneous magnetiza-

tion was explicitly given later by Yang in 1952). The spontaneous magnetization

for β > βc is given by a remarkably simple exact formula

m±(β) = |1− (sinh(2βJ))−1|1/8

where the critical temperature is given by sinh(2βcJ) = 1. It should be pointed

out that we still do not know of an exact expression for the magnetization when

h ̸= 0. The main importance of Onsager’s solution was to show that m±(β) ∝
±|1−T/Tc|1/8 for T ↑ Tc with a critical exponent 1/8. It is also known that in two

dimensions δ = 15. Thus the second order phase transition is not qualitatively

identical to the Curie-Weiss one and the simple Landau theory outlined in the

previous section does not apply.

The analytical solution of the three dimensional model is still an open prob-

lem. To compute the critical exponents one has to resort to the renormalisation

group methods developed in the seventies. The most recent progress based on

assumptions of scale invariance of the ”magnetization field” near the critical

point yields very precise critical exponents β = 0.32642(2) and δ = 4.78982(7).
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Similarly to the two dimensional case, the critical behaviour in three dimensions

is different from the Curie-Weiss one and is not described by Landau’s theory.

the renormalization group methods predict that for all dimensions d ≥ 4 the

critical exponents are the same than in the Landau theory. We have β = 1/2

and δ = 3. It is beyond our scope to explain here why dc = 4 constitutes the

critical dimension above which the second order phase transition has mean field

behaviour. Nevertheless it is not very difficult to understand why this is so when

d→ +∞, so let us discuss this point.

On Zd the number of neighbords of a vertex is equal to 2d and the interaction

term of a spin with its neighbords is of the form −Jsi
∑2d

j=1 sj . For d very large

we expect that the fluctuations of 1
2d

∑2d
j=1 sj are negligible and that the sum

concentrates over the magnetization m. The Hamiltonian effectively becomes for

d very large

−2dJm
n∑

i=1

si − h
n∑

i=1

si .

This describes a system of independent spins in an effective magnetic field

2dJm + h and an elementary calculation shows that for this effective system

the magnetization m = ⟨si⟩ satisfies the Curie-Weiss equation

m = tanh(2dβJm+ βh) .

The arguments outlined here constitute what is called the ”mean field approxi-

mation” for the Ising model. With a bit of work one can show that this approx-

imation becomes exact when d → +∞ for an Ising model where we rescale the

coupling constant J → J/2d. In this limit one can truly neglect the fluctuations

of the magnetization andm = tanh(βJm+h) holds for the rescaled model. Thus,

the Curie-Weiss model on a complete graph, the tree-Ising model with k → +∞
and the canonical Ising model with d→ +∞ are all equivalent.

The smaller the dimension the worse the predictions of the Curie-Weiss equa-

tion. For ”infinite” dimension all its predictions are correct. For finite dimensions

the value of the critical temperature is wrong but the critical exponents are cor-

rect as long as d ≥ 4 because fluctuations do not affect the power law behaviours

close to the critical point. For three and two dimensions the Curie-Weiss critical

exponents are wrong because fluctuations play a role in the second order phase

transition. In one dimension the Curie-Weiss equation completely fails since it

predicts a phase transition at finite temperatures, which we know does not hap-

pen.

4.10 Notes

The Ising model on a complete graph was first introduced as such by (Kac 1968)

who named it the Curie-Weiss model. Marc Kac also introduced various other

limits of the Ising model on high dimensional graphs or long range interactions
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which are exactly solvable and have a ”mean field“ behaviour in the limit. We

will in fact have the occasion to discuss similar limits when we introduce spatial

coupling.

The Ising model on trees was analyzed at least since the 50’s in various works

that clarified the role of the ”boundary“ leaves of the tree. In the physics lit-

erature a distinction is made between the so-called ”Cayley tree“ and ”Bethe

lattice“ models. Both are Ising models on a tree but the former computes the

partition function and free energy of the tree taking into account the leaves at

the ”boundary“, and the second eliminates boundary effects by computing the

magnetization of the root. It is the second setting that we discussed in this chap-

ter because it is the one that is relevant for us. Indeed, when we go to random

graphs there are no boundary leaves.

Exactly solvable models of classical statistical mechanics and more generally

rigorous results have played, and still play, an important role in the investiga-

tions of the nature of various phase transitions. There are two essential categories

of solvable models: one and two dimensional models on regular grids solved by

the ”transfer matrix“ method (the main idea of this method is presented in

exercise 2.6 for one space dimension) and infinite dimensional models. The in-

finite dimensional case, by which we mean models on complete graphs, trees

and random graphs, is very relevant in coding, compressive sensing and satisfi-

ability. A classic reference for the beautiful topic of exactly solvable models is

(Baxter 1982). The Curie-Weiss and tree-Ising mode, their fixed point equations

and phase diagrams, are analyzed in detail in that reference. A rigorous deriva-

tion of the free energy of the Ising model on random sparse graphs can be found

in (Dembo & Montanari 2010).

The first exact solution of the two-dimensional canonical Ising model for zero

field and the calculation of the spontaneous magnetization is due to (Onsager

1944) and (Onsager 1952). This solution showed for the first time that one had

to go beyond mean field theories to corrcetly calculate critical exponents in low

dimensions. See (McCoy & Wu 1973) for a classic book on the two dimensional

Ising model. There are numerous other rigorous results about the canonical Ising

model and its variations that we have not reviewed at all. Let us only mention

that while it was clear from the very beginning that the one-dimensional Ising

model has no phase transition (see exercises 2.6 and 4.2), and more generally that

phase transitions do not occur in one dimension for short range interactions,

the higher dimensional case d ≥ 2 was more mysterious. It is only after the

famous argument of (Peierls 1936) that the existence of phase transitions in

Ising models for d ≥ 2 was recognized. The mathematical proofs of the existence

of phase transitions, were established in important papers by (Griffiths 1964) and

(Dobrushin 1965). The rigorous theory of phase transitions for finite dimensional

models on regular graphs then became a discipline of its own (e.g Ruelle 1969,

Simon 1993).

The Curie-Weiss equation itself goes back to the works of Curie and Weiss on

the para and ferro-magnetic states. The ”molecular field hypothesis“ of (Weiss
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1907) was a crucial step for the development of the mean field approach to the

theory of phase transitions. The mean field approach was developped for alloys by

(Bragg & Williams 1934) and then improved in a famous paper of (Bethe 1935)

who Bethe investigated corrections to Weiss’s theory. These corrections are im-

portant for sparse random and tree like graphs, but also for random interactions

on complete graphs. As we will discover they are naturally embodied in message

passing algorithms.

There are deep similarities between phase transitions in very different systems

such as alloys, fluids or magnets, and which where explained by Landau’s mean

field theory (Landau 1937). A very good historical account of these developments

as well as our introduction to mean field theory is provided by (Kadanoff 2009).

Extensive treatments can be found in numerous books (e.g Stanley 1971, Chaikin

& Lubensky 2007). The renormalization group treatment that takes into account

fluctuations beyond mean filed theory can be found in many classic textbooks

(e.g Ma 1976, Huang 1987, Goldenfeld 1993).

Problems

4.1 2p-spin model on a complete graph. Consider a set of n spins with

Hamiltonian

H(s) = − J

(2p− 1)!N2p−1

∑
i1 ̸=i2 ̸=···≠i2p

si1si2 . . . si2p − h
n∑

i=1

si

where p ≥ 1 is an integer and the first sum carries over 2p-tuples with distinct

indices. For p = 1 this is the Curie-Weiss model. Repeat the calculations of the

usual Curie-Weiss model to obtain a variational expression for the free energy

and show that the magnetization satisfies the fixed point equation

m = tanh(βJm2p−1 + βh)

Determine the phase diagram. Show in particular that for p ≥ 2 there is only a

first order phase transition (and no second order phase transition).

4.2 One dimensional Ising model. Apply the solution of the Ising model

on a tree to k = 2 (a line) and that there is no phase transition for any strictly

positive temperature. Check that one recovers the same solution than the one

obtained from the transfer matrix method in exercise 2.6.

4.3 Critical exponents of the Ising model on a tree. Analyze the fixed

point equation for this model close to the critical point. Calculate the critical

exponents governing the power law behaviour of the magnetization.

4.4 Spinodal lines. Consider the Ising model on a tree. Calculate analytically

the spinodal points hsp and msp as a function of the temperature. Plot the

spinodal lines in the (T, h) and (T,m) planes.

4.5 Fixed point equations for Ising model on a tree. Use (4.39) and

(4.41) to deduce the fixed point equation for the magnetization mo(β, h) of the
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central node,

mo = tanh
{
βh+ βy(m;βh, βJ)

}
. (4.49)

with

y(mo;βh, βJ) = β−1k atanh

(
mo

tanh(βJ) + (tanh((βh− atanhmo)/k))
2

tanh(βJ) + 1

)
.

Rescale the coupling constant J → J/k and check that this equation reduces to

the Curie-Weiss one in the limit of infinite coordination number k → +∞.

4.6 2p-spin model on a tree. Consider a tree factor graph with variable

nodes of degree k and constraint nodes of even degree 2p. There are L levels

of factor nodes and each factor node contributes a term −Jsi1si2 . . . si2p (for

i1, i2, . . . , i2p attached to the factor node). For p = 1 this is the usual tree-Ising

model. Generalize the calculations of section 4.6 and deduce the analog of the

iterative equations (4.39) and (4.41). Show that for p ≥ 2 there is only a first

order phase transition (and no second order phase transition).





Part II

Analysis of Message Passing
Algorithms





5 Marginalization and Sum-Product
Equations

We have seen that computing the marginals of the Gibbs distributions is a central

problem. For example in coding and compressed sensing the tasks of decoding

and signal estimation can both be reduced to the determination of a “magnetiza-

tion” which in turn is easy to obtain once we know the marginals. Unfortunately,

for general Gibbs distributions computing marginals is an intractable problem.

Nevertheless all is not lost, much to the contrary. Indeed, we saw in Chapter 1

that the factor graphs of our models are always either locally tree like (coding

andK-SAT) or complete (compressive sensing); and in Chapter 4 we learned how

to exactly solve two simple Ising models, on the tree and the complete graph,

which are toy versions of our more ambitious models.

In this chapter we will concentrate on an efficient calculation of marginals

for the case where the factor graph is a tree. The emphasis here is on the word

“efficient”. We will see that this question has a natural answer in the form of a

message-passing algorithm. The message-passing paradigm is the basis for the

low-complexity algorithms which we will apply to our problems even when the

factor graph is not a tree. There is a price to pay on non-tree graphs because

low-complexity algorithms do not necessarily perform exact marginalization is a

priori not exact. Therefore our low complexity message passing algorithms are

suboptimal in the sense that they do not give correct solutions up to the “optimal”

thresholds. For example message passing decoders do not work up to the MAP

threshold of the code ensemble; K-SAT solvers based on message passing find

solutions only for densities α quite smaller than the satsifiability threshold αs.

In the analysis of message passing we will find algorithmic thresholds which are

smaller (i.e. worse) than the optimal thresholds.

There is a surprise however. Message-passing algorithms are also the key for the

analysis of the optimal thresholds and phase transitions of our three examples.

A priori it is not obvious that there should be any connection between optimal

thresholds and low-complexity algorithms. For example optimal thresholds are

non-differentiability points of the free energy, but algorithmic thresholds are not

visible on the free energy (since away from phase transition points this quantity

is analytic). Nevertheless these two worlds are connected as we will see in the

third part of our lectures. Quite remarkably one can also go one step further.

In Chapter 14 we will consider a class of ensembles - called spatially coupled

ensembles - for which the optimal and algorithmic thresholds may even be equal.
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For these ensembles the low complexity message passing methods work all the

way up to the optimal thresholds and allow optimal solutions!

So far we have associated a factor graph to Hamiltonians or cost functions. In

the next section this idea is taken a little bit further by associating the factor

graph to the Gibbs distribution itself. We then use this representation to help

organize the marginalization on trees and derive the message passing algorithm.

As we will see, on trees marginalization ultimately boils down to an application

of a distributive law of multiplication and addition. Finally we illustrate through

simple examples how the formalism is applied to our three problems.

5.1 Factor graph representation of Gibbs distributions

One important characteristic of the Gibbs distributions of our three problems is

its factorized form. Generically

p(x) =
1

Z

m∏
c=1

fc(x∂c), Z =
∑

x∈Xn

m∏
c=1

fc(x∂c) (5.1)

where x∂c is the set (or vector) of variables xi entering as arguments of the

factors fc.

The simplest incarnation of this factorization occurs in K-SAT (see (3.57))

where in spin language xi → si = (−1)xi and the alphabet is X = {−1,+1}
and the factors are fa(s∂a) = exp

{
−β
∏

i∈∂a
1
2 (

1+siJia

2 )
}
. For coding (see Equ.

(3.10)) we have two types of factors fi(si) = ehisi and fa(s∂a) =
1
2 (1+

∏
i∈∂a si).

For compressed sensing (see Equ. (3.43)) the alphabet is continuous X = R
so in (5.1) the sums must be interpreted as integrals

∫
dnx and there are two

types of factors fi(xi) = (p0(xi))
β and fa(x∂a) = e−

β

2σ2 (ya−AT
a x)2 . Analogous

identifications for general Ising models of Chapter 2 and also for the Curie-Weiss

model are left as an exercise. Note that the factorization is not unique, but

usually it is pretty clear how to find a natural one.

From now on we will focus on a generic factorization (5.1) and we come back

to specific illustrations in Sections 5.4, 5.5 and 5.6. We associate with this fac-

torization a factor graph which is mildly different from the ones introduced in

Chapter 1. For each variable xi draw a variable node (circle) and for each factor

fc draw a factor node (square). Connect a variable node to a factor node by an

edge if and only if the corresponding variable appears in this factor.

example 11 (Simple Example) Let’s start with an example that will serve as

our running example. Consider a distribution with factorization

p(x1, x2, x3, x4, x5, x6) =
1

Z
f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5). (5.2)

The resulting graph for this distribution is shown on the Figure 5.1. □

The factor graph is bipartite. This means that the set of vertices is partitioned
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x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

Figure 5.1 Factor graph of f given in Example 11.

into two groups, the set of nodes corresponding to variables and the set of nodes

corresponding to factors, and moreover that an edge only connects a variable

node to a factor node. For our particular example the factor graph is a (bipartite)

tree. This means that there are no cycles in the graph; i.e., there is one and only

one path between each pair of nodes.

As we will show in the next section, for factor graphs that are trees marginals

can be computed efficiently by message-passing algorithms.

5.2 Marginalization on trees

We first remark that in order to carry out the marginalization in practice one can

first ignore the partition function Z. Indeed suppose that we want to compute

the marginal ν1(x1) for (5.1) (recall definition (2.24)). If we first compute the

“marginal” of the numerator only1

µ1(x1) =
∑
∼x1

∏
c

fc(x∂c), (5.3)

then clearly ν1(x1) = µ(x1)/Z ∝ µ1(x1). So the only difference between ν1(x1)

and µ1(x1) is a proportionality factor which serves to normalize the marginal.

Thus, assuming that we are able to compute µ(x1), we simply get the marginal

by normalizing

ν1(x1) =
µ1(x1)∑

x1∈X µ1(x1)
. (5.4)

This last step is an easy task that involves only one sum or an integral in the

denominator. Note also that Z =
∑

x1
µ1(x1).

In the following and also in practice we just deal with the “marginalization”

of the numerator and normalize the result in the very last step.

1 Recall that the notation
∑

∼x1
means “summation over all variables except x1” which

remains fixed.
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Distributive Law

On trees marginalization can be achieved by a careful application of the distribu-

tive law. Let F be a field (think of F = R) and let a, b, c ∈ F. The distributive

law states

ab+ ac = a(b+ c). (5.5)

This simple relation, properly applied, can significantly reduce computational

complexity. Consider for example the evaluation of

n∑
i,j=1

aibj as (
n∑

i=1

ai)(
n∑

j=1

bj) .

Instead of n2 multiplications and n2−1 additions we perform 1 multiplication and

2n additions. Factor graphs provide an appropriate framework to take advantage

of the distributive law in a systematic way.

Let’s start with Example 11. The numerator of p is a function f with factor-

ization

f(x1, x2, x3, x4, x5, x6) = f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5). (5.6)

We are interested in computing the “marginal” of f with respect to x1

µ1(x1) =
∑
∼x1

f(x1, x2, x3, x4, x5, x6).

What is the complexity of a brute force computation? Assume that all variables

take values in a finite alphabet X . Determining ν(x1) for all values of x1 by brute

force requires Θ
(
|X |6

)
operations, where we assume a naive computational model

in which all operations (addition, multiplication, function evaluations, etc.) have

the same cost. But we can do better: taking advantage of the factorization, we

can rewrite ν(x1) as

µ(x1) =

[∑
x2,x3

f1(x1, x2, x3)

][∑
x4

f3(x4)

(∑
x6

f2(x1, x4, x6)

)(∑
x5

f4(x4, x5)

)]
.

Fix x1. The evaluation of the first square bracket can be accomplished with

Θ
(
|X |2

)
operations. The second square bracket depends only on x4, x5, and

x6. It can be evaluated efficiently in the following manner. For each value of

x4 (and x1 fixed), determine
∑

x5
f4(x4, x5) and

∑
x6
f2(x1, x4, x6). Multiply by

f3(x4) and sum over x4. Therefore, the evaluation of the second bracket requires

Θ
(
|X |2

)
operations as well. Since there are |X | values for x1, the overall task

has complexity Θ
(
|X |3

)
. This compares favorably to the complexity Θ

(
|X |6

)
of

the brute force approach.

Recursive Determination of Marginals

Consider the factorization of a generic function g (for example the numerator of a

Gibbs distribution (5.1)) and suppose that the associated factor graph is a (bipar-
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tite) tree. Suppose that we are interested in marginalizing g with respect to the

variable z; in other words we are interested in computing µ(z) =
∑

∼z g(z, . . . ).

Since the factor graph of g is a bipartite tree, g has a generic factorization of the

form

g(z, . . . ) =

K∏
k=1

[gk(z, . . . )] (5.7)

for some integer K with the following crucial property: z appears in each of the

factors gk, but all other variables appear in only one factor. To see this assume to

the contrary that another variable is contained in two of the factors. This implies

that besides the path that connects these two factors via variable z, another path

must exist. But this contradicts the assumption that the factor graph is a tree.

For the function f of Example 11 this factorization is

f(x1, . . . ) = [f1(x1, x2, x3)] [f2(x1, x4, x6)f3(x4)f4(x4, x5)] ,

so that K = 2. The generic factorization and the particular instance for our

running example f are shown in Figure 5.2. Taking into account that the indi-

z
g

x1

f1 f2

x2 x3 x4 x6

f3 f4

x5

f

[g1] [gk] [gK ] [f1]

[f2f3f4]

Figure 5.2 Generic factorization and the particular instance.

vidual factors gk(z, . . . ) in (5.7) only share the variable z, an application of the

distributive law leads to

µ(z) =
∑
∼z

g(z, . . . ) =
∑
∼z

K∏
k=1

[gk(z, . . . )] =

K∏
k=1

[∑
∼z

gk(z, . . . )
]
. (5.8)

In words, the marginal
∑

∼z g(z, . . . ) is the product of the individual marginals∑
∼z gk(z, . . . ). In terms of our running example we have

µ1(x1) =
[∑
∼x1

f1(x1, x2, x3)
][∑

∼x1

f2(x1, x4, x6)f3(x4)f4(x4, x5)
]
.

This single application of the distributive law leads, in general, to a non-negligible
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reduction in complexity. But we can go further and apply the same idea recur-

sively to each of the terms gk(z, . . . ).

In general, each gk is itself a product of factors. In Figure 5.2 these are the

factors of g that are grouped together in one of the ellipsoids. Since the factor

graph is a bipartite tree, gk must in turn have a generic factorization of the form

gk(z, . . . ) = h(z, z1, . . . , zJ)
J∏

j=1

[hj(zj , . . . )] ,

where z appears only in the “kernel” h(z, z1, . . . , zJ ) and each of the zj appears

at most twice, possibly in the kernel and in at most one of the factors hj(zj , . . . ).

All other variables are again unique to a single factor. For our running example

we have

f2(x1, x4, x6)f3(x4)f4(x4, x5) = f2(x1, x4, x6) [f3(x4)f4(x4, x5)] [1] .

where f2(x1, x4, x6) is the kernel and the factors are [f3(x4)f4(x4, x5)] and [1].

The generic factorization and the particular instance for our running example

are shown in Figure 5.3. Another application of the distributive law gives

z

kernel h

z1 zj zJ

[h1] [hj ] [hJ ] f3
f4

x5

x1

f2kernel

x4 x6

[f3f4]

[1]

[f2f3f4][gk]

Figure 5.3 Generic factorization of gk (left) and the particular instance (right).

∑
∼z

gk(z, . . . ) =
∑
∼z

h(z, z1, . . . , zJ)
J∏

j=1

[hj(zj , . . . )]

=
∑
∼z

h(z, z1, . . . , zJ)
J∏

j=1

[∑
∼zj

hj(zj , . . . )
]
. (5.9)

In words, the desired marginal
∑

∼z gk(z, . . . ) can be computed by multiplying

the kernel h(z, z1, . . . , zJ ) with the product of individual marginals
∑

∼zj
hj(zj , . . . )

and summing out all remaining variables other than z.

We are back to where we started. Each factor hj(zj , . . . ) has the same generic

form as the original function g(z, . . . ), so that we can continue to break down the
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marginalization task into smaller pieces. This recursive process continues until

we have reached the leaves of the tree. The calculation of the marginal then

follows the recursive splitting in reverse. In general, nodes in the graph compute

marginals, which are functions over X , and pass these on to the next level. The

message combining rules at function nodes is explicit in (5.9). And at a variable

node we simply perform pointwise multiplication. In the next section we will

elaborate on this method of computation known as message passing.

Let us consider the initialization of the process. At the leaf nodes the task is

simple. A function leaf node has the generic form gk(z), so that
∑

∼z gk(z) =

gk(z). This means that the initial message sent by a function leaf node is the func-

tion itself. To find out the correct initialization at a variable leaf node consider the

simple example of computing
∑

∼x1
f(x1, x2). Here, x2 is the variable leaf node.

By the message-passing rule (5.9) the marginal is equal to
∑

∼x1
f(x1, x2)·µ(x2),

where µ(x2) is the initial message that we send from the leaf variable node x2
towards the kernel f(x1, x2). We see that to get the correct result this initial

message should be the constant function 1.

5.3 Marginalization via Message Passing

In the previous section we have seen that, in the case where the factor graph is a

tree, the marginalization problem can be broken down into smaller and smaller

tasks according to the structure of the tree.

This gives rise to the following efficient message-passing algorithm. The algo-

rithm proceeds by sending messages along the edges of the tree. Messages are

functions on X , or, equivalently, vectors of length |X |. Message passing originates

at the leaf nodes, messages are passed up the tree and, as soon as a node has

received the messages from all its children, they are processed and the result is

passed up to the parent node. Finally they are combined to form the marginal

of the whole function.

example 12 (Message-Passing Algorithm for f of Example 11) Consider this

procedure in detail for the case of our running example as shown in Figure 5.4.

The top leftmost graph is the factor graph. Message passing starts at the leaf

nodes as shown in the middle graph on the top. The variable leaf nodes x2, x3,

x5, and x6 send the constant function 1 as discussed at the end of the previous

section. The factor leaf node f3 sends the function f3 up to its parent node.

In the next time step the factor node f1 has received messages from both its

children and can therefore proceed. According to (5.9), the message it sends

up to its parent node x1 is the product of the incoming messages times the

“kernel” f1, after summing out all variable nodes except x1. This message is∑
∼x1

f1(x1, x2, x3). In the same manner factor node f4 forwards to its parent

node x4 the message
∑

∼x4
f4(x4, x5). This is shown in the rightmost figure in

the top row. Now, variable node x4 has received messages from all its children. It
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forwards to its parent node f2 the product of its incoming messages, in agreement

with (5.8), which says that the marginal of a product is the product of the

marginals. This message, which is a function of x4, is f3(x4)
∑

∼x4
f(x4, x5) =∑

∼x4
f3(x4)f4(x4, x5). Next, function node f2 can forward its message, and,

finally, the marginalization is achieved by multiplying all incoming messages at

the root node x1. □

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3

1

1

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑

∼x4
f4

1

1

∑
∼x1

f1

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑

∼x4
f4

1

1

∑
∼x1

f1

∑
∼x4

f3f4

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑

∼x4
f4

1

1

∑
∼x1

f1

∑
∼x4

f3f4

∑
∼x1

f2f3f4

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑

∼x4
f4

1

1

∑
∼x1

f1

∑
∼x4

f3f4

∑
∼x1

f2f3f4

∑
∼x1

f1f2f3f4

Figure 5.4 Marginalization of function f from Example 11 via message passing.
Message passing starts at the leaf nodes. A node that has received messages from all
its children processes the messages and forwards the result to its parent node. Bold
edges indicate edges along which messages have already been sent.

Complexity of message passing

Before stating the message-passing rules formally, consider the following impor-

tant generalization. Whereas so far we have considered the marginalization of

a function f with respect to a single variable x1 we are actually interested in

marginalizing for all variables. We have seen that a single marginalization can be

performed efficiently if the factor graph of f is a tree, and that the complexity

of the computation essentially depends on the largest degree of the factor graph

and the size of the underlying alphabet. Consider now the problem of computing

all marginals. We could draw for each variable a tree rooted in this variable and

execute the single marginal message-passing algorithm on each rooted tree. It is

easy to see, however, that the algorithm does not depend on which node is the

root of the tree and that in fact all the computations can be performed simulta-

neously. Simply start at all leaf nodes and for every edge compute the outgoing

message along this edge as soon as you have received the incoming messages
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along all other edges that connect to the given node. Continue in this fashion

until a message has been sent in both directions along every edge. This computes

all marginals so it is more complex than computing a single marginal but only

by a factor roughly equal to the average degree of the nodes. We now formalise

this discussion.

Belief propagation equations

Messages flow on edges in both directions. Messages from variables nodes to

factor nodes are denoted µi→c, and messages from function nodes to variable

nodes µ̂c→i. The letters a, b, c, . . . are reserved for factor nodes and i, j, k, . . . for

variable nodes. Although this may sometimes be redundant notation, in order to

avoid confusions it is convenient to reserve µ for messages from variable nodes to

factor nodes and µ̂ for messages from factor nodes to variable nodes. Marginals,

once normalized, will be denoted by ν. Messages and marginals are functions on

X and for finite alphabets it is sometimes useful to think of them as vectors with

|X | components.

Message passing starts at leaf nodes. Consider a node and one of its adjacent

edges, call it e. As soon as the incoming messages to the node along all other

adjacent edges have been received these messages are processed and the result is

sent out along e. This process continues until messages along all edges in the tree

fc

xi

µ̂c→i(xi) = fc(xi)
initialization at

leaf nodes
xi

fc

µ(xi) = 1

fc

xi

variable/function
node processing

µi→c(xi) = µ̂d→i(xi)µ̂e→i(xi)µ̂f→i(xi)

µ̂d→i µ̂e→iµ̂f→i

fd
fe

ff

xi

fc

µ̂(xi) =
∑

∼xi
fc(xi, xj , xk, xl)µj→c(xj)µk→c(xk)µl→c(xl)

µj→c µk→cµl→c

xj

xk

xl

ximarginalization ν(xi) = µ̂a→i(xi)µ̂b→i(xi)µ̂c→i(xi)µ̂d→i(xi)

µ̂a→i µ̂b→iµ̂c→i

fa
fb

fc

fd

µd→i

Figure 5.5 Message-passing rules. The top row shows the initialization of the messages
at the leaf nodes. The middle row corresponds to the processing rules at the variable
and function nodes, respectively. The bottom row explains the final marginalization
step.
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have been processed. In the final step the marginals are computed by combining

all messages which enter a particular variable node. The initial conditions and

processing rules are summarized in Figure 5.5. Since the messages represent

(unormalized) probabilities or beliefs, the algorithm is also known as the Belief

Propagation (BP) algorithm. From now on we will mostly refer to it under this

name.

We sumarize the BP relations here for further reference2{
µi→a (xi) =

∏
b∈∂i∖a µ̂b→i (xi) ,

µ̂a→i (xi) =
∑

∼xi
fa (x∂a)

∏
j∈∂a∖i µj→a (xj) .

(5.10)

with the proviso that at leaf nodes µi→c(xi) = 1 and µ̂c→i(xi) = fc(x∂c). The

marginals are obtained asνi (xi) =
∏

a∈∂i µ̂a→i(xi)∑
xi

∏
a∈∂i µ̂a→i(xi)

νa (x∂a) =
fa(x∂a)

∏
i∈∂a µi→a(xi)∑

x∂a
fa(x∂a)

∏
i∈∂a µi→a(xi)

.
(5.11)

When we compute the marginals it is not important how the µ and µ̂messages are

normalized because in (5.11) the normalizations cancel out. We will sometimes

exploit this fact and write (5.10) as proportionality relations. This often simplifies

many calculations.

Algorithmic versus static point of view

As explained, BP relations allow to compute exact marginals on trees. By starting

the process at leaf nodes we are sure that it converges in a finite number of steps

to the exact marginals. On non-tree graphs the situation is not as simple because

this process usually does not yield exact marginals. There, the BP relations form

the basis of an algorithm which outputs BP-marginals (not necessarily equal to

true marginals) which are used to make decisions about the decoded bit, signal

estimate, etc. To run the algorithm we have to decide on an initial condition,

schedule, and a running time. These aspects will be clarified separately for each

problem in subsequent chapters.

In the third part of these notes the BP equations will be used in a “statistical

mechanics” non-algorithmic way, namely as fixed point equations. We will see

that the fixed point form of the BP equations arises when the so-called Bethe

free energy is minimised, much as the Curie-Weiss fixed point equation appeared

in Chapter 4 when we minimized the potential function. This point of view will

become key when we relate low complexity algorithms to optimal solutions.

2 These relations are also called Sum-Product equations, a name that reflects their algebraic

structure.
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5.4 Message Passing in Coding

Assume we transmit over a binary-input memoryless channel using a linear code.

Recall the formulation in Chapter 3: the rule (3.14) for the bit-wise maximum a

posteriori (MAP) decoder reads ŝi(h) = argmaxsi∈{±1}νi(si|h) = sign⟨si⟩ which
is immediate to compute once we have νi(si|h), the marginal of distribution

(3.10). So we have to marginalise the numerator of

p(s|h) = 1

Z

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)
n∏

i=1

ehisi . (5.12)

and eventually normalize the resulting function of si. The numerator of (5.12)

has a factorized form with two types of factors,

fi(si) = ehisi and fa(s∂a) =
1

2
(1 +

∏
i∈∂a

si),

which are associated to square nodes in the factor graph representation of (5.12).

The first factor is attached in the factor graph to a single bit and describes the

influence of the channel. The second one is attached to several bits and describes

the parity-check constraints.

example 13 (Bit-wise MAP decoding) Consider the code defined by the

parity-check matrix with Tanner graph shown on the left of Fig. 5.6.

x1

x2

x3

x4

x5

x6

x7

x1 + x2 + x4 = 0

x3 + x4 + x6 = 0

x4 + x5 + x7 = 0

eh1s1
eh2s2
eh3s3
eh4s4
eh5s5
eh6s6
eh7s7

1
2
(1 + s1s2s4)

1
2
(1 + s3s4s6)

1
2
(1 + s4s5s7)

Figure 5.6 Left: graphical representation of a simple parity check code. Note that the
factor graph is the same as the one of example 11. Right: factor graph associated to
the Gibbs distribution (5.12).

The factor graph corresponding to the distribution (5.12) is shown on the

right of this figure. It includes the (Tanner) graph of the parity check code,

but additionally contains extra factor nodes which represent the effect of the

channel. For this particular case the resulting graph is a tree. We can therefore

apply the message-passing algorithm to this example to perform exact bit-wise

MAP decoding. □

In principle the messages are uniquely specified by the general message-passing

rules and we could simply move on to the next example. Indeed, the real power

of the factor graph approach lies in the fact that, once the graph and the factors

are specified, no thought is required to work out the messages. For the current
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example perhaps the result is quite intuitive and this might seem as no big

deal. But in “real life” systems substantially more complicated factor graphs are

encountered and in such cases without the message passing rules it might be

quite difficult to figure out how to correctly combine messages. Despite the fact

that we could just blindly follow the rules, it is instructive to explicitly work out

a few steps of the belief propagation algorithm for this example.

example 14 (Message passing algorithm for decoding) We give the first three

steps of belief propagation for the tree in Figure 5.6. In the first step the initial

messages are sent from leaf nodes. Here all leaf nodes are factor nodes whose fac-

tor is the prior, thus the initial messages are µ̂k→k(sk) = ehksk for k = 1, . . . , 7.

At the second step six variable nodes send messages to factor nodes, namely

the variable nodes that participate in only a single parity-check constraint:

µ1→1(s1) = eh1s1 , µ2→1(s2) = eh2s2 , µ3→2(s3) = eh3s3 , µ5→1(s5) = eh5s5 ,

µ6→2(s6) = eh6s6 , µ7→1(s7) = eh7s7 . At the third step the three factor nodes

have received all their input, except the input from variable node 4. Hence, they

can send back their messages in direction of node 4. These are

µ̂1→4(s4) =
∑
s1,s2

1

2
(1 + s1s2s4)e

h1s1eh2s2 ,

µ̂2→4(s4) =
∑
s3,s6

1

2
(1 + s3s4s6)e

h3s3eh6s6 ,

µ̂3→4(s4) =
∑
s5,s7

1

2
(1 + s4s5s7)e

h5s5eh7s7 .

The sums involved in the messages are easy to compute. For example using

ehisi = coshhi(1 + si tanhhi) the first one is equal to

µ̂1→4(s4) = (2 coshh1 coshh2)(1 + s4 tanhh1 tanhh2) .

Looking at one more step, note that at this point all incoming messages to

variable node 4 are known and so we can compute the marginal µ4(s4) (of the

numerator of (5.12)) by multiplying all messages incoming into variable node 4.

Explicitly,

µ4(s4) =(2 coshh4)(1 + s4 tanhh4)(2 coshh1 coshh2)(1 + s4 tanhh1 tanhh2)

× (2 coshh3 coshh6)(1 + s4 tanhh3 tanhh6)

× (2 coshh5 coshh7)(1 + s4 tanhh5 tanhh7) .

To get the true marginal ν4(s4) = ν4(s4|h) one has to normalize µ(s4),

ν4(s4|h) =
µ4(s4)

µ4(1) + µ4(−1)
.

To obtain the other marginals one continues in this fashion with further steps

of belief propagation. As a final remark, note that (in the binary case) messages

can equivalently be considered as vectors with two components, or, equivalently,

as Bernoulli distributions. □
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5.5 Message Passing in Compressed Sensing

Recall the spin glass setting for compressed sensing in Section 3.4. From the

marginals νi,β(xi|y) of the posterior distribution (3.43)

pβ(x|y) =
1

Zβ

r∏
a=1

e−
β

2σ2 (ya−Aa·x)
2

n∏
i=1

(p0(xi))
β , (5.13)

we can compute the Gibbs average x̂i,β(y) = ⟨xi⟩β . To get the MMSE estimate

(when the prior is known) we set β = 1; to get the LASSO estimate (when we

only know that the prior is in the sparse class Fκ) we take p0(x) ∝ e−
λ
σ2 |x| and

send β → +∞.

For compressive sensing marginalization involves integrals instead of discrete

sums. Formally, the distributive law (5.5) is replaced by∫
dx a(x)b(x) +

∫
dx a(x)c(x) =

∫
dx a(x)(b(x) + c(x))

but otherwise the marginalization proceeds exactly in the same way as in the

discrete case if we simply replace sums by integrals in the message-passing rules

(note that in our applications all integrals remain finite).

To obtain νi,β(xi|y), it is sufficient to marginalize the numerator in (5.13)

and eventually normalize the resulting function of xi. Similarly to coding, this

numerator has a factorized form with two types of factors

fi(xi) = (p0(xi))
β and fa(x∂a) = e−

1
2σ2 (ya−Aa·x)

2

.

We already associated a factor graph to the measurement matrix A in Chapter 2.

Here we go one step further. In the factor graph representation for the distribu-

tion (5.13) we add extra square nodes corresponding to the factors (p0(xi))
β and

attach them to variable nodes. The other square nodes already present in the

representation of the measurement matrix are associated to the factors fa(x∂a).

Let us discuss a concrete illustration.

example 15 (Factor graph for compressive sensing) Figure 5.7 shows a factor

graph associated to (5.13). Edges are present if and only if Aai ̸= 0 (one may

think of Aai ̸= 0 as the “strength” of an edge). This factor graph contains the

graph representing A itself, and has also additional factor nodes which represent

the prior for the signal. □

A few comments are in order. In this example we take a factor graph that is a

tree for the purpose of illustration of the message passing rules below. However in

compressive sensing the graph is far from being a tree; it typically is a complete

graph. Indeed we typically assume that the entries of the measurement matrix

are independent and identical Gaussians, so the matrix is dense. This is one

important difference between the compressive sensing and coding models. In

coding our analysis will rely heavily on the fact that the graph is sparse and that

when we look at very large instances the graph will “locally” be a tree. At first
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(p0(x1))
β

(p0(x2))
β

(p0(x3))
β

(p0(x4))
β

(p0(x5))
β

(p0(x6))
β

(p0(x7))
β

e
− β

2σ2 (y1−A11x1−A12x2−A14x4)
2

e
− β

2σ2 (y2−A23x3−A24x4−A26x6)
2

e
− β

2σ2 (y3−A34x4−A35x5−A37x7)
2

Figure 5.7 Factor graph for compressive sensing. The edges represent the non-zero
elements of the measurement matrix. The signal has seven components and there are
three measurements.

glance it therefore appears that message-passing techniques which explicitly rely

on the graph being a tree are of no use in the compressive sensing context. But,

as we will see, perhaps surprisingly, we are still able to analyze this situation.

The key in this case is that despite the fact that we will not face a tree, the

influence of each edge vanishes in the limit of large graphs. This relies heavily

on the 1/n scaling of the variance of the matrix elements Aai.

Let us now discuss belief propagation for the example.

example 16 (Message passing algorithm for compressive sensing) We give

the first three steps of belief propagation for the tree in Figure 5.7. As re-

marked above, the messages are continuous distributions and instead of per-

forming binary sums one has compute integrals. This is the main difference with

the coding case. In the first step, the initial messages are sent from leaf nodes:

µ̂k→k(xk) = (p0(xk))
β for k = 1, . . . , 7. At the second step six variables (namely

the ones that participate in only one measurement) send messages to factor

nodes: µ1→1(x1) = (p0(x1))
β , µ2→1(x2) = (p0(x2))

β , µ3→2(x3) = (p0(x3))
β ,

µ5→3(x5) = (p0(x5))
β , µ6→2(x6) = (p0(x6))

β µ7→1(x7) = (p0(x7))
β . At the

third step the three factor nodes send messages back to variable node 4. These

are

µ̂1→4(x4) =

∫ ∫
dx1dx2 (p0(x1))

β(p0(x2))
βe−

β

2σ2 (y1−A11x1−A12x2−A14x4)
2

,

µ̂2→4(x4) =

∫ ∫
dx3dx6 (p0(x3))

β(p0(x6))
βe−

β

2σ2 (y2−A23x3−A24x4−A26x6)
2

,

µ̂3→4(x4) =

∫ ∫
dx5dx7 (p0(x5))

β(p0(x7))
βe−

β

2σ2 (y3−A34x4−A35x5−A37x7)
2

.

Note that all integrals are certainly convergent as long as the prior (p0(x))
β

is integrable. At this point we can compute the marginal µ4(x4). Indeed all

messages incoming into variable node 4 are known, so

µ4,β(x4) = (p0(x4))
βµ̂1→4(x4)µ̂2→4(x4)µ̂3→4(x4)

To get the marginal ν4,β(x4|y) we normalize,

ν4,β(x4 | y) =
µ4,β(x4)∫
dx4 µ4,β(x4)

.
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Finally, the computation of other marginals requires further steps of belief prop-

agation. □

This time, contrary to the coding example where binary sums could easily be

computed, in general the integrals cannot be performed analytically but have to

be evaluated numerically. One exception where a complete analytical calculation

is easy, is the case where the prior is Gaussian which leads to messages that are

Gaussians throughout the whole belief propagation algorithm. A popular prior

in the context of compressed sensing which also leads to explicit although rather

complicated formulas, is a mixture of Bernoulli and Gaussian distributions. Note

however, that the Laplacian prior ∝ e−
λ
σ2 |xk| does not lead to completely ana-

lytically tractable integrals because of the absolute value. We will see in Chapter

8 that even when exact evaluation of the integrals is not possible, due to the

proper scaling of the dense measurement matrix we can make useful approxima-

tions that lead to a tractable set of message passing equations.

LASSO estimate and min-sum rules

We remarked in 3.4 that the LASSO estimate can be obtained by taking the

prior p0(xi) ∝ e−
λ
σ2 |xi| and letting β → +∞. Taking the β → +∞ limit of the

message passing rules developed here leads to the so-called min-sum rules. To

obtain a well defined limit for the message passing rules it is convenient to define

Êa→i(xi) = − lim
β→+∞

1

β
ln µ̂a→i(xi), and Ei→a(xi) = − lim

β→+∞

1

β
lnµi→a(xi) .

and the marginal energy costs

Ei(xi) = − lim
β→+∞

1

β
lnµi(xi) .

The meaning of this “marginal” becomes intuitive once we notice

Ei(xi) = min
∼xi

{ 1

2σ2
∥y −Ax∥22 + λ∥x∥1}

so that Ei(xi) − minxi Ei(xi) is the cost incurred when variable i is set to the

value xi.

It is instructive to work this out in detail for the current example. The ini-

tial messages from leaf square nodes to variables are Êk→k(xk) = λ
σ2 |xk| for

k = 1, . . . , 7. At the second step the six variables k = 1, 2, 3, 5, 7 participating

in a single measurement send messages to factor nodes: E1→1(x1) = λ
σ2 |x1|,

E2→1(x2) =
λ
σ2 |x2|, E3→2(x3) =

λ
σ2 |x3|, E5→3(x5) =

λ
σ2 |x5|, E6→2(x6) =

λ
σ2 |x6|,

E7→3(x7) = λ
σ2 |x7|. At the third step the three factor nodes send messages to

variable node 4. These are deduced from the finite β messages by applying the
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Laplace method to the integrals,

Ê1→4(x4) = min
x1,x2

{
E1→1(x1) + E2→1(x2) +

1

2σ2
(y1 −A11x1 −A12x2 −A14x4)

2
}

Ê2→4(x4) = min
x3,x6

{
E3→2(x3) + E6→2(x6) +

1

2σ2
(y2 −A22x2 −A24x4 −A26x6)

2
}
,

Ê3→4(x4) = min
x5,x7

{
E5→3(x5) + E7→3(x7) +

1

2σ2
(y3 −A34x4 −A35x5 −A37x7)

2
}
.

The marginal energy cost of node 4 is

E4(x4) = Ê4→4(x4) + Ê1→4(x4) + Ê2→4(x4) + Ê3→4(x4)

and the LASSO estimate for variable node 4 is simply x̂4 = argminE4(x4). These

relations constitute the min-sum algorithm.

There is also an alternative route to derive these min-sum relations. The belief

propagation (or sum-product) equations were derived from the distributive law

once we applied it to a factor graph which is a tree. This led to the marginal-

ization of a function. But instead of using the operations of summing and mul-

tiplying (leading to the sum-product algorithm) we can use as basic operations

the minimization and summing. The corresponding distributive law for this case

reads

min(a+ b, a+ c) = a+min(b, c). (5.14)

We can now formaly proceed just as in the Section 5.2. A quick way to develop

the formalism is to use the correspondence (+,×)→ (min,+) which transforms

ab + ac = a(b + c) to min(a + b, a + c) = a + min(b, c). The derivation of the

min-sum message passing rules from the distributive law is left as an exercise.

5.6 Message passing in satisfiability

We illustrate two applications of message passing for satisfiability. In the first

one we count solutions of a K-SAT formula and in the second we discuss the

determination of minimum energy assignments.

Counting solutions through message passing

Recall in the satisfiability problem we introduced in Section 3.6 the number of

solutions of a K-SAT formula,

N0 =
∑
s

m∏
a=1

(1−
∏
j∈∂a

1

2
(1 + sjJaj)). (5.15)

We illustrate here how one could attempt to compute N0 by message passing

methods. Suppose we can count the number of solutions having a fixed value
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si = ±1 for the i-th variable, namely

Ni(si) =
∑
∼si

m∏
a=1

(1−
∏
j∈∂a

1

2
(1 + sjJaj)). (5.16)

where the sum carries over all variables except si. The total number of solutions

is then obtained as N0 = Ni(+1) + Ni(−1). The task of computing (5.16) is

nothing else than our marginalization problem. The factor graph associated to

(5.15) has only one type of factor

(1−
∏
j∈∂a

1

2
(1 + sjJaj))

associated to the square nodes. Again, message passing provides an exact so-

lution on a tree-graph. When the graph is not a tree it forms the basis of a

“solution finding” message passing algorithm, called Belief Propagation Guided

Decimation (BPGD), which we will study in Chapter 9.3. Let us for now just

illustrate how the marginalization proceeds on our simple tree graph example.

example 17 (Counting solutions in 3-SAT) Consider the 3-SAT formula

shown on Fig. 5.8. Here we keep the signs Jai = ±1 associated to the edges

open in order to see more clearly the structure of the messages (so we have a

set of 29 = 512 formulas here). The factors associated to each square are the

indicator functions of the clause. For example clause number 1 is not satisfied by

the assignment s1 = J11, s2 = J12, s4 = J14 and is satisfied by the 7 other assign-

ments. Note that contrary to coding and compressed sensing there is no “prior,”

so no degree-one square nodes with factors attached to variable nodes. Here

1
2
3
4
5
6
7

1− 1
8
(1 + J11s1)(1 + J12s2)(1 + J14s4)

1− 1
8
(1 + J23s3)(1 + J24s4)(1 + J26s6)

1− 1
8
(1 + J34s4)(1 + J35s5)(1 + J37s7)

Figure 5.8 Factor graph for the K-SAT counting problem. The graph represents the
formula and the factors associated to the square nodes are the indicator functions of
each constraint written in spin language.

message passing starts at leaf nodes, namely the variable nodes i = 1, 2, 3, 5, 6, 7

which send the trivial initial messages µi→1(si) = µi→2(si) = µi→3(si) = 1. In

the second step all clauses send one outgoing message towards variable node 4
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by taking into account their factor and two incomimg messages. In detail,

µ̂1→4(s4) =
∑
s1,s2

(
1− 1

8
(1 + J11s1)(1 + J12s2)(1 + J14s4)

)
× 1× 1,

µ̂2→4(s4) =
∑
s3,s6

(
1− 1

8
(1 + J23s3)(1 + J24s4)(1 + J26s6)

)
× 1× 1,

µ̂3→4(s4) =
∑
s5,s7

(
1− 1

8
(1 + J34s4)(1 + J35s5)(1 + J37s7)

)
× 1× 1

The binary sums are easily performed and yield µ̂a→4(s4) = 4− 1
2 (1+Ja4s4) for

a = 1, 2, 3. In the next step we can compute the ”marginal“ for variable node 4

from the three incoming messages,

N4(s4) = µ4(s4) = (4− 1

2
(1 + J14s4))(4−

1

2
(1 + J24s4))(4−

1

2
(1 + J34s4))

(5.17)

For example if the formula has J14 = 1, J24 = 1 and J34 = −1 the number

of solutions with s4 = +1 equals N4(1) = 3 × 3 × 4 = 36 and the number of

solutions with s4 = −1 equals N4(−1) = 4 × 4 × 3 = 48. The total number

of solutions is N0 = 36 + 48 = 84. Note that we obtained this result without

going through the remaining marginalization steps. This calculation also teaches

us something about the uniform distribution over solutions. Indeed if we sample

uniformly among solutions the probabilities that a solution has s4 = ±1 are

N4(±1)/N0 = 3/7 and 4/7. To calculate all such probabilities one has to go

through the other marginalization steps. We obtain again these probabilities

from a different point of view in the next paragraph. □

Message passing at positive and zero temperatures

Recall the Gibbs distribution in the finite temperature formulation of K-SAT

p(s) =
1

Z

∑
s

m∏
a=1

exp
{
−β

∏
i∈∂a

1

2
(1 + siJai)

}
. (5.18)

Again we associate a factor graph to this distribution with one type of factor

attached to the clauses, namely

fa(s∂a) = exp
{
−β

∏
i∈∂a

1

2
(1 + siJai)

}
.

example 18 (Belief propagation at positive temperature for 3-SAT) Consider

again the 3-SAT formula shown on Fig. 5.8. The factors associated to the square

nodes are now β-dependent weights entering in (5.18). Message passing originates

at leaf nodes i = 1, 2, 3, 5, 6, 7 which send the trivial initial messages µi→1(si) =

µi→2(si) = µi→3(si) = 1. In the second step all clauses send their message to
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variable node 4,

µ̂1→4(s4) =
∑
s1,s2

exp
{
−β
8
(1 + J11s1)(1 + J12s2)(1 + J14s4)

}
× 1× 1,

µ̂2→4(s4) =
∑
s3,s6

exp
{
−β
8
(1 + J23s3)(1 + J24s4)(1 + J26s6)

}
× 1× 1,

µ̂3→4(s4) =
∑
s5,s7

exp
{
−β
8
(1 + J34s4)(1 + J35s5)(1 + J37s7)

}
× 1× 1

Using e−βx = 1 + (e−β − 1)x for x ∈ {0, 1} we can easily calculate the binary

sums. For example

µ̂1→4(s4) =
∑
s1,s2

(
1 +

1

8
(e−β − 1)(1 + J11s1)(1 + J12s2)(1 + J14s4)

)
= 4 +

1

2
(e−β − 1)(1 + J14s4) .

At this step we can already calculate the ”marginal“ µ4,β(s4) by multiplying all

messages incoming into variable node 4

µ4,β(s4) =(4 +
1

2
(e−β − 1)(1 + J14s4))(4 +

1

2
(e−β − 1)(1 + J24s4))

× (4 +
1

2
(e−β − 1)(1 + J34s4))

and the true marginal is obtained as usual by normalization

ν4,β(s4) =
µ4,β(s4)

µ4,β(1) + µ4,β(−1)
.

For the remaining marginals one has to perform extra message passing steps. □

Given a formula and given that solutions exist for this formula, when we take

β → +∞ the Gibbs distribution tends to the uniform distribution over solutions.

Therefore in the limit we have

lim
β→+∞

νi,β(si) =
Ni(si)

N0
. (5.19)

This is easily checked explicitly in the last example above: with J14 = 1, J24 = 1,

J34 = −1 we find limβ→+∞ ν4,β(1) = 3/7 and limβ→+∞ ν4,β(−1) = 4/7 which

agrees with the computation in the counting example 17.

We now turn to the zero temperature case in more detail. Suppose we want to

determine the assigments s that minimize the K-SAT Hamiltonian H(s) (3.53).
When the graph associated to the formula is a tree message passing methods yield

an exact solution; while in the non-tree case they form the basis of algorithms

for finding solutions that we study in Chapters 9 and ??. As for the LASSO

estimator, we can take two alternative routes. We can directly set up the min-

sum message passing rules by a proper use of the distributive law (5.14), or we

can look at the β → +∞ limit of the belief propagation relations. The second
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method is more convenient for us here, since we have already developed all the

finite β formalism. This is illustrated with our running example.

example 19 (Zero temperature limit: min-sum for 3-SAT) Consider the same

3-SAT formula as in Fig. 5.8. The correct limiting behavior of messages is cap-

tured by introducing the energy costs

Êa→i(si) = − lim
β→+∞

1

β
ln µ̂a→i(si), and Ei→a(si) = − lim

β→+∞

1

β
lnµi→a(si).

and

Ei(si) = − lim
β→+∞

1

β
lnµi(si) = min

si
H(s)

where H(s) is the Hamiltonian of K-SAT (3.53).

The initial messages from leaf nodes i = 1, 2, 3, 5, 6, 7 are Ei→1(si) = Ei→2(si) =

Ei→3(si) = 0. Next, all clauses send a message to variable node 4,

Ê1→4(s4) = min
s1,s2

{1
8
(1 + J11s1)(1 + J12s2)(1 + J14s4) + E1→1(s1) + E2→1(s2)

}
,

Ê2→4(s4) = min
s3,s6

{1
8
(1 + J23s3)(1 + J24s4)(1 + J26s6) + E3→2(s3) + E6→2(s6)

}
,

Ê3→4(s4) = min
s3,s6

{1
8
(1 + J34s4)(1 + J35s5)(1 + J37s7) + E5→3(s5) + E7→3(s7)

}
.

The minima are easily calculated directly from these expressions. For example

testing all four possibilities (s1, s2) = (±J11,±J12) yields Ê1→4(s4) = 0. Simi-

larly we have Ê2→4(s4) = Ê3→4(s4) = 0. The resulting marginal energy cost for

variable node 4 vanishes for both values of s4 = ±1, namely

E4(s4) = Ê1→4(s4) + Ê2→4(s4) + Ê3→4(s4) = 0 (5.20)

Since E4(s4) = min∼s4 H(s) we deduce that there exist zero energy assignments

that satisfy the formula with both values s4 = ±1. In the present example this

is true for all 512 possible formulas corresponding to the choices of edge signs. □

5.7 Notes

The belief propagation algorithm appeared independently and in different guises

in various communities and contexts, and it is difficult to pinpoint its origin. The

reader must have already sensed that the solution of the Ising model on a tree

presented in Chapter 4 already contains the germ of the algorithm. In this con-

text the belief propagation equations were clearly written down in (Morita 1979).

The point of view was not algorithmic but rather that Bethe’s improved mean

field theory (Bethe 1935) becomes exact on trees. In the context of Low-Density

Parity-Check codes message passing was used already by (Gallager 1962). Belief

propagation was also invented as an algorithm for inference (Pearl 1982, Kim
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& Pearl 1983). The generality of the message passing idea is nowadays well rec-

ognized in many communities overlapping computer science, digital communica-

tion, probability theory and statistical physics (e.g Pearl 1988, Frey 1998, Jordan

1999, Yedidia, Weiss & Freeman 2003, MacKay 2003, Loeliger 2004, Mézard &

Montanari 2009, Richardson & Urbanke 2007).

The approach taken in this chapter is largely due to (Wiberg, Loeliger &

Kötter 1995) and (Kschischang, Frey & Loeliger 2001). These works established

the convenience of the factor graph representation and clarified the role and

power of the distributive law. Our presentation in sections 5.1-5.3 closely follows

(Richardson & Urbanke 2007). There are other convenient and beautiful graph-

ical approaches that we have not discussed (e.g Shafer & Shenoy 1990, Aji &

McEliece 2000, Forney 2001, Mao & Kschischang 2005).

Problems

5.1 Factor graph representations. Consider the Gibbs distributions for

the Curie-Weiss and tree-Ising models, as well as Ising on a k-regular random

graph and canonical Ising model on Zd (introduced in Chapters 4 and 2). For

each model identify the bipartite factor graphs representing each distribution.

In particular give the expressions of the factors associated to the factor nodes.

Same question for the p-spin models of exercices 4.1 and 4.6.

5.2 Belief propagation equations for the Ising model on a tree.

Consider the factor graph representation of the tree-Ising model of Section 4.6,

with a root node o, coordination number k, L levels, and uniform magnetic

field and coupling constant. We want to use the belief propagation formalism to

recover equations (4.39) and (4.41) for the magnetization of the root node o (for

k = 2 this gives a message passing solution of the one-dimensional Ising model).

First consider the factor graph representation and write directly the belief

propagation equations. Parametrize the messages as

µi→a(si) ∝ eβui→asi , µ̂a→i(si) ∝ eβûa→isi

to recover (4.39) and (4.41). It helps to note that the messages flowing out of

leaf factor nodes are ∝ eβhsi . Same question for the p-spin model of exercise 4.6.

5.3 Curie-Weiss equation from belief propagation. Consider the factor

graph representation for the Gibbs distribution of the Curie-Weiss model and

write down the belief propagation equations. Consider a flooding schedule (see

Section 6.2 for a detailed definition) where at each round t ≥ 0 all variable nodes

send their messages to the factor and each factor sends back its messages to the

variable node. Show that in the limit n→ +∞ one recovers an iterative form of

the Curie-Weiss equation, namely mt+1 = tanh(βJmt + βh) with initialisation

m0 = tanhh. A similar parametrization to the one of the previous exercise is

useful. Same question for the p-spin model of exercise 4.1.

5.4 Gaussian belief propagation. Write down the sum-product equations

for the marginalization of Gaussian probability distributions of the form
Give a few hints or

teh final equations

here
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p(x)
1

Z
e−

1
2x

T Jx+hT ·x

where h ∈ Rn and J is an n × n positive definite matrix (here we assume that

the factor graph of J is a tree so that the sum-product rules are exact). Perform

explicitly all Gaussian integrals.

5.5 Min-Sum Message Passing rules. The main property we used to derive

the belief propagation (or sum-product) equations is the distributive law for the

two operations + and × (on some field). Consider the following generalization.

Take the ”commutative semiring” of extended real numbers (i.e., R̄ including∞)

with the two operations (min,+) replacing the usual operations (+,×). Show
that: (i) both operations are commutative; (ii) the identity element under min

is ∞ and the identity element under + is 0; (iii) the distributive law holds,

min(a+ b, a+ c) = a+min(b, c).

If we formally exchange in our original marginalization + with min and ×
with +, then what corresponds to the marginalization of a function? What are

the message passing rules and what is the initialization?

5.6 Min-sum rules for least square regression with an ℓ2 penalty.

Consider the following regularized least square minimization problem

min
x
{1
2
∥y −Ax∥22 + α∥x∥22} .

where α > 0 (see problem 1.4). This kind of ℓ2 penalty is often used for ill-posed

problems (e.g., if y = Ax is an undertermined system of equations) and is often

called a Tikhonov regularization, or also ridge regression in statistics.

Write down the min-sum rules for this minimization problem when the factor

graph (corresponding to matrix A) is a tree. You can proceed by formulating the

finite temperature problem first and then take a zero temperature limit, or you

can directly use the distributive law for the operations (min,+).

Define a ”marginal energy cost”,

Ei(xi) = min∼xi

{
1

2
∥y −Ax∥22 + λ∥x∥22

}
,

where min∼xi denotes minimization with respect to all variables, except xi which

is held fixed. Describe how this marginal energy cost is computed from the min-

sum messages and how the regularized least square estimate is deduced.



6 Coding: Belief Propagation and
Density Evolution

Message passing methods have been very successful in providing efficient and

analyzable algorithms for the coding problem. In this chapter we provide an

introduction to this analysis. From now on we adopt the specific terminology of

coding and to refer to “Belief Propagation” (BP) algorithms and leave the term

“message-passing” as a generic term.

In Chapter 5 we learned how to marginalize a Gibbs distribution whose factor

graph is a tree, by employing BP rules. We saw that on trees BP starts at the

leaf nodes and that a node which has received messages from all its children

processes the messages and forwards the result to its parent node. On a tree this

BP algorithm is equivalent to MAP decoding since we are computing without

any approximation the marginals of the posterior distribution.

If the graph is not a tree then we can still use BP, but we need to define a

schedule which determines when to update what messages. It is not clear how

well such an algorithm will perform. It is the aim of the present chapter to clarify

these issues. We will carry out the analysis in detail for the binary erasure channel

(BEC) and explain the main ideas involved in for the general case of binary-input

memoryless symmetric channels. The BEC channel has the advantage that its

analysis can be done by pen and paper. The general case is conceptually not

much harder, but there are a significant number of mathematical tools one has

to introduce, which make the analysis more involved.

6.1 Message-Passing Rules for Bit-wise MAP Decoding

We illustrated the message passing rules for coding on a small coding example in

Section 5.4. Recall that the Gibbs distribution has two type of factors: ehisi and
1
2 (1+

∏
j∈∂a sj). The first kind of factor is associated to factor nodes î of degree

one (representing channel output observations) attached to variable nodes i and

generates a message µî→i(si) = ehisi . The other relevant messages flow from

the parity checks to variable nodes µ̂a→i(si) and from variable nodes to parity

checks µi→a(si). Thus for coding the general BP equations (5.10) read{
µi→a (si) = ehisi

∏
b∈∂i∖a µ̂b→i (si) ,

µ̂a→i (si) =
∑

∼si
1
2 (1 +

∏
j∈∂a sj)

∏
j∈∂a∖i µj→a (sj) .

(6.1)
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In the binary case of interest here these equations can be simplified by adopting

a convenient parametrization of the messages. Indeed we already remarked at the

end of Section 5.3 that their normalizations cancel out in the final computation

of “marginals”. So all that should matter are the log-likelihood ratios1

li→a =
1

2
ln

{
µi→a(+1)

µi→a(−1)

}
, l̂a→i =

1

2
ln

{
µ̂a→i(+1)

µ̂a→i(−1)

}
(6.2)

which do not involve the normalization.

To see what form the first BP equation in (6.1) takes with this parametrization,

we write it for each value si = ±1, and take the ratio

µi→a (+1)

µi→a (−1)
= e2hi

∏
b∈∂i∖a

µ̂b→i (+1)

µ̂b→i (−1)
.

The logarithm then yields the variable node rule

li→a = hi +
∑

b∈∂i∖a

l̂b→i . (6.3)

The reduction of the second BP equation in (6.1) to a form involving only the

log-likelihood ratios (6.2) involves a little more algebra. First we write (6.1) for

each spin value si = ±1 and consider the ratio,

µ̂a→i (+1)

µ̂a→i (−1)
=

∑
∼si

(1 +
∏

j∈∂a\i sj)
∏

j∈∂a∖i µj→a (sj)∑
∼si

(1−
∏

j∈∂a\i sj)
∏

j∈∂a∖i µj→a (sj)
.

Next, we divide the numerator and denominator by
∏

j∈∂a∖i µj→a (−1) and use

the identity

µj→a (sj)

µj→a (−1)
= elj→a(sj+1) = (1 + sj tanh lj→a)e

lj→a cosh lj→a

to obtain

µ̂a→i (+1)

µ̂a→i (−1)
=

∑
∼si

(1 +
∏

j∈∂a\i sj)
∏

j∈∂a∖i(1 + sj tanh lj→a)∑
∼si

(1−
∏

j∈∂a\i sj)
∏

j∈∂a∖i(1 + sj tanh lj→a)
. (6.4)

The summations in the numerator and denominator can be performed explicitly.

We first expand the products in each
∑

∼si
into a sum of monomials of the spin

variables

(1±
∏

j∈∂a\i

sj)
∏

j∈∂a∖i

(1 + sj tanh lj→a)

= (1±
∏

j∈∂a\i

sj)
∑

J⊂∂a\i

∏
j∈J

sj
∏
j∈J

tanh lj→a

=
∑

J⊂∂a\i

∏
j∈J

sj
∏
j∈J

tanh lj→a ±
∑

J⊂∂a\i

∏
j∈Jc

sj
∏
j∈J

tanh lj→a

1 In the coding theory literature it is usual to define the log-likelihood ratios without the
prefactor 1/2. With the definition adopted here these are exactly the same objects than
the ”magnetic fields” of statistical mechanics. We refer interchangeably to ”log-likelihood

ratios” or ”magnetic fields” depending what we wish to emphasize.
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where the sums over J ⊂ ∂a \ i run over all subsets of ∂a \ i including J ̸= ∅ and
J = ∂a \ i. In the last line the only monomials that survive correspond to the

subsets J = ∅ (resp. Jc = ∅) for the first sum (resp. second sum) and we simply

get

1±
∏

j∈∂a\i

tanh lj→a

Therefore the ratio (6.4) reduces to the simple form

µ̂a→i (+1)

µ̂a→i (−1)
=

1 +
∏

j∈∂a\i tanh lj→a

1−
∏

j∈∂a\i tanh lj→a
.

Finally taking the logarithm and using 1
2 ln

1+x
1−x = atanhx we arrive at the check

node rule

l̂a→i = atanh

{ ∏
j∈∂a\i

tanh lj→a

}
. (6.5)

Let us now look at the “marginals” computed from the BP equations. We

call them BP-marginals and denote them by νBP
i (si) to make a clear distinction

with the true marginals νi(si) of the Gibbs distribution (as repeatedly pointed

the two types of marginals are equal on a tree). Adapting (5.11) to the present

setting,

νBP
i (si) =

ehisi
∏

a∈i µ̂a→i(si)

ehi
∏

a∈i µ̂a→i(+1) + e−hi
∏

a∈i µ̂a→i(−1)
.

In order to express the BP marginals in terms of the log-likehood ratios we divide

the numerator and denominator by ehi
∏

a∈i µ̂a→i(+1) and use (6.2) to deduce

νBP
i (si) =

e(hi+
∑

a∈∂i l̂a→i)(si+1)

1 + e2(hi+
∑

a∈∂i l̂a→i)

= 1 + si tanh
(
hi +

∑
a∈∂i

l̂a→i

)
From this BP-marginal one can compute the BP-magnetization of the i-th bit

(to be distinguished from the true magnetization)

mBP
i =

∑
si=±1

siν
BP
i (si) = tanh

(
hi +

∑
a∈∂i

l̂a→i

)
(6.6)

The BP estimate for bit i is then found from2

ŝBP
i = sign(mBP

i ) . (6.7)

The average bit-wise probability of error associated to this estimate is discussed

in Section 6.4.

2 Recall the convention already used in Chapter 3: sign(x) = 0 for x = 0, ±1 for x > 0, x < 0.
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There is an important statistical mechanical interpretation of (6.6). The BP-

magnetization is the same as that of a system constituted by a single spin with

Gibbs distribution (at β = 1)

e−lisi

2 cosh li
, li = hi +

∑
a∈∂i

l̂a→i

This is the distribution of a spin that sees a “local field” li equal to the “external

magnetic field” hi plus a “mean field”
∑

a∈∂i l̂a→i. In the BP framework the

mean filed is given by a sum over all “cavity fields” la→i, a ∈ ∂i. From the point

of view of traditional statistical mechanics the BP-magnetization is a “mean field

approximation” of the true magnetization.

Summary of BP equations for coding

To summarize, in the case of transmission over a binary input memoryless chan-

nel the messages can be represented by a single real quantity. If we choose this

quantity to be the log-likelihood ratio (6.2) then the processing rules at variable

and check nodes take on a particularly simple form (see (6.3), (6.5))li→a = hi +
∑

b∈∂i∖a l̂b→i

l̂a→i = atanh

{∏
j∈∂a\i tanh lj→a

}
(6.8)

The BP estimate of a bit is given by (see (6.6), (6.7))

ŝBP
i = sign(tanh(hi +

∑
a∈∂i

l̂a→i)) (6.9)

For the special case of the BEC one can make further simplifications as dicussed

in Section 6.3.

6.2 Scheduling on general factor graphs

If the factor graph is a tree, then message-passing starts from the leaf nodes and

messages propagate through the graph until a message has been sent on each

edge in both directions. However, cycle-free parity-check codes do not perform

well. This is true even if we allow optimal decoding. Hence we have to use codes

whose graphs have cycles.

Given a factor graph with cycles, the order in which messages are computed

has to be defined explicitly and in principle different orders might result in differ-

ent performance. We call such an order a schedule. A naive scheduling which is

convenient for the analysis of belief propagation is the flooding or parallel sched-

ule. In this schedule at each step every outgoing message is updated according

to the incoming messages in the previous step.

In more details, every iteration consists of two steps. In the first step we
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compute the outgoing messages along each edge at variable nodes and we forward

them to the check node side. In the second step we then process the incoming

messages at check nodes, and compute for every edge at check nodes the outgoing

messsage and send it back to variable nodes. What about the initial condition?

At the very beginning, none of the messages except the ones coming from the

channel are defined. So in order to get started, we set all “internal” messages to be

“neutral” messages, µ̂a→i(±1) = 1/2. If we represent messages as log-likelihood

ratios, this means that we set all internal messages to l̂a→i = 0. One can check

that for a tree this prescription reduces to the initial conditions dictated by the

theory developped in Chapter 5.

Let us formalize the above discussion. Iterations are indexed by “time”, a

discrete integer t ≥ 1. At iteration t in the first step we have messages lti→a

flowing (in parallel) from variable to check nodes and in the second step we have

messages lti→a flowing from check to variable nodes. They satisfy{
lti→a = hi +

∑
b∈∂i∖a l̂

t−1
b→i

l̂ta→i = atanh
{∏

j∈∂a\i tanh l
t
j→a

} (6.10)

The iterative process is initialized with l
(0)
i→a = l̂

(0)
a→i = 0. The total estimated

likelihood ratio for bit i at time t is

lti = hi +
∑
a∈∂i

l̂ta→i (6.11)

and the BP estimate of bit i at time t is

ŝBP,t
i = sign(tanh lti) = sign(lti) (6.12)

6.3 Message Passing and Scheduling for the BEC

The BEC is a very special binary input memoryless channel. As depicted in

Fig. 1.2, the transmitted bit is either correctly received at the channel output

with probability 1 − ϵ or erased by the channel with probability ϵ and thus,

nothing is received at the channel output.3 The erased bits are denoted by E.

For example, if si = 1 (resp. si = −1) is transmitted in the BEC, then the set of

possible channel observations is {1, E} (resp.{−1, E}). The log-likelihood ratios

corresponding to the various channel observations are

hi =
1

2
ln

{
p(yi | si = 1)

p(y | si = −1)

}
=


1
2 ln(

1−ϵ
0 ) = +∞ y = 0,

1
2 ln(

ϵ
ϵ ) = 0, y = E,

1
2 ln(

0
1−ϵ ) = −∞, y = 1.

Now, since the initial condition for the internal messages is l̂0a→i = 0, the it-

erations (6.10) imply that at later times lti→a, l̂
t
a→i ∈ {0,±∞}. This allows to

further simplify the BP equations.

3 The position of the erased bit is known and only its value is unknown.
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According to the variable-node rule the outgoing message from a variable node

is +∞ (or −∞) if at least one incoming message from one of its neighbors is +∞
(or −∞), otherwise it is equal to 0. Note that it is not possible that a variable

node receives both +∞ and −∞ simultaneously. This is due to the fact that by

assumption the transmitted word is a valid codeword and that the channel never

introduced mistakes.

Since tanh li→a ∈ {±1, 0}, we can use tanh li→a = sign(li→a) to simplify the

updating rule of check nodes to the following equation,

sign(l̂ta→i) =
∏

j∈∂a\i

sign(ltj→a). (6.13)

This discussion shows that on the BEC, knowing the sign of all incoming

messages is sufficient to compute outgoing messages, thus we can assume that

the set of messages is {0,±1} instead of {±∞, 0}. At check nodes the operation

is then simple multiplication. At variable nodes, if at least one of the incoming

edges is non-zero, then all non-zero incoming messages must in fact be the same

and the outgoing message is this common value. Otherwise, when all incoming

messages are 0, the outgoing message is also 0.

For the BEC, but only for the BEC, we can implement the parallel schedule in

a more efficient manner. Some thought shows that the messages emitted along a

particular edge can only jump once, namely from 0 to either the value +1 or −1.
After the value has jumped it stays constant thereafter. Further, the message can

only jump if at least one of the incoming messages jumped. Therefore, rather than

recomputing every message along every edge in each iteration, we can just follow

changes in the messages and see if they have consequences. As a consequence,

we have to “touch” every edge only once and so the complexity of this algorithm

scales linearly in the number of edges.

6.4 Two Basic Simplifications

To analyze the performance of the (l, r)-regular LDPC ensemble over a channel,

we pick a code C uniformly at random from the ensemble of graphs and run

the message passing algorithm. For a given code C and channel parameter ϵ, let

PBP,b(C, sin, ϵ, t) denote the average bit-wise error probability of the BP decoder

at iteration t, when the input codeword is sin. Explicitely,

PBP,b(C, sin, ϵ, t) ≡
1

n

n∑
i=1

P(ŝBP,t
i ̸= sini )

=
1

n

n∑
i=1

1

2
(1− Eh|sin [s

in
i ŝ

BP,t
i ]) (6.14)

where Ph|sin and Eh|sin are the probability and expectation with respect to chan-

nel outputs conditional on the input word (see Chapter 3). We will study the
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behavior of PBP,b(C, sin, ϵ, t) in terms of ϵ and t as a measure of performance of

the code C.
For the BEC, we either can decode a bit correctly, or the bit is still erased at

the end of the decoding process. Therefore, in this case we typically compute the

bit erasure probability. If we want to convert this into an error probability, then

we can imagine that for all erased bits we flip a coin uniformly at random. With

probability one-half we will guess the bit correctly and with probability one-half

we will make a mistake. Therefore, the bit erasure and the bit error probability

are the same up to a factor of one-half. In our calculations it is always more

convenient to compute the erasure probability for the BEC (this is simply (6.14)

without the factor 1/2). But our language reflect the general case and so we will

also talk about error probabilities.

Restriction To The All-One Codeword

In Chapter 3 we showed that the bit-wise MAP error probability is independent

of the transmitted codeword as long as the channel is symmetric. Something

similar holds for the BP decoder. Therefore we can analyze the error probability

of the BP decoder assuming that sini = 1, i = 1, . . . , n, was transmitted (the

”all-zero” codeword xin = 0). In formulas, we claim that (6.14) equals

PBP,b(C, ϵ, t) ≡
1

n

n∑
i=1

1

2
(1− Eh|1[ŝ

BP,t
i ]) (6.15)

This is true in a more general setting than the present one. In general, for the

statement to hold we need two kinds of symmetry to hold: channel symmetry (see

Chapter 3, Section 3.2) and decoder symmetry. Decoder symmetry here means

that at check nodes the magnitude of the outgoing message is only a function

of the magnitude of the incoming messages, and that the sign of the outgoing

message is the product of the signs of the incoming messages. At variable nodes,

we require that if the signs of all the incoming messages are reversed then the

outgoing message also just changes by a reversal of the sign. Equations (6.10)

show this is obviously the case for the BP decoder. But often one implements

simplified versions of this decoder for which the symmetry conditions also hold.

For the BEC and BP decoding it is particularly easy to see why (6.15) is true.

If we go back to the message-passing rules for this case, we see that both at check

nodes as well as at variable nodes we can determine if the outgoing message is an

erasure or not by only looking how many of the incoming messages are erasures,

and we do not need to know the values of the incoming messages. Therefore,

the final erasure probability only depends on the erasure pattern created by the

channel, and is independent of the transmitted codeword.

For general symmetric channels (6.15) is proved by using the two symmetry

conditions stated above. The proof is the subject of an exercise.
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Concentration

The second major simplification stems from the fact that, rather than analyzing

individual codes, it suffices to assess the average performance of the code ensem-

ble. When this is true the individual behavior of elements of an ensemble is with

high probability close to the ensemble average. More precisely one can prove the

following statement.

Concentration of bit-wise BP error probability: Let C, chosen uniformly at

random from the Gallager ensemble LDPC(dv, dc, n), be used for transmission

over a binary-input memoryless symmetric channel. Then, for any given δ > 0,

there exists an α > 0, α = α(dv, dc, δ), such that

P{|PBP,b(C, ϵ, t)− E [PBP,b(C, ϵ, t)] | > δ} ≤ ϵ−αn (6.16)

where here P and E refer to the code ensemble.

In words, all except an exponentially (in the blocklength) small fraction of

codes behave within an arbitrarily small δ from the ensemble average. Therefore,

assuming sufficiently large blocklengths, the ensemble average is a good indicator

for the individual behavior and it seems a reasonable route to focus one’s effort on

the design and construction of ensembles whose average performance approaches

the Shannon theoretic limit.

6.5 Concept of Computation Graph

Message passing takes place on the local neighborhood of a node. At each itera-

tion, variable nodes send their beliefs li→a along their edges toward check nodes,

and then check nodes compute the outgoing message l̂a→i for each of their edges

according to the beliefs of incoming edges and send it back to the variable nodes.

Afterwards, each variable node updates the outgoing messages along its edges

according to beliefs returned back on its edges.

Therefore, after t iterations, the belief of a variable node depends on its initial

belief hi and the beliefs of all the nodes placed within (graph) distance 2t or

less. The graph consisting of these nodes is called the computation graph of

that variable node of height t. Figure 6.1 illustrates, the factor graph of a (2, 4)-

regular LDPC code and the computation graphs of node 1 with height 1 and

height 2. On this example the computation graph of height 1 is a tree because

each labelled node appears only once. The computation graph of height 2 is not

a tree because some nodes appear more than once. Nevertheless the computation

graph is always conveniently ”depicted” as a tree.

If a computation graph is a tree, then no node is used more than once in

the graph. Therefore the incoming messages of each node are independent. But

note that by increasing the number of iterations, the number of nodes in a

computation graph grows exponentially and thus in at most c log n steps, where

c is some suitable constant, some node will necessarily be reused. It is clear that
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(a) (b)

Figure 6.1 The factor graph of a (2, 4)-regular LDPC code with 6 variable nodes, and
the corresponding computation graphs of node 1 for the first iteration and second
iterations. For one iteration the computation graph is a tree. It is not a tree for two
iterations.

small computation graphs are more likely to be tree-like than large ones and that

the chance of having a tree-like computation graph increases if we increase the

blocklength.

Let us discuss this last point in more detail. Let Tt denote the computation

graph of a variable node chosen uniformly at random from the set of variable

nodes of height t in the (dv, dc)-regular LDPC ensemble. If the height t is kept

fixed then

lim
n→∞

P (Tt is a tree ) = 1. (6.17)

We only give a sketch of the proof. We are given the randomly chosen variable

node and we construct its computation graph of height t by growing out its “tree”

one node at a time, breadth first. We use the principle of deferred decisions. This

means that rather than first constructing a particular code, then checking if the

corresponding computation graph is a tree and then averaging over all codes we

perform the averaging over all codes at the same time as we grow the tree, in

other words we defer the decision of how edges are connected until we look at

a particular edge and reveal its endpoints. Note that a computation graph of a

fixed height has at most a certain number of nodes and edges. At each step when

we reveal how a particular edge is connected there are two possible events. The

newly inspected edge is either connected to a node which is already contained in

the computation graph. In this case we terminate the procedure since we know

that the computation graph is not a tree. Or the edge is connected to a new

node, maintaining the tree structure. Since not yet revealed edges are connected

uniformly at random to any not yet filled slot, the probability of reconnecting

to an already visited node vanishes like 1/n, where n is the blocklength. By the

union bound, and since we only perform a fixed number of steps of order, it
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follows that the probability that the computation graph is indeed a tree behaves

like 1−O(1/n), which proves the claim.4

6.6 Density Evolution

We will now show how to compute the bit error probability under BP decoding.

According to (6.15), given a code C from the ensemble, and a variable node i

selected uniformly at random, we should compute the expectation of ŝBP,t
i . A

look at (6.12) shows that we should determine the probability distribution of

lti . The difficulty here is that this depends on previous iterations in which the

messages are not independent. Fortunately the concentration result(6.16) and

the local tree like property (6.17) allow to by-pass this problem, at least in the

limit where n grows large and t is fixed (but arbitrarily large).

From the concentration (6.16) of the error probability it suffices to compute

the average (over the code ensemble) error probability

PBP,b(dv, dc, ϵ, t) ≡ lim
n→+∞

E[PBP,b(C, ϵ, t)], (6.18)

and since the computation graph Tt of a random vertex of fixed height t is a tree

with probability 1−O(1/n) we get

PBP,b(dv, dc, ϵ, t) = lim
n→+∞

E[PBP,b(C, ϵ, t)|Tt is a tree ]. (6.19)

Our task is therefore reduced to the computation of the probability distribution

of lti on a tree Tt. This problem can be handled quite easily, at least in principle,

because the incoming messages to each node of this tree are independent.

It is common to refer to the iterative equations governing the probability

distributions of messages on the tree as the Density Evolution (DE) equations.

For the BEC these are a simple set of algebraic (polynomial) equations and

we first give their derivation in this simple case. For general channels these are

integral equations, but as we will see their derivation is (conceptually at least)

not much more difficult.

DE equations for the BEC

Consider a computation tree Tt with height t. We divide this computation graph

into t + 1 levels, from 0 to t. We label the levels by m = 0, · · · , t. Level m = 0

contains the leaf nodes, level m = 1 contains the parent check nodes and the

grandparent variable nodes of the leaf nodes, etc (see Fig. 6.2). Recall that the

messages can be reduced to the alphabet {0,±1} where 0 corresponds to an

erasure and ±1 to known a known value of the bit.

Every variable node at the m-th level is the root of a computation tree with

height m. Consider the outgoing message ∈ {0,±1} emitted by a variable nodes

4 A more detailed argument shows that the t dependence of O(1/n) grows as (dvdc)t.
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towards its parent check node in the m + 1-th level. It is equal to either an

erasure message 0 with probability xm or a known value ±1 with probability

1 − xm. Now consider level m + 1. Each variable node is connected to dv − 1

check nodes and each check node is connected to dc − 1 variable nodes of m-th

level. Consider the outgoing message ∈ {0,±1} emitted by a check node towards

its parent variable node in the same level. We call ym the probability that this

message is an erasure 0.

The outgoing message of a check node is an erasure, if at least one of its

incoming messages is also an erasure. Since on a tree the incoming messages are

independent, the probability that a check node at level m + 1 sends an erasure

message to its parent variable node is

ym = 1− (1− xm)dc−1 (6.20)

The outgoing message from a variable node of m+ 1-th level is an erasure if its

initial message from the channel is erasure and all of its children (check nodes) at

levelm+1 also send erasure messages. Moreover on a tree the incoming messages

are independent, hence

xm+1 = ϵydc−1
m (6.21)

Equations (6.20) and (6.21) are the two Density Evolution (DE) equations for

the BEC. Of course they can be merged into a single iteration

xm+1 = ϵ(1− (1− xm)dc−1)dv−1. (6.22)

By definition, the outgoing message at level 0 is an erasure with probability

x0 = ϵ. Thus x0 = ϵ serves as the initial condition for DE iterations.

The erasure probability of the root of Tt, which is connected to the dv check

nodes of level t, is equal to ϵ(1 − (1 − xt−1)
dc−1)dv . Since for each erased bit

we flip a coin to decide if we decode it as a +1 or a −1, the average bit-error

probability of the BP decoder finally is one-half times the erasure probability,

PBP,b(dv, dc, ϵ, t) =
ϵ

2
(1− (1− xt−1)

dc−1)dv . (6.23)

Obviously successful decoding corresponds to limt→+∞ xt = 0 since then the

error probability tends to zero. In section 6.7 we give the analysis of the density

evolution equation and draw conclusions for this bit-wise BP error probability

and its threshold behaviour.

DE equations for general BMS channels

Luckily it turns out that exactly the same type of analysis works for general

binary memoryless symmetric (BMS) channels. The density evolution equations

for the BEC (6.20), (6.21) are polynomial equations relating probabilities xm
and ym of erasure messages. They also involve the channel erasure probability ϵ.

For general BMS channels the density evolution equations are integral equations

relating probability distributions for the messages of type li→a and l̂a→i after
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Level t

Level t− 1

Level t− 2

Level 1

Level 0

. . .

· · ·

.

..

Figure 6.2 A computation graph of (2, 3)-regular LDPC code with height t. The graph
is split into t+ 1 levels.

a certain number of iterations. Besides they involve the channel distribution

c(h|1).5 There exists a beautiful and helpful algebra of “convolution” operations

over probability distributions that allows one to directly transfer all the intuition

gained on the BEC. We first define the convolution operations and state their

main algebraic properties.

Variable node convolution: The first one is the standard convolution ⊗. Let l1
and l2 be two independent random variables with distributions a1(l) and a2(l).

Then their sum l = l1 + l2 is distributed as

(a1 ⊗ a2)(l) =

∫
R2

dl1a(l1)dl2a(l2)δ(l − (l1 + l2)) (6.24)

Check node convolution: The second type of convolution6 is denoted by ⊞ and

is defined via by the distribution of l = atanh(tanh l1 tanh l2),

(a1 ⊞ a2)(l) =

∫
R2

dl1a(l1)dl2a(l2)δ(l − atanh(tanh l1 tanh l2)) (6.25)

Algebraic properties of convolutions: It is clear that ⊗ is commutative and

associative and that the neutral element is a Dirac mass at the origin ∆0(l).
7

We leave it as an exercise to the reader to show that ⊞ is also commutative,

associative and that the neutral element is ∆∞(l), the Dirac mass at +∞. Both

5 We will pretend that all probability distributions have densities. This is not really true and

it is important to take into account probability distributions which are convex
combinations of densities and Dirac masses. However, practically, this makes no difference
in the formalism except for introducing technicalities that only serve to obscure the picture.

6 If we are willing to bring all random variables to a different domain ⊞ becomes a usual
convolution. We do not pursue this further here but it is useful to know that leads to
computational efficient ways of performing the check node convolution in practice.

7 In this context it is customary to use the notation ∆0(l) instead of δ(l).
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operations are linear: (a1 +a2)⊗ a3 = (a1 ⊗ a3) + (a2 ⊗ a3) and (a1 +a2)⊞ a3 =

(a1 ⊞ a3) + (a2 ⊞ a3). We stress that the two operations do not “mix” well

together in the sense that (a1 ⊗ a2)⊞ a3 ̸= a1 ⊗ (a2 ⊞ a3). Also there is nothing

like distributivity in the sense that (a1 ⊞ a2)⊗ a3 ̸= (a1 ⊗ a3)⊞ (a2 ⊗ a3).

We are now ready to derive the density evolution equations. Consider again the

computation tree Tt with height t, with the division into t+1 levels, from 0 to t as

before (Fig. 6.2). Look at level m+1. At a variable node, the incoming messages

are independent (real valued) random variables sent by the dv−1 children check

nodes. Let these messages be l̂1, . . . , l̂dv−1 and their common distribution ym(l̂).

The BP equations tell us that the outgoing message from the variable node to

the check node (both at level m+ 1) is

l = h+ l̂1 + · · ·+ l̂dv−1

Let xm+1(l) denote the probability distribution of the outgoing message. Since

the outgoing random variable is the sum of independent random variables, the

density of the outgoing random variable is the convolution of the densities of the

incoming random variables,

xm+1 = c⊗ y⊗dv−1
m . (6.26)

Here we use the notation y⊗dv−1
m for ym⊗ · · · ⊗ ym convolved dv − 1 times. This

equation is the analog of (6.21). Now we seek an equation for ym in terms of

xm. At check nodes of level m+1 the incoming messages are dc− 1 independent

random variables coming from the children variable nodes of level m. Call the

random messages l1, · · · , ldc−1 and denote their probability distribution by xm(l).

From the BP equations the outgoing message from check nodes to the variable

node (both at level m+ 1) is

l̂ = atanh

(
dc−1∏
i=1

tanh li)

)
and we have for the probability densities

ym = x⊞dc−1
m . (6.27)

As above, we use the notation x⊞dc−1
m for xm ⊞ · · ·⊞ xm convolved dc − 1 times.

This equation is the analog of (6.20).

Equations (6.26) and (6.27) are the DE equations for general BMS channels.

Combining them into a single equation yields

xm+1 = c⊗ (x⊞dc−1
m )⊗dv−1 (6.28)

(also traditionally called DE equation). These iterations are initialised with

x0(l) = c(l|1).
We can now compute the bit-wise probability of error of the BP decoder. In

the final step the BP algorithm computes the log-likelihood ratio associated to
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the root node as a sum of all messages incoming from dv children check nodes

plus the one coming from the channel,

l = h+ l1 + · · · ldv .

Since on the computation tree all messages are independent, the distribution of

l is equal to c⊗ (yt−1)
⊗dv , or

c⊗ (x⊞dc−1
t−1 )⊗dv .

From (6.12) and (6.15) we see that the average bit error probability is

PBP,b(dv, dc, ϵ, t) =

∫ +∞

−∞
dl

1

2
(1− sign(l))(c⊗ (x⊞dc−1

t−1 )⊗dv )(l) . (6.29)

This can also be written as∫ 0−

−∞
dl (c⊗ (x⊞dc−1

t−1 )⊗dv )(l) +
1

2

∫ 0+

0−

dl (c⊗ (x⊞dc−1
t−1 )⊗dv )(l) . (6.30)

The second term takes into account the possibility of a Dirac mass at the origin

which corresponds to an erasure for which a decoding decision is taken by flipping

a coin. Successful decoding corresponds to xt approaching ∆+∞ as t→ +∞ since

then the error probability approaches zero. This is easily seen at a formal level

just by using that ∆+∞ is a neutral element for ⊞ and an absorbing element for

⊗. For mathematically rigorous techniques of analysis the interested reader can

consult Section 6.8.

Of course, the DE equation (6.28) and the error probability (6.30) reduce to the

BEC expressions. On the BEC and under the all-zero codeword assumption, the

messages remain in the alphabet {0,+∞}. Thus all densities are parametrized

as as c(h|1) = ϵ∆0(h) + (1 − ϵ)∆∞(h) and xm(l) = xm∆0(l) + (1 − xm)∆∞(l),

ym(l) = ym∆0(l)+ (1− ym)∆∞(l). It is an instructive exercise to recover (6.22),

(6.23) from this parametrization.

6.7 Analysis of DE Equations for the BEC

We have seen that the bit probability of error of the BP decoder (6.23) can be

computed from the DE recursions (6.22). We will show here that a threshold

phenomenon appears. Namely there is a noise threshold ϵBP, called the BP-

threshold, such that for ϵ < ϵBP the limit of PBP,b(dv, dc, ϵ, t) vanishes when

the number of iterations t → +∞, while for ϵ > ϵBP this limit remains strictly

positive.

In order to compute limt→+∞ PBP,b(dv, dc, ϵ, t) we have to analyze the recur-

sion xt = f(ϵ, xt−1) where

f(ϵ, x) = ϵ(1− (1− x)dc−1)dv−1 (6.31)
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and the initial condition is x0 = 1.8 We ask whether the sequence {xt} converges
to 0 or not. In case it does, the decoding is successful, otherwise it fails.

Note that the function f(ϵ, x) is increasing in ϵ and x for ϵ, x ∈ [0, 1]. This is

key to prove the following.

lemma 6.1 Let 2 ≤ dv ≤ dc and 0 ≤ ϵ ≤ 1. Let x0 = 1 and xt = f(ϵ, xt−1),

t ≥ 1. Then (a) The sequence {xt} is decreasing in t; (b) If ϵ′ ≤ ϵ then xt(ϵ′) ≤
xt(ϵ).

Proof Let us first show that the sequence {xt} is decreasing. We use induction.

The first two elements of the sequence are x0 = 1 and x1 = f(ϵ, x0) = ϵ,

so x0 ≥ x1. Therefore, for t ≥ 2, we assume xt−1 ≤ xt−2 as the induction

hypothesis. Since f(ϵ, x) is increasing in x, we obtain f(ϵ, xt−1) ≤ f(ϵ, xt−2).

The left hand side is equal to xt, and the right hand side to xt−1, and we deduce

that xt ≤ xt−1. To prove the second claim, we use induction once more. Assume

that ϵ′ ≤ ϵ. Then x1(ϵ
′) = ϵ′ ≤ ϵ = x1(ϵ). The general statement is deduced as

follows,

xt(ϵ
′) = f(ϵ′, xt−1(ϵ

′)) ≤ f(ϵ, xt−1(ϵ
′)) ≤ f(ϵ, xt−1(ϵ)) = xt(ϵ),

where the first inequality follows from the fact that f(ϵ, x) is increasing in ϵ,

and the second inequality follows from it being increasing in x together with the

induction hypothesis.

From part (a) of lemma 6.1, it follows that xt(ϵ) converges to a limit in [0, 1],

limt→+∞ xt(ϵ) = x∞(ϵ). From the continuity of the function (6.31) we conclude

that the limit of the density eveolution iterations is a solution of the fixed point

equation

x∞(ϵ) = f(ϵ, x∞(ϵ)). (6.32)

From part (b) of the lemma, it follows that if xt(ϵ)→ 0 for some ϵ, then xt(ϵ
′)→ 0

for all ϵ′ < ϵ. Let x∞(ϵ) = limt→∞ xt(ϵ). Then x∞(ϵ), as well as the error

probability

lim
t→+∞

PBP,b(dv, dc, ϵ, t) =
ϵ

2
(1− (1− x∞(ϵ))dv−1)dc , (6.33)

are increasing in ϵ as shown in Figure 6.3. Hence we can define the quantity

ϵBP = sup{ϵ : x∞(ϵ) = 0}

which we call the BP threshold.

There is a graphical way to characterize this threshold. Note that x∞(ϵ) is a

solution of the fixed point equation x = f(ϵ, x). Thus, if f(ϵ, x) − x < 0 for all

x ∈ [0, ϵ], then x∞(ϵ) = 0. For the converse, as soon as there is a fixed point

f(ϵ, x) = x in the interval ]0, ϵ], we have that x∞ > 0. In fact it is easy to check

that this condition can be further simplified since there never can be a fixed

8 Strictly speaking we should set x0 = ϵ. But since, if we set x0 = 1 then x1 = ϵ, we may as

well start iterations with x0 = 1.
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Figure 6.3 Left: Monotonicity of x∞ as a function of ϵ. It is not difficult to show that
for dv ≥ 3, dc > dv, x∞ jumps at the threshold, and for dv = 2, dc > dv x∞ changes
continuously at the threshold. Right: The threshold ϵBP is the largest channel
parameter so that f(ϵ, x)− x < 0 for the whole range x ∈ [0, 1]. The picture here
corresponds to the case dv ≥ 3.

point in ]ϵ, 1] as f(ϵ, x) < ϵ. Therefore, if f(ϵ, x) − x < 0 for all x ∈ [0, 1], then

x∞ = 0. For the converse, as soon as there is a fixed point f(ϵ, x) = x in the

interval ]0, 1], we have that x∞(ϵ) > 0. This condition is graphically depicted in

Figure 6.3.

example 20 For the (3, 6)-regular ensemble, we get ϵBP ≈ 0.4294. Note that

the rate of this ensemble is R = 1 − dv

dc
= 1

2 . Therefore, the fraction 0.4294 has

to be compared to the erasure probability that an optimum code (say, a random

linear code) could tolerate, which is ϵShannon = 1 − R = 1
2 . We conclude that

already this very simple code, together with this very simple decoding procedure

can decode up to a good fraction of the channel capacity. □

6.8 Analysis of DE equations for general BMS channels9

The elementary analysis for the BEC can be extended to the class of general

symmetric channels. Although the main ideas are the same, the functional nature

of the DE equation (6.28), xt+1 = f(c, xt) with

f(c, x) = c⊗ (x⊞dc−1)⊗dv−1, (6.34)

makes the analysis technically more challenging. Here we give a brief sketch of

the theory.

9 This section is not needed for the main development and can be skipped in a first reading.
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Ordering by degradation of symmetric distributions

The analysis for the BEC rests on the monotonicity in ϵ and x of the function

f(ϵ, x). We will need analogous properties for the functional (6.34) on the right

hand side of the DE recursion (6.28). The key is to introduce a partial order

relation between distributions.

The DE equations preserve the symmetry property of the initial channel dis-

tribution. In other words when we initialize the DE recursion with x0(l) = c(l|1),
which satisfies the symmetry condition c(l|1) = e−2lc(−l|1), we have for all t ≥ 1,

xt+1(l) = e−2lxt(−l). For this reason, we may restrict ourselves to the space of

symmetric distributions satisfying

a(l) = e−2la(−l) . (6.35)

Define the moments

Mk(a) =

∫
dl a(l)(tanh l)k.

It is not difficult to see that the symmetry condition implies

M2k−1(a) =M2k(a) (6.36)

for all integers k ≥ 1. Symmetric distributions can be entirely characterized by

their even moments: if two symmetric distributions a and b have the same set

of even moments, M2k(a) = M2k(b), then they must be equal. Indeed, by the

symmetry condition their odd moments are also equal, and since all moments

are less than 1, Carleman’s criterion10 is satisfied; thus one can reconstruct a

unique measure from the set of even moments, which implies a = b.

Let us now define ordering by degradation. We say that a2 is degraded with

respect to a1, and write a2 ≻ a1 if an only if M2k(a2) ≤M2k(a1) for all integers

k ∈ N∗. The following example gives the intuitive meaning of this concept.

example 21 Consider the likelihood distribution of the BEC channel cϵ(h|1) =
ϵ∆0(h) + (1 − ϵ)∆∞(h). Note that it is symmetric and that the moments are

M2k−1 = M2k = 1 − ϵ for k ≥ 1. Take two channels cϵ1 and cϵ2 with ϵ2 > ϵ1.

According to our definition we have cϵ2 ≻ cϵ1 because 1 − ϵ2 < 1 − ϵ1; in other

words “cϵ2 is degraded with respect to cϵ1” means that “cϵ2 is more noisy than

cϵ1”. We leave it as an exercise to the reader to show that the same interpretation

applies to our other basic symmetric channels, the BSC and BAWGNC. □

As a side remark note that we can associate a BMS channel to any sym-

metric distribution satisfying (6.35). The idea is to think of the distribution as

a “likelihood distribution” for some channel. The transition probability of the

channel can be explicitely constructed through the identities p(y|+1)dy = a(l)dl,

p(−y| − 1) = p(y|1) and l = 1
2 ln

p(y|+1)
p(y|−1) . There is an intuitive characterization

10 Carleman’s criterion states that: if a sequence of finite real numbers {m0 = 1,m1,m2, · · · }
are the moments of a probability distribution on R, i.e., mk =

∫
dF (x)xk, and furthermore∑+∞

k=1(m2k)
−1/2k = +∞, then there is a unique such probability distribution.
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of the relation a2 ≻ a1 in terms of the associated channels p2(y|s) and p1(y|s).
Namely there must exist a channel q(y|s) such that p2(z|s) =

∑
y q(z|y)p1(y|s).

In other words the channel associated to a2 is more noisy than the one associated

to a1.

Ordering by degradation is preserved under the two convolutions operations

⊗ and ⊞. More precisely if a1 ≻ a2 and b are symmetric distributions we have:

a2 ⊗ b ≻ a1 ⊗ b and b⊞ a2 ≻ b⊞ a1 .

The proof of these assertions is the subject of an exercise.

Entropy distance, entropy functional and moment expansions

For the BEC, besides monotonicity of f(ϵ, x), another important ingredient was

the continuity of the function with respect to ϵ and x. Here we introduce a

suitable distance in the space of symmetric distributions that allows to prove

analogous statements. We do not wish to introduce sophisticated topological

language here and we proceed in a pedestrian way that will be sufficient for our

purposes.

For any two symmetric distributions a and b define

d(a, b) =
∑
k≥1

|M2k(a)−M2k(b)|
2k(2k − 1)

. (6.37)

It is easy to see that this is a well defined distance, i.e. it is symmetric, satisfies

the triangle inequality and vanishes if and only if a = b. We call it the entropy

distance.

Let us show that this distance is naturally related to a notion a entropy. We

define the entropy functional

H[x] =

∫
dl x(l) ln(1 + e−2l) (6.38)

which is in fact precisely the Shannon conditional entropyH(X|Y ) corresponding

to a symmetric channel p(y|s) whose likelihood distribution is x(l) where l(y) =
1
2 ln

p(y|+1)
p(y|−1) and y ∼ p(y|1). Using the expansion

ln(1 + e−2l) = ln 2− ln(1 + tanh l) = ln 2−
+∞∑
k=1

(−1)k+1

k
(tanh l)k

and the equality of even and odd moments we get the moment expansion of the

entropy functional

H[x] = ln 2−
+∞∑
k=1

M2k(x)

2k(2k − 1)
.
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Now, by linearity of the entropy functional (6.38)

H[a− b] =
+∞∑
k=1

M2k(b)−M2k(a)

2k(2k − 1)
. (6.39)

which implies (6.39)

d(a, b) = H[a− b], if a ≻ b. (6.40)

(recall that a ≻ b was defined as M2k(a) < M2k(b) for all k ≥ 1).

All continuity and convergence statements in the next paragraph are base on

the following two handy inequalities. For a ≻ b and any symmetric x{
H[x⊗ (a− b)] ≤ H[a− b] = d(a,b),

H[x⊞ (a− b)] ≤ H[a− b] = d(a,b)

To prove the second inequality we use the moment expansion (6.39) and the fact

that moments are multiplicative for the⊞ operation,M2k(a⊞b) =M2k(a)M2k(b)

(see exercises)

H[x⊞ (a− b)] =
+∞∑
k=1

M2k(x⊞ b)−M2k(x⊞ a)

2k(2k − 1)

=
+∞∑
k=1

M2k(x)
M2k(b)−M2k(a)

2k(2k − 1)

≤
+∞∑
k=1

M2k(b)−M2k(a)

2k(2k − 1)

= H[a− b]

The first inequality is less straightforward because the moments are not muti-

plicative for the usual convolution ⊗. But we can use the duality rule H((a −
b)⊗ (a′ − b′)) = −H((a− b)⊞ (a′ − b′)) (see exercises) as follows

H[x⊗ (a− b)] = H((x−∆∞)⊗ (a− b)]

= −H((x−∆∞)⊞ (a− b)]

=

+∞∑
k=1

M2k(∆∞ − x)
M2k(b)−M2k(a)

2k(2k − 1)

=
+∞∑
k=1

(M2k(∆∞)−M2k(x))
M2k(b)−M2k(a)

2k(2k − 1)

≤
+∞∑
k=1

M2k(b)−M2k(a)

2k(2k − 1)

= H[a− b]
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Analysis of DE recursion and the BP threshold

Let us first prove that the functional f(c, x) on the right hand side of the DE

recursions (6.28), is “increasing” with respect to the distributions c and x. Since

ordering by degradation is preserved by convolution we obviously have f(c2, x) ≻
f(c1, x) when c2 ≻ c1. Now, notice that if a2 ≻ a1 and b2 ≻ b1 then a2 ⊗ b2 ≻
a1 ⊗ b2 and a1 ⊗ b2 ≻ a1 ⊗ b1, so also ≻ a2 ⊗ b2 ≻ a1 ⊗ b1. Generalizing, for

ai ≻ bi, i = 1, . . . , n we have a1⊗ · · · ⊗ an ≻ b1⊗ · · · ⊗ bn. The same statements

are true if we replace ⊗ by ⊞. Thus for x2 ≻ x1 we get x⊞dc−1
2 ≻ x⊞dc−1

2 , and

then (x⊞dc−1
2 )⊕dv−1 ≻ (x⊞dc−1

2 )⊕dv−1, and finaly f(c, x2) ≻ f(c, x1).
Consider a family of channels cϵ parametrized by ϵ (for example a noise level).

We say that the family of channels is ordered by degradation when cϵ ≺ c′ϵ for

ϵ < ϵ′. The BEC, BEC or BAWGNC are three such families.

We are now ready to prove the analog of Lemma 6.1

lemma 6.2 Let 2 ≤ dv ≤ dc and cϵ be family of channels ordered by degra-

dation. Let x0 = ∆0 and xt = f(cϵ, xt−1), t ≥ 1. Then (a) The sequence of

distributions {xt} is decreasing in t in the sense xt+1 ≺ xt; (b) If cϵ ≺ cϵ′ then

xt(cϵ) ≺ xt(cϵ′).

Proof We first show the claims by induction. We have x0 = ∆0()̇ and x1 =

f(c, x0) = c, so x0 ≻ x1. Therefore, for t ≥ 2, we assume xt−1 ≺ xt−2 as the

induction hypothesis. Since f(c, x) is increasing in x, we obtain f(c, xt−1) ≺
f(c, xt−2) and we deduce that xt ≺ xt−1. To prove the second claim assume that

cϵ ≺ cϵ′ . Then x1(cϵ) = cϵ ≺ cϵ′ = x1(cϵ′). The general statement is deduced

similarly to the case of the BEC: xt(cϵ) = f(cϵ, xt−1(cϵ)) ≺ f(cϵ′ , xt−1(cϵ)) ≺
f(cϵ′ , xt−1(cϵ′)) = xt(cϵ′).

Statement (a) of the Lemma says that DE iterations give a ”decreasing” se-

quence of probability distributions x0 = ∆0 ≻ x1 = c ≻ x2 ≻ · · · ≻ xt ≻ . . . .

This means that for each k ≥ 1 we have an increasing sequence of moments

M2k(x0) = 0 < M2k(x1) = M2k(c) < M2k(x2) < . . .M2k(xt) < . . . , and

since this sequence is bounded by 1, it converges to a real number in [0, 1].

Let m∞
2k be the limits for each k ≥ 1. Since even and odd moments are equal,

odd moments also converge towards the same set of numbers m∞
2k−1 = m∞

2k.

Since |m∞
k |−1/k ≥ 1 Carleman’s criterion11 is satisfied thus the set of num-

bers {m∞
k } are the moments of some probability distribution x∞ with moments

M2k−1(x∞) = M2k(x∞) = m∞
2k−1 = m∞

2k. To summarize, we have xt → x∞ in

the sense d(xt, x∞)→ 0.

lemma 6.3 The limiting distribution x∞ is a solution of the DE fixed point

equation x∞ = f(c, x∞).

Proof In the case of the BEC this statement was quite trivially obtained directly

from the continuity of f(ϵ, x). For general channels we use the tools introduced

11 namely that
∑+∞

k=1(m
∞
2k)

−1/2k = +∞
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above. It is sufficient to show d(x∞, f(c, x∞)) = 0 because then all moments of

x∞ and f(c, x∞) are equal and by Carleman’s criterion the two distributions

must be equal. By the triangle inequality for any t,

d(x∞, f(c, x∞)) ≤ d(x∞, xt+1) + d(xt+1, f(c, xt)) + d(f(c, xt), f(c, x∞)) .

The second term vanishes because xt+1 = f(c, xt). We now argue that the lim-

its of the first and third terms when t → +∞ vanish. By construction of x∞,

limt→+∞M2k(xt) = M(x∞), which implies limt→+∞ d(x∞, xt+1) = 0 by domi-

nated convergence. To compute the limit of the third term we recall that xt ≻ x∞
so

d(f(c, xt), f(c, x∞)) = H(f(c, xt)− f(c, x∞)

= H(c⊗ ((x⊞dc−1
t )⊗dv−1 − (x⊞dc−1

∞ )⊗dv−1))

≤ H((x⊞dc−1
t )⊗dv−1 − (x⊞dc−1

∞ )⊗dv−1)

= H((x⊞dc−1
t − x⊞dc−1

∞ + x⊞dc−1
∞ )⊗dv−1 − (x⊞dc−1

∞ )⊗dv−1)

=

dv−1∑
p=1

(
dv − 1

p

)
H((x⊞dc−1

t − x⊞dc−1
∞ )⊗p ⊗ (x⊞dc−1

∞ )⊗dv−1−p)

≤
dv−1∑
p=1

(
dv − 1

p

)
H(x⊞dc−1

t − x⊞dc−1
∞ )

= (2dv−1 − 1)H(x⊞dc−1
t − x⊞dc−1

∞ ) .

The last entropy is estimated thanks to similar tricks,

H(x⊞dc−1
t − x⊞dc−1

∞ ) = H((xt − x∞ + x∞)⊞dc−1 − x⊞dc−1
∞ )

=

dc−1∑
q=1

(
dc − 1

q

)
H((xt − x∞)⊞q ⊞ x⊞dc−1−q

∞ )

≤ (2dc−1 − 1)H(xt − x∞) .

Putting these results together we obtain the simple inequality

d(f(c, xt), f(c, x∞)) ≤ (2dv−1 − 1)(2dc−1 − 1)H(xt − x∞)

= (2dv−1 − 1)(2dc−1 − 1)d(xt, x∞)

which implies (by an argument above) limt→+∞ d(f(c, xt), f(c, x∞)) = 0.

From statement (b) of the lemma, it follows that if xt(cϵ)→ ∆∞ (in the sense

that d(xt,∆∞)→ 0) for a channel cϵ, then xt(cϵ′)→ ∆∞ for a less noisy channel

cϵ′ ≺ cϵ. Hence we can define a BP threshold as

ϵBP = sup{ϵ : x∞(ϵ) = ∆∞}

Not surprisingly, with a bit more work, one can show that the DE fixed point
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allows to calculate the probability of error

lim
t→+∞

PBP,b(dv, dc, ϵ, t) =

∫ +∞

−∞
dl

1

2
(1− sign(l))(cϵ ⊗ (x⊞dc−1

∞ )dv )(l), (6.41)

For ϵ < ϵBP we have x∞ = ∆∞ which yields a vanishing probability of error. It

is also possible to show that above ϵBP this is an increasing function of ϵ.

example 22 If we consider e.g., the BSC, then DE predicts a threshold for the

(3, 6)-ensemble of ϵBP = 0.084. This means that as long as the channel introduces

fewer than 8.4 percent errors, the BP decoder will with high probability be able

to recover the correct codeword from the received word. Note that for rate one-

half the maximum number of errors which a capacity-achieving code can tolerate

is around 11 percent. So we see that, as for the BEC, the simple (3, 6)-regular

ensemble achieves a good fraction of capacity under BP decoding. □

6.9 Exchange of limits

At this point some readers might be slightly worried. We have defined density

evolution by looking at the errors which remain after t iterations when we take

the blocklength to infinity. Subsequently we have analyzed DE by looking what

happens if we take more and more iterations. In short, we have looked at the

limit limt→∞ limn→∞.

This is certainly a valid limit, but if the implication is sensitive to the order in

which we take the limit then one might worry how well experiments for “prac-

tical” block lengths of lets say thousands to hundreds of thousands of bits and

“practical number of iterations” lets say dozens to hundreds of iterations might

fit the theory. At least for the BEC there is a fairly simple and straightforward

analytic answer: the limit is the same regardless of the order and can also be

taken jointly.

We will not prove this result here. The key is to consider the converse limit

limn→∞ limt→∞ and to prove that it gives the same result. Note that due to

the special nature of the BEC, the performance is monotonically decreasing in

the number of iterations (things only can get better if we perform further itera-

tions). From this basic observation we can deduce the following: Let t(n) be any

increasing function so that t(n) tends to infinity if n tends to infinity. Then, for

any channel parameter ϵ, the error probability under the limit limn→∞ limt→∞
is no larger than the error probability under the joint limit when t = t(n), which

in turn is no larger than the error probability under the limit limt→∞ limn→∞.

If now we can show that the two extreme cases have the same limit, then any

joint limit also has this same limit.

For the BEC the limit limn→∞ limt→∞ can in fact be analyzed. The technique

is to use the so-called Wormald method, a method which we will encounter soon

when we will analyze simple algorithms to solve the K-SAT problem.
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For the general case the situation is more complicated. Numerical experiments

and analytic arguments show that also in the general case the limit does not

depend on the order. But in order to show this rigorously one currently has to

impose some further constraints on the ensemble.

6.10 BP versus MAP thresholds

This is a good point to make a small digression on issues treated in detail in

part III. In the language of statistical mechanics the BP threshold corresponds

to a dynamical phase transition in the sense that we have here a sharp change

in behaviour of an algorithm. The MAP probability of error also displays a

threshold behaviour in the limit of infinite block length: it vanishes for ϵ < ϵMAP

and is strictly positive for ϵ > ϵMAP. Clearly we always have ϵBP < ϵMAP since the

MAP decoder is the one among all decoders that minimizes the error probability.

There is an important conceptual difference between the two thresholds. The

MAP threshold can be shown to be a singularity of the infinite block-length

Shannon conditional entropy (3.23) (further averaged on the code ensemble)

lim
n→+∞

1

n
E[H(X|Y )]

or, in view of (3.24), of the free energy in thermodynamic limit. This entropy is

a continuous convex function of ϵ, which vanishes for ϵ ≤ ϵMAP and is strictly

positive for ϵ > ϵMAP. Thus ϵMAP is a non-analyticity point and corresponds to

a thermodynamic phase transition in the sense introduced in Chapters 2 and 4.

However the infinite block-length Shannon conditional entropy has no singularity

at the BP threshold. This is an instance of the generic fact that dynamical

thresholds related to algorithms are not visible on free energies. As we will see

in part III, very interestingly and perhaps surprisingly from the point of view of

coding, although the MAP and BP phase transitions are of a different conceptual

nature, they are deeply related. In particular, in turns out we can compute the

MAP threshold and probability of error from the very same DE equations which

determine the BP threshold.

6.11 Notes

Gallager 1963. BEC: Luby et al, BMS Rich Urb, Techniques in Modern book,

Exch of limits KU. (and this is what was done in (Luby et al. 1997). see (exchange
to do

of limits) ??)

Problems

6.1 Restriction to the all-zero codeword. Use the symmetry of the

BP decoder to prove that one can restrict to the all-zero input codeword in Equ.

(6.15).
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6.2 Algebraic properties of convolutions. Consider the variable node

and check node convolution operations, ⊗ and ⊞, defined in (6.24) and (6.25).

Show the following properties:

(i) ⊗ and ⊞ are are commutative and associative.

(ii) ∆0 is the neutral element for ⊗ and ∆∞ is the neutral element for ⊞. Ex-

plicitly, ∆0 ⊗ a = a and ∆∞ ⊞ a = a.

(iii) ∆∞ is an absorbing element for ⊗ and ∆0 is an absorbing element for ⊞.

Explicitly, ∆∞ ⊗ a = ∆∞ and ∆0 ⊞ a = ∆0.

(iv) Check the linearity a1⊗ (a2+a3) = a1⊗ a2)+ (a2⊗a3) and a1⊞ (a2+a3) =

a1 ⊞ a2) + (a2 ⊞ a3).

(v) Find a counterexample to show that the two convolutions do not mix well:

(a1 ⊗ a2)⊞ a3 ̸= a1 ⊗ (a2 ⊞ a3).

(vi) Show that there is no distributivity: (a1 ⊞ a2)⊗ a3 ̸= (a1 ⊗ a2)⊞ (a2 ⊗ a3).

6.3 From BMS to BEC. Reduce the DE equations (6.28), (6.30) valid for

general BMS channels to the polynomial equations (6.22), (6.23) of the BEC

case.

6.4 Ordering by degradation. We defined “ordering by degradation” for

symmetric distributions by a2 ≻ a1 if and only if M2k(a2) ≤ M2k(a1) for all

integers k ≥ 1. Take a2 ≻ a1 and show that:

(i) a2 ⊗ b ≻ a1 ⊗ b and b⊞ a2 ≻ b⊞ a1 for any symmetric distribution b.

(ii) There exist a channel q(y|x) such that p2(z|x) =
∑

y q(z|y)p1(y|x) where

p1,2(y|x) are the transition probabilities associated to a1,2.

6.5 Two useful identities. Show that for any two symmetric densities a

and b:

(i) Moments are multplicative under ⊞, M2k(a⊞ b) =M2k(a)M2k(b)

(ii) The duality rule holds, H(a) +H(b) = H(a⊗ b) +H(a⊞ b).

(iii) The duality rule implies H((a1−a2)⊗ (a3−a4)) = −H((a1−a2)⊞ (a3−a4))

where a1, a2, a3, a4 are symmetric distributions.

6.6 Belief Propagation for (3, 6) Gallager ensemble and BAWGN

Channel. Exercise 1.2 proposed to implement a program which can generate

random elements from a regular Gallager ensemble. This can be used together

with the BP algorithm to simulate transmission over a BAWGN channel.

Use elements from the (3, 6)-ensemble of length n = 1024. For every codeword

sent, generate a new code in order to get the ensemble average. When transmit-

ting with a binary linear code over a symmetric channel, we can in fact assume

that the all-zero codeword was sent since the error probability is independent of

the transmitted codeword. This simplifies our life since we do not need to imple-

ment an encoder. We assume that we send the all-zero codeword over a BAWGN

channel. In spin language the input is sini +1 = (−1)0, i = 1, · · · , n. The channel
adds to each component sini an independent Gaussian random variable with zero

mean and variance σ2. At the receiver implement the message-passing decoder



6.11 Notes 151

in terms of likelihoods. Since a random element from the (3, 6) ensemble typ-

ically does not have a tree-like factor graph the scheduling of the messages is

important. To be explicit, use a flooding schedule. This means: send all initial

messages from variable nodes to check nodes, then process these messages and

send messages back from check nodes to all variable nodes. This corresponds to

one iteration. For each codeword perform 100 iterations and then make the final

decision for each bit.

Plot the negative logarithm (base 10) of the resulting bit error probability as a

function of the capacity of the BAWGN channel with variance σ2. This capacity

does not have a closed form but can be computed numerically by means of the

integral

CBAWGNC = 1−
∫ +∞

−∞
dy

e
−y2

2σ2

√
2πσ

log2
(
1 + e

y

σ2 − 1
2σ2
)

If the code and the decoder where optimal (in the sense that Shannon’s capacity

is achieved) and the length of the code were infinite, where should we see the

threshold (rapid decay of error probability)?

6.7 Density Evolution via Population Dynamics. DE for transmission

over the BEC is relatively easy to implement since in this case the “densities”

are in fact numbers (erasure probabilities). For general channels, DE is more

involved since it really involves the evolution of densities. These are the densities

of messages seen at the various iterations when the BP message-passing decoder

is implemented on an infinite ensemble for a fixed number of iterations.

A quick and dirty way of implementing DE for general channels is by means of a

population dynamics approach. Here is how this works. Assume that transmission

takes place over a given BMS channel and that we are using the (dv, dc)-regular

Gallager ensemble. Random messages are simulated by populations of size N .

The larger N the more accurate will be your result but the slower it will be.

We have one population V0 simulating channel outputs, and populations Cm,

Vm simulating messages flowing out of check nodes and variable nodes, and

corresponding to the m-th iteration in the following way.

(i) Pick an initial population V0. This set consists of N i.i.d log-likelihoods as-

sociated to the given BMS channel, assuming that the transmitted bit is 1 (we

are using spin notation here). More precisely, each sample is created in the fol-

lowing way. Sample Y according to p(y | s = 1). Compute the corresponding

log-likelihood value 1
2 log(

p(y|s=1)
p(y|s=−1) ) and call it H.

(ii) To compute Cm proceed as follows. Create N samples i.i.d in the following

way. For each sample, call it V , pick dc− 1 samples from Vm−1 with repetitions.

Let these samples be named U1, . . . , Udc−1. Compute

V = tanh−1(

dc−1∏
a=1

tanh(Ua/2)) .

Note, these are exactly the message-passing rules at a check node.
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(iii) To compute Vm proceed as follows. Create N samples iid in the following

way. For each sample, call it U , pick dv − 1 samples from Cm with repetitions.

Let these samples be named V1, . . . , Vl−1. Further, pick a sample from V0, call it
H. Compute

U = H +

dv−1∑
i=1

Vi .

Note, these are exactly the message-passing rules at a variable node.

Think now of each set Vm and Cm as a sample of the corresponding distribu-

tion. E.g., in order to construct this distribution approximately we might use a

histogram applied to the set. Recall, that we assume here the all-zero codeword

assumption. Hence, in order to see whether this experiment corresponds to a

successful decoding, we need to check whether in Vm all samples have positive

sign and magnitude which converges to infinity as m increases.

Implement the population dynamics approach for transmission over the BAWGN(σ)

channel using the (3, 6)-regular Gallager ensemble. Estimate the threshold using

this method. Plot the threshold on the same plot as the simulation results of

problem 6.6. Hopefully this vertical line, indicating the threshold, is somewhere

around where the error probability curves show a sharp drop-off.

6.8 Gallager Algorithm A. One of the downsides of BP in a practical

application is that it requires the exchange of real numbers. Hence, in any im-

plementation messages are quantized to a fixed number of bits. One way to think

of such a quantized algorithm is that the message represents an “approximation”

of the underlying message that BP would have sent. Assume that we are limited

to exchange messages consisting of a single bit. Recall that for BP a positive

message means that our current estimate of the associated bit is +1, whereas

a negative message means that our current estimate is −1 (the magnitude of

the BP message conveys our certainty). So we can think of a message-passing

algorithm which is limited to exchange messages consisting of a single bit, as

exchanging only the sign of their estimate.

The best known such algorithm (and historically also the oldest) is Gallager’s

“algorithm A.” We assume that the codewords and the received word have com-

ponents in {0, 1} (so think of transmission on the BSC). The message passing

rules are:

(i)Initialization: In the first iteration send out the received bits along all edges

incident to a variable node.

(ii)Check Node Rule: At a check node send out along edge e the XOR of the

incoming messages (not counting the incoming message along edge e).

(iii)Variable Node Rule: At a variable node send out the received value along

edge e unless all incoming messages (not counting the incoming message on edge

e) all agree in their value. Then send this value.

Assume that transmission takes place over the BSC(ϵ) and that we are using
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a (3, 6)-regular Gallager ensemble. Write down the density evolution equations

for the Gallager algorithm A.



7 Interlude: Message Passing for the
Sherrington-Kirkpatrick Spin Glass

This Chapter applies message passing methods to the Sherrington-Kirkpatrick

(SK) model of a spin glass. The SK model is a very particular random spin sys-

tem defined on a complete graph with pair interactions of random i.i.d strengths

for each edge (see Section 2.6). The impatient reader can very well jump ahead

directly to the next chapter on compressive sensing, but there are good reasons

for the present interlude. Certainly, the conceptual and historical role of the SK

model in our theoretical understanding of random spin systems cannot be un-

derestimated, however, for us the message passing analysis of this model will

serve as a stepping stone towards the technically more involved but related mes-

sage passing analysis in compressive sensing. In the present chapter we explore

message passing within the SK model and will then apply in Chapter 8 what we

have learned to compressive sensing.

The application of message passing is similar to coding in its general initial

outline. However there is a difference: the SK and compressed sensing models

are defined on complete graphs (the graph for compressed sensing is bipartite

complete). This is as far as one can get from locally tree-like graphs, so one might

think that message passing simply should not work very well for such models

and that this should be the end of the story. But in fact the story is much more

convoluted and interesting. Belief propagation works well for compressed sensing

and it also works for the SK model in its high temperature phase. For the SK

model at low temperatures simple message passing does not correctly take into

account ”long range correlations” and one has to resort to a more sophisticated

version of the theory. This new level of sophistication is not really needed for

compressed sensing, but rather for the satisfiability problem, so we postpone it

to part III.

Because of the denseness of the graph, message passing algorithms a priori

involve Θ(n2) messages flowing on edges at each iteration step. From the point

of view of complexity this is not very good. Recall in coding for sparse graphs the

number of message updates at each iteration is Θ(n). However, as we will see,

the denseness of the graph in fact allows to simplify the BP equations and bring

down this complexity to linear order. In the SK model the simplified equations

one ends up with, are an iterative form of the celebrated Thouless-Anderson-

Palmer (TAP) equations. Thouless, Anderson and Palmer initially derived their

equations through the analysis of a high temeprature expansion of the free energy
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and showed that the Curie-Weiss equation has to be corrected by a so-called

”Onsager reaction” term. Here we will discover that the Onsager reaction term

just appears automatically within the BP formalism.

An analog of density evolution can be derived from the (iterative) TAP equa-

tions. For historical reasons briefly explained in the Notes this goes under the

strange name of replica symmetric equations. The replica symmetric fixed point

equation predicts a threshold behaviour and it is natural to ask what is the re-

lation of this threshold with a thermodynamic phase transition threshold. The

necessary tools to answer this difficult question will only be developed in part

III. We review in Section 7.5 the main aspects of the exact solution and phase

transition of the SK model.

7.1 Sherrington-Kirkpatrick model and belief propagation approach

Sherrington-Kirkpatrick model

The Sherrington-Kirkpatrick model of a spin glass was briefly introduced in the

examples of Section 2.6. Recall that the model is defined on a complete graph

with n vertices, has binary spin degrees of freedom si = ±1, i = 1, . . . , n attached

to the vertices. The Hamiltonian is

H(s) = −
n∑

1≤i<j≤n

Jijsisj − h
n∑

i=1

si, (7.1)

where h is a constant magnetic field and Jij are n(n−1)/2 i.i.d random variables

(the “coupling constants”) associated to the edges of the complete graph. In

popular versions of the model one chooses Jij ∼ N (0, J2/n) or Jij = ±J/
√
n

with i.i.d Bernoulli(1/2) signs and J > 0 a constant.

Why are the coupling constants scaled by 1/
√
n? That this is the right scaling

can be seen by looking at the fluctuations of the Hamiltonian. The mean and

variance of H(s) are respectively equal to −h
∑n

i=1 si and (n− 1)J2/2. Thus for

general spin assignements the energy has a standard deviation of O(
√
n) around

a mean O(n) and we expect the thermodynamic limit to make sense and be

non-trivial. Later on it will often be useful to explicitely extract the scaling by

setting Jij = J̃ij/
√
n where J̃ij ∼ N (0, J2) or J̃ij = ±J .

The corresponding Gibbs distribution e−βH(s)/Z is itself random. As is usual

for random Gibbs distributions, there are two levels of randomness. The first

one associated to quenched or frozen variables, here the coupling constants Jij ,

and the second one corresponding to the spin assignments distributed according

to the Gibbs distribution. We refer back to Chapter 2 for a more extensive

discussion of these two levels of randomness.

One of the major achievements of the theory of random spin system is the

derivation of an exact formula for the average free energy of the SK model,

namely − limn→+∞ β−1E[lnZ]/n, as well as a proof of the concentration of
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Add figure of a complete graph and the factor graph with factors attached. Picture
with 4 vertices and 6 edges.

Figure 7.1 Complete graph of the SK model and factor graph representation of the
Gibbs measure.

(lnZ)/n as n → ∞. It is perhaps a good idea to stress that the similarity of

(7.1) with the Curie-Weiss Hamiltonian should not give the false impression that

the path to the solution is easy. Embarking into it at the present stage would

distract us too much from our present goal, which is, as explained in the intro-

duction, to concentrate on the message passing approach. A brief comparison of

the message passing predictions with the exact statistical mechanics solution is

found in Section 7.5.

Belief propagation equations

We now look at BP equations for the SK model. It will shortly become clear

that these equations are in fact the same for any Ising model with pairwise

interactions (as defined in Sect. 2.1). The specificities related to the SK model

are really used only in the next section.

To proceed systematically with the formalism of Chapter 5, we first set up

the factor graph formulation (see Figure 7.1). The vertices i = 1, . . . , n of the

original (complete) graph play the role of variable nodes. On every edge (i, j) ≡ a
we place a factor node with factor fa(si, sj) = eβJijsisj . We then attach extra

degree-one factor nodes î to each variable node i. The factor associated to î is

fi(si) = eβhsi .

Further, we let µ̂a→i(si) denote the message which flows from the factor node a

to the variable node i. In a similar manner, µi→a(si) is the message flowing from

variable node i to factor node a. There is also a “trivial” message µî→i(si) =

fi(si) = eβhsi flowing from degree-one factor nodes to variable nodes. Since

all messages depend on binary variables si = ±1 we can use the same type of

parametrization used for coding in Chapter 6 and set,

ĥa→i =
1

2β
ln

{
µ̂a→i(+1)

µ̂a→i(−1)

}
, hi→a =

1

2β
ln

{
µi→a(+1)

µi→a(−1)

}
. (7.2)

Up to the factor β−1 these are the usual loglikelihood variables associated to the

messages. In the context of spin systems they are also called cavity fields. The

reason comes from their physical interpretation which will shortly become clear

(this interpretation is also the reason why we prefer here the letter ”h” instead

of “l′′ used in Chapter 6).
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Add figure to show elimination of degree two factors

Figure 7.2 The factor nodes of degree two can be eliminated and one can work with
only one set of messages hi→j flowing on the original complete graph.

The general BP equations (5.10) read{
µi→a (si) = eβhsi

∏
b∈∂i∖a µ̂b→i (si)

µ̂a→i (si) =
∑

∼si
eβJijsisj

∏
j∈∂a∖i µj→a (sj)

(7.3)

An exercise shows that parametrization (7.2) leads to{
hj→a = h+

∑
b∈∂j\a ĥb→j ,

ĥa→j = 1
β atanh{tanh(βJij) tanh(βhi→a)}.

(7.4)

Note the similarity with (6.10) in coding theory. Equ. (7.4) reduce to such

“coding-like“ equations by setting β = 1 and letting Jij → +∞ in which case

the factor nodes correspond to degree two ”parity checks”.

There is a special feature of systems with degree two factors that we have

not encounterd yet explicitely. The two equations in (7.4) can be conveniently

reduced to a single one with messages flowing on the original graph. To see

this note that because a factor b has degree two, a directed edge b → j can be

identified with a directed edge i→ j on the original graph where i is the unique

vertex in ∂b \ j (see Figure 7.2). In other words, setting hi→j = ĥb→j , Equations

(7.4) become

hi→j =
1

β
atanh

{
(tanh(βJij) tanh(β(h+

∑
k∈∂i\j

hk→i))
}
. (7.5)

This message passing equation does not refer anymore to the factor graph. Mes-

sages flow on the original graph.

The BP-marginal, νBP
i (si), at vertex i is determined from the sum of the

external and all cavity fields,

h+
∑
a∈∂i

ĥa→i, or equivalently h+
∑
k∈∂i

hk→i. (7.6)

Explicitly, the normalized marginal is

νBP

i (si) =
eβ(h+

∑
k∈∂i hk→i)si

2 cosh(β(h+
∑

k∈∂i hk→i))
. (7.7)

The BP estimate for the magnetization, is by definition the average spin com-
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Figure 7.3 A complete graph and the graph with a spin removed and the leftover
cavity.

puted from the BP-marginal

mBP

i =
∑

si∈{±1}

siν
BP

i (si) = tanh(β(h+
∑
k∈∂i

hk→i)). (7.8)

We will call mBP
i the BP-magnetization to distinguish it from the (true) thermal

equilibrium magnetization mi = ⟨si⟩.
Let us pause to give a physical interpretation of these formulas. A single spin

s in the presence of a magnetic field h has a Hamiltonian H(s) = −hs and thus

a magnetization ⟨s⟩ = tanh(βh). Therefore one interprets h+
∑

k∈∂i hk→i as an

effective magnetic field felt by spin si. This is often called the local field or also

the mean field. The local field is the sum of the external field h and the total

cavity field hi,cav ≡
∑

k∈∂i hk→i. The later is an effective field produced by the

rest of the system in a ”cavity” left out when one removes vertex i from the

graph. Such a cavity is illustrated on Figure 7.3. This explains why the messages

hk→i, hi→a, ĥa→i are generically called ”cavity fields”.

Flooding schedule

From the perspective of traditional statistical mechanics one would view the BP

equations as fixed point equations and try to find all solutions. When multiple

solutions arise the important question is: which one to choose? Such issues are

deferred to Part III.

Here we take the algorithmic standpoint. Recall from Chapter 5, when the

underlying graph is a tree the initial conditions and iterations are clearly deter-

mined. This is also the situation where the BP equations have a unique solution

found by these iterations. But when the graph is not a tree we have to specify

initial conditions and a schedule to solve the equations iteratively. Just as in

coding we adopt the flooding schedule. A natural initialization is given by the

“prior” that we have about the local field. We therefore set

hti→j =
1

β
atanh

{
(tanh(βJij) tanh(β(h+

∑
k∈∂i\j

ht−1
k→i))

}
, h0i→j = 0. (7.9)

The BP-estimate of the magnetization at time t is,

mt
i = tanh

{
β(h+

∑
j∈∂i

htj→i)
}
. (7.10)
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Convergence of the iteration is not guaranteed in general. And even if iterations

converge the solution might not be unique, and its relation to the exact statistical

mechanical free energy is not obvious.

What is the complexity of this schedule on a complete graph? At each time

step t a node i receives n − 1 messages from which one computes first ht−1
i, cav ≡∑

k∈∂i h
t−1
k→i which counts as n − 1 additions. Then one computes the n − 1

outgoing messages as follows

hti→j = β−1 atanh
{
(tanh(βJij) tanh(β(h+ ht−1

i, cav − h
t−1
j→i)

}
,

which counts as n− 1 extra operations (assuming here the operation for each j

has unit cost). Since there are n nodes in total this makes 2(n− 1)n operations.

Thus the total complexity is equal to Θ(n2) times the number of iterations.

In the next section we show that suitable approximations allow to reduce the

complexity by one order.

7.2 From belief propagation to Thouless-Anderson-Palmer
equations

As just noted above, because the graph is complete, a single BP iteration has

quadratic complexity which is costly. Fortunately one can simplify the BP equa-

tions and bring the complexity down to order Θ(n). The key to the simplification

is that the coupling constants are weak. Indeed, recall that we have Jij = J̃ij/
√
n

with fluctuations of J̃ij = O(1), so we assume in general that the coupling con-

stants Jij are small when n → +∞, and perform an expansion of the message

passing equations. This has to be done with care however and typically one

must go beyond the lowest order term in order to obtain correct results. Inter-

estingly, these simplififications of message-passing equations lead to an iterative

form of the Thouless-Anderson-Palmer (TAP) equations. These equations have

a complexity of Θ(n) at each iteration. Thus they provide a linear complexity

algorithm to compute an algorithmic “TAP-estimate” of the magnetization.

Consider the BP iteration (7.9) at step t. Using the local field

ηi ≡ h+ hi,cav = h+
∑
k∈∂i

hk→i (7.11)

we can rewrite this iteration as

hti→j =
1

β
atanh

{
tanh(βJij) tanh(βη

t−1
i − βht−1

j→i)

}
.

Now, since Jij is of order 1/
√
n we Taylor expand the hyperbolic tangent and

its inverse. This yields

hti→j = Jij tanh(βη
t−1
i − βht−1

j→i) +O(β2J3
ij). (7.12)

This equation shows that each cavity field is O(Jij). On the other hand (7.11)
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shows that ηt−1
i involves the sum of n−1 such cavity fields. Therefore we expect

ht−1
j→i to be much smaller than ηt−1

i , and we further expand the hyperbolic tangent

in (7.12) in powers of the cavity field

hti→j = Jij tanh(βη
t−1
i )− βJijht−1

j→i

(
1− (tanh(βηt−1

i ))2
)
+O(β2J3

ij) . (7.13)

Thanks to (7.10) we can rewrite this equation as,

hti→j = Jijm
t−1
i − βJijht−1

j→i

(
1− (mt−1

i )2
)
+O(β2J3

ij) . (7.14)

Now we seek to express ht−1
j→i on the right hand side of this equation in terms of

magnetizations. This will allow to approximate cavity fields entirely in terms of

the magnetizations. We note that if we interchange the roles of i and j in (7.14)

and use ht−1
j→i = O(Jji), we get (since Jij = Jji)

ht−1
j→i = Jijm

t−2
j +O(βJ2

ij). (7.15)

Replacing (7.15) in (7.14) we obtain

hti→j = Jijm
t−1
i − βJ2

ijm
t−2
j

(
1− (mt−1

i )2
)
+O(β2J3

ij). (7.16)

The first two terms on the right hand side are O(n−1/2) and O(n−1) while the

error term is O(n−3/2). Dropping this error term1 and replacing in in (7.10), we

arrive at

mt
j = tanh

{
β

(
h+

∑
i∈∂j

Jijm
t−1
i − βmt−2

j

∑
i∈∂j

J2
ij

(
1− (mt−1

i )2
))}

. (7.17)

In the statistical mechanics literature the TAP equations correspond to the fixed

point form of (7.17). Their original derivation was obtained by very different

means involving expansion methods to compute the free energy.

Discussion of the TAP equations

With the scaling of the coupling constant made explicit the iterative TAP equa-

tions are

mt
j = tanh

{
β

(
h+

1√
n

n∑
i=1,i̸=j

J̃ijm
t−1
i − β

n
mt−2

j

n∑
i=1,i̸=j

J̃2
ij

(
1− (mt−1

i )2
))}

.

(7.18)

1 One may rightly object that dropping O(β3J3
ij) terms is not harmless because at each

iteration these errors accumulate. This difficulty can be ignored if one’s goal is to develop
the simplest possible algorithm to estimate the magnetization. For example one might

loose in precision with respect to BP but lower the complexity. Here, it turns out that one
lowers the complexity and does not loose precision with respect to BP. The algorithmic
estimate so obtained is in a certain sense optimal in a high temperature region of the

phase diagram (see Section 7.5).
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It is worth pointing out that the TAP equations take their simplest form when

J̃ij ∼ ±J with Ber(1/2) signs. Indeed J̃2
ij = J2 so and setting

qt−1
EA ≡

1

n

n∑
i=1

(mt−1
i )2

we get

mt
j = tanh

{
β

(
h+

1√
n

n∑
i=1

J̃ijm
t−1
i − βJ2mt−2

j (1− qt−1
EA )

)}
.

The parameter qtEA is an ”algorithmic version” of the so-called Edwards-Anderson

paremeter qEA = 1
n

∑n
i=1⟨si⟩2 which involves the equilibrium magnetizations,

and plays an important role in the exact solution of the model.

Only estimates of the magnetization are involved and there are no messages

flowing on edges anymore. At each iteration step t ≥ 1, magnetization estimates

at vertices of the graph are updated and there are n such updates, so the com-

plexity is now Θ(n) times the number of iterations. An aspect of the iterations

which turns out to play a crucial role in numerical implementations is the or-

ganisation of the time indices. From a purely algorithmic nothing prevents from

trying other arrangements which might work as well or even better in practice.

With the approach taken here which starts from the more primary BP equa-

tions the arrangement of the time indices comes for free in a principled way.

This is a welcome aspect of the approach when one deals with technically more

complicated but similar problems such as compressive sensing (see Chapter ??.

Let us now discuss the issue of initial conditions. Recall that within the BP ap-

proach we set ht=0
j→i = 0 or equivalently mt=0

i = tanh(βh) (see (7.9), (7.10)). The

TAP equations are ”second order equations” and require two initial conditions.

A look at (7.18) shows that a consistent choice is mt=−2
i = mt=−1

i = 0.

The local field in (7.18) is given by the external field h plus a cavity field

htj,cav =
1√
n

n∑
i=1

J̃ijm
t−1
i − β

n
mt−2

j

n∑
i=1

J̃2
ij

(
1− (mt−1

i )2

=
1√
n

n∑
i=1

J̃ijm
t−1
i − βJ2mt−2

j (1− qt−1
EA )

which is an approximation of the BP cavity field discussed in Sect. 7.1. This is

the field created by all spins i ̸= j in a cavity left over by removing the spin at j.

Each contribution has an interpretation. The first term is the usual Curie-Weiss

mean field. But this mean field includes - via the terms mi - an influence of the

spin at j on itself and this “back reaction” should be should be subtracted. This

is exactly what the second term −βJ2mj(1−qEA) does. This is called an Onsager

reaction term. A back of the envelope heuristic derivation of the Onsager reaction

is found in the exercises.
Add a small guided

exercise
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A parenthesis: the CW model revisited

Recall that the exact solution of the CW model in Chapter 4 led us to the fixed

point equation m = tanh(β(h + Jm)) Here the local field is just the sum of

the external field h and the CW mean field Jm. Why is it that the Onsager

reaction term is not needed here? One can repeat the same theory developed in

this chapter for (non random) coupling constants Jij = J/n. Starting from BP

equations and then approximating them to leading orders in coupling constants

we obviously find again (7.17). At this point, setting Jij = J/n one easily sees

that the Onsager term is O(n−1) and can be neglected, so that only the usual

CW mean field remains. We are lead to the iterative equations

mt
j = tanh(β(h+

J

n

n∑
i=1

mt−1
i )) . (7.19)

Since the right hand side does not depend on j we can seek a uniform solution

mt
j = mt. Equation (7.19) becomes

mt = tanh(β(h+ Jmt−1)). (7.20)

To summarize, for the CW model the TAP equation reduces to the CW equation

because the Onsager reaction term is negligible.

This remark teaches us an important lesson. Recall that the exact solution

for the magnetization is found by selecting the fixed point of the CW equation

(4.22) which minimises the free energy. The BP approach leads to the iterative

form (7.20) which we should solve with the initial condition m0 = 0. Whether

the estimate mt converges to the true magnetisation (computed in Chapter 4)

depends on the region of the phase diagram in the (β, h) plane. An analysis of

the iterations shows that this is the case outside of the spinodal region, i.e., for

βJ < 1 and (βJ > 1, |h| > hsp). Such intimate connections between algorithmic

and thermodynamic solutions will be discussed in more depth in Part III, so we

close this parenthesis here.

7.3 Replica symmetric equations

The goal of density evolution in coding is to write down an iterative equation

that tracks the average behaviour of the algorithm. This can also be done for the

TAP iterations under a non-trivial assumption of weak correlation for the cavity

fields.

Recall expression (7.10) for the BP-magnetization where we set for convenience

hj→i = fj→i/
√
n

mt
i = tanh

{
β(h+

1√
n

∑
j∈∂i

f tj→i)
}

(7.21)
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where

f tj→i ≈ J̃ijmt−1
j − β√

n
mt−2

i J̃2
ij(1− (mt−1

j )2) . (7.22)

within the TAP approximation. A highly non trivial result states that there is

a high temperature portion of the (h, T ) plane where these messages are only

weakly correlated and the central limit theorem applies

lim
n→+∞

1√
n

∑
j∈∂i

f tj→i ∼ N (0, qt−1). (7.23)

where qt ≡ E[(mt
j)

2] (by symmetry this expectation is independent of j).

In the case of coding, as shown in Chapter 6, the assumption of weak corre-

lation of messages is justified in a regime t ≪ n because of the locally tree like

nature of the factor graph. In fact there, we could condition on the high prob-

ability event that a computational tree of finite depth really is a tree, so that

messages are independent. For the SK model on a complete graph we cannot

rely on the same method to justify the assumption of weak correlations. It turns

out that this assumption is true in a ”high temperature” portion of the phase

diagram, but fails for low temperatures. The Onsager term plays a crucial role:

if the CW contribution J̃ijmj alone is retained the central limit theorem cannot

be applied for whatever values of temperature and magnetic field. In effect the

Onsager term is responsible for decorrelating the CW terms. A rigorous proof of

these important results was given only relatively recently by Bolthauzen and is

beyond our scope here. The reader can find evidence for the ”miraculous” role

of the Onsager term by analysing in detail the first few iterations in Section 7.4.

Clear numerical evidence can also be found in a guided exercise.

When (7.23) is satisfied we are in a position to write down ”evolution equa-

tions” for the average behaviour of the TAP iterations. Set

mt = E[mt
i], and qt = E[(mt

i)
2] (7.24)

Thanks to (7.23) we can take the expectation of Equ. (7.21) and of the squared

version of this equation. This yieldsmt =
∫ +∞
−∞ du e−

u2

2√
2π

tanh
{
β(h+ u

√
qt−1)

}
,

qt =
∫ +∞
−∞ du e−

u2

2√
2π

tanh2
{
β(h+ u

√
qt−1)

}
.

(7.25)

The initial condition (consistent with m0
i = tanh(βh)) is q0 = 0.

The fixed point form of the iterations (7.25) are called the replica symmetric

equations. This strange name comes from the original derivations, in the statis-

tical mechanics literature, which involved completely different methods (see the

notes).

The solutions of the fixed point equations display an interesting threshold

behaviour when the temperature is varied on the h = 0 axis. Since tanh is an
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odd function, the fixed point version of (7.25) becomes

m = 0, q =

∫ +∞

−∞
du

e−
u2

2

√
2π

tanh2(βu
√
q). (7.26)

This equation admits a trivial fixed point q = 0 for all β, which is unique and

stable for β < 1. For β > 1 this fixed point is unstable, and a second stable non-

trivial fixed point q ̸= 0 appears. This is similar to the situation we encountered

with the CW fixed point equation and therefore suggests that a phase transition

occurs in this model at (β = 1, h = 0) when we move along the h = 0 axis.

This conclusion is correct, but it is only the tip of the iceberg and the phase

transition in the SK model turns out to be a very subtle one. For one thing,

(7.26) has a unique smoth solution for h ̸= 0 and therefore does not predict a

phase transition for non-zero magnetic fields. It turns out that this is a wrong

prediction. The correct picture of the phase diagram in the (β, h) plane is briefly

reviewed in Section (7.5).

7.4 First iterations of the TAP equations2

We briefly outline how the mean and covariance of the messages f tj→i can be

computed for the first iterations. We consider the Gaussian model J̃ij ∼ N (0, 1)

which allows to carry out explicit calculations showing that messages

f
(2)
j→i = J̃ijm

(1)
j −

β√
n
m

(0)
i J̃2

ij(1− (m
(1)
j )2)

have mean E[f (2)j→i] = O(n−2) and covariance E[f (2)k→if
(2)
l→i] = δklq1. This is consis-

tent with (7.23). The algebra clearly shows the crucial role of the Onsager term

already at the second iteration t = 2. We leave it as an exercise for the reader to

carry out similar (but more lengthy) calculations for t = 3.

The case t = 1 is trivial. With the initialization mt=−2
i = mt=−1

i = 0 we have

m
(0)
i = tanh(βh). Thus (7.22) immediately implies that f

(1)
j→i = J̃ij tanh(βh) are

i.i.d Gaussian with E[f (1)j→i] = 0 and E[(f (1)j→i)
2] = (tanhβh)2 = q0.

Let us now consider the second iteration t = 2. Now m
(1)
i = tanh(βh +

β√
n

∑n
j=1,j ̸=i J̃ijm

(0)
j ) is also involved. For the mean we have

E[f (2)j→i] = E[J̃ijm(1)
j ]− β√

n
m

(0)
i E[J̃2

ij(1− (m
(1)
j )2)] (7.27)

The main trick to evaluate such expressions is to use the integration by parts

2 This section is not needed for the main development and can be skipped in a first reading.
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formula3 ∫
dx

e−
x2

2

√
2π

xf(x)
e−

x2

2

√
2π

=

∫
dx

e−
x2

2

√
2π

f ′(x)

which yields for the first term in (7.27)

E[J̃ijm(1)
j ] = E[

∂

∂J̃ij
m

(1)
j ] = E[(1− (m

(1)
j )2)

β√
n
m

(0)
i ]

=
β√
n
m

(0)
i E[(1− (m

(1)
j )2)]

We see that the result is almost equal to the Onsager term in (7.27). In fact,

integrating by parts in that term we get

E[J̃2
ij(1− (m

(1)
j )2)] = E[(1− (m

(1)
j )2)] + E[J̃ij

∂

J̃ij
(1− (m

(1)
j )2)]

= E[(1− (m
(1)
j )2)]− 2β√

n
m

(0)
i E[J̃ijm(1)

j (1− (m
(1)
j )2)]

= E[(1− (m
(1)
j )2)]− 2β2

n
(m

(0)
i )2E[(1− (m

(1)
j )2)2]

+
4β2

n
(m

(0)
i )2E[(m(1)

j )2(1− (m
(1)
j )2]

A useful rule of thumb to bypass this last calculation is to make the replacement

J2
ij → +1 as if the couplings where Bernoulli random variables, and add a term

O(n−1) to account for the error. With these results we see that (7.27) becomes

E[f (2)j→i] = O(n−3/2) .

In particular

E[
1√
n

∑
j∈∂i

f
(2)
j→i] = O(n−1) .

We now turn to the covariance of messages f
(2)
k→i and f

(2)
l→i, and show that

asymptotically it equals δklq1. From (7.22) we get four contributions

E[f (2)k→if
(2)
l→i] = E[J̃ikJ̃ilm(1)

k m
(1)
l ]

− β√
n
m

(0)
i E[J̃ikJ̃2

ilm
(1)
k (1− (m

(1)
l )2)]

− β√
n
m

(0)
i E[J̃ilJ̃2

ikm
(1)
l (1− (m

(1)
k )2)]

+
β2

n
(m

(0)
i )2E[J̃2

ikJ̃
2
il(1− (m

(1)
k )2)(1− (m

(1)
l )2)] .

3 For the Bernoulli or other distributions this simple formula cannot be used directly. But

with some extra work a similar analysis is also possible.
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For k ̸= l, an integration by parts leads to

E[f (2)k→if
(2)
l→i] =

β2

n
(m

(0)
i )2E[(1− (m

(1)
k )2(1− (m

(1)
l )2]

− β2

n
(m

(0)
i )2E[J̃2

il(1− (m
(1)
k )2)(1− (m

(1)
l )2)]

− β2

n
(m

(0)
i )2E[J̃2

ik(1− (m
(1)
l )2)(1− (m

(1)
k )2)]

+
β2

n
(m

(0)
i )2E[J̃2

ikJ̃
2
il(1− (m

(1)
k )2)(1− (m

(1)
l )2)] .

Using the rule of thumb alluded to above we find that E[f (2)k→if
(2)
l→i] = O(n−2) for

k ̸= l. For k = l we have

E[(f (2)k→i)
2] = E[J̃2

ik(m
(1)
k )2]− 2

β√
n
m

(0)
i E[J̃3

ikm
(1)
k (1− (m

(1)
k )2)]

+
β2

n
(m

(0)
i )2E[J̃4

ik(1− (m
(1)
k )2)2]

= E[(m(1)
k )2] +O(n−1/2)

where the last equality is again obtained by integration by parts. With these

results we can conclude

E[(
1√
n

∑
j∈∂i

fj→i)
2] = q1 +O(

1√
n
)

consistently with (7.23).

7.5 Exact solution of the SK model4

In Chapter 4 we solved exactly the CW model and learned that the free energy

could be expressed in variational form (4.11). This is also true for the SK model,

however the variational expression and its derivation are considerably more sub-

tle. The correct solution was first provided by Parisi using a purely algebraic

method called the replica method. Since then, the solution has been rederived in

a more probabilistic way which goes under the name cavity method. The cavity

method which will be discussed in Part III can be seen as an ”upgraded” message

passing method that takes into account long-range correlations that BP neglects.

Here we briefly review the Parisi formula for exact average free energy. This

formula was proved much later by Talagrand. From this formula one can infer

the existence of a high temperature phase where the replica symmetric fixed

point equations are exact, and a low temperature phase where they are not. The

phase transition line separating these two phases in the (h, T ) plane is called the

Almeida-Thouless (AT) line.

Let x : q ∈ [0, 1] → x(q) ∈ [0, 1] be a non-decreasing cumulative distribution

4 This section is not needed for the main development and can be skipped in a first reading.
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function. Call Q the space of such cumulative distribution functions. Define the

”Parisi functional”

fP(x]) ≡ − ln 2− f(0, h;x)− β2

2

∫ 1

0

q x(q)dq (7.28)

where f(q, h;x) satisfies the partial differential equation

∂f

∂q
+

1

2

∂2f

∂h2
+
x(q)

2

(∂2f
∂h2

)2
= 0 (7.29)

with “final” condition f(1, h;x) = ln cosh(βh). The Parisi formula for the average

free energy of the SK model states

− lim
n→+∞

β−1

n
E[lnZ] = sup

x∈Q
fP (x) . (7.30)

To gain some insight into this rather complicated formula let us consider a

simple lower bound to (7.30) obtained by taking

x(q) =

{
0, q ∈ [0, q0],

1, q ∈ (q0, 1]
(7.31)

This is the cumulative distribution of the Dirac mass at q̄, namely δ(q − q0).

For (7.31) the Parisi functional fP(x) reduces to the replica symmetric potential

function

fRS(q0) ≡ −
β

4
(1− q0)2 − β−1

∫ +∞

−∞
du

e−
u2

2

√
2π

ln{2 cosh(βh+ βu
√
q0)}, (7.32)

and we have the lower bound

− lim
n→+∞

β−1

n
E[lnZ] ≥ sup

q0∈[0,1]

fRS(q0). (7.33)

The right hand side of this bound is called the ”replica symmetric” free energy,

and can be proven to be equal to the true free energy in the high temperature

phase. To solve the variational problem on the right hand side of (7.33) we set

f ′RS(q0) = 0 which can easily seen to be equivalent to one of the replica symmetric

fixed point equations (compare with (7.25))

q0 =

∫ +∞

−∞
du

e−
u2

2

√
2π

tanh2
{
β(h+ u

√
q0)
}

(7.34)

So the replica symmetric free energy is equal to fRS(q∗) where the maximizer

q∗ is a solution of this fixed point equation. The magnetization can as usual be

obtained by differentiating the RS free energy with respect to the magnetic field
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Figure 7.4 The Almeida-Thoulessphase transition line in the (h, T ) plane separating
the high temperature phase where the RS expression for the free energy is exact and
the low temperature ”glass phase” where it is not.

(compare with Chapter 2, Section 2.4)

m =
1

β

dfRS(q∗)

dh
=

1

β

∂fRS(q∗)

∂h
+

1

β

(
∂fRS

∂q

)
q∗

dq∗
dh

=
∂fRS(q∗)

∂h

=

∫ +∞

−∞
du

e−
u2

2

√
2π

tanh
{
β(h+ u

√
q∗)
}

(7.35)

(compare with (7.25)).

An important breakthrough towards the complete proof of (7.30) was the

derivation of the lower bound (7.33) by Guerra and Toninelli and even of the

equality for sufficiently high temperatures. It turns out that this lower bound

(7.33) is tight, i.e., the replica symmetric solution is exact, above the ”Almeida-

Thouless” line given by the equation

β−2 =

∫ +∞

−∞
du

e−
u2

2

√
2π

(1− tanh2(βh+ βu
√
q∗))

2 (7.36)

and depicted on figure 7.4. The Almeida-Thouless line separates a high tempera-

ture phase where the replica symmetric solution is exact, a the low temperature

phase where this is not so. Below this line the free energy functional (7.28) has

a supremum for non-trivial cdf’s P(q) ̸= δ(q − q0). This is related to the lack

of concentration of the Edwards-Anderson parameter qEA = 1
n

∑n
i=1⟨si⟩2 which

acquires a non-trivial distribution, and to the failure of the assumption (7.23).

The full description of the physical nature of the low temperature ”glass phase”

goes much beyond the free energy formula and still offers interesting challenges

(see notes for references).

It is an interesting exercise to show that the RS formula cannot hold at low

temperatures even on the h = 0 axis. An analysis To see this one considers the

entropy obtained from this formula, i.e., sRS = −∂fRS/∂(1/β) and checks the

requirement that it remains non-negative for all temperatures.5 As exlained in

the previous section for β < 1 and h = 0 the only fixed point is q0 = 0. The

entropy then becomes sRS = ln 2−β2/4 which is positive for β < 2(ln 2)1/2, and

there is no obvious contradiction. However for β > 1 and h = 0 a non-trivial

fixed point appears. A careful analysis of (7.34) shows that q0 → 1− β−1
√
2/π

5 This is a necessary but not a sufficient condition for the correctness of the free energy.
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when β → +∞, which leads to sRS → −1/(2π) for β → +∞, a negative entropy

at zero temperature which is unacceptable.

7.6 Notes

The introduction of the SK model has been enormously fruitful in the theory of

spin glasses, but also beyond, and nowadays the study of this model connects

to algorithmic issues in signal processing, estimation and computer science. The

first solution (Sherrington & Kirkpatrick 1975) used the replica trick, already

introduced by (Edwards & Anderson 1975) in their study of the spin glass model

(that bears their name) on a finite dimensional grid. The order parameter qEA =
1
n

∑n
i=1⟨si⟩2 characterizing the phase transition was already introduced in this

work.

The first obstacle one faces in an attempt to compute the average free en-

ergy of a random spin system is the inability to switch the expectation and the

logarithm in E[lnZ]. By Jensen’s inequality E[lnZ] ≤ lnE[Z]. The right hand

side yields the annealed approximation (see exercises) and (?) proved that this is

exact for (β < 1, h = 0). The replica trick represents lnZ as limn→0(Z
n − 1)/n,

computes the moments E[Zn] for integer n, and then somehow makes a ”con-

tinuation” to obtain the limit n → 0. A somewhat “blind” application of this

trick leads to (7.32) - nowadays called replica symmetric solution - but already

Sherrington and Kirkpatrick noticed that this can not be valid at low temper-

atures because it leads to a negative entropy. The replica symmetry alluded

to here is ”simply” the symmetry between the n copies of the system when

n is an integer. However, clearly this symmetry is a mysterious concept when

n → 0. And even for n integer the physical meaning of the n ”replicas” of

the system is not so obvious. It was Parisi who in a series of papers first pro-

posed a correct scheme for “breaking the replica symmetry” and obtained the

correct free energy and entropies for any values of temperatures and magnetic

field (Parisi 1980). The line separating the high temperature phase where the

replica symmetric solution is valid, from the low temperature phase where one

has to resort to Parisi’s full replica symmetry breaking scheme, was first derived

in (de Almeida & Thouless 1978). This algebraic approach, although powerful,

was not easily accepted at first, and perhaps rightly so since still today it is

not mathematically understood. It was soon replaced by a more probabilistic

approach - the so called cavity method - that has much in common with the

message passing point of view - and which will be explored in more depth in

part III for the constraint satisfaction problem. After many efforts this approach

has been mathematically established (Talagrand 2000). An account of the ini-

tial replica and cavity methods for the SK model is found in (Mézard, Parisi

& Virasoro 1987b, Nishimori 2001) and the mathematics of the cavity method

are found in the treatises (Talagrand 2003, Talagrand 2011, Panchenko 2013).

A comprehensive set of references to decades of work is found there. We single
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out the interpolation method (Guerra 2001, Guerra & Toninelli n.d.) establishing

the equality in (7.33) above the AT line and the strict inequality below this line

(Toninelli n.d.). The Guerra-Toninelli ideas have found applications well beyond

the SK model in coding, compressive sensing and constraint satisfaction and

form the subject of Chapter 13.

By its very nature the replica method studies average quantities. The more

probabilistic cavity method approach is well suited to study single instances

which is of crucial importance when it comes to algorithmic applications. An

important step towards the probabilistic approach was taken in a crucial paper

by Thouless, Anderson and Palmer who directly studied the free energy of single

instances via a diagrammatic expansions (Thouless, Anderson & Palmer 1977).

This paper contains a derivation of the Onsager reaction term. Such terms where

introduced by (Onsager 1936) in his theory of dielectric properties of molecular

liquids, greatly extending a long line of studies in physical chemistry. An account

of this complicated history would lead us too far but interested readers can

consult the nice book of (Boettcher 1973). This literature is not motivated by

an algorithmic approach and in particular the TAP equations are viewed as a

set of self-consistent (fixed point) relations that the local magnetizations should

satisfy.

Using the TAP equations as an algorithm to estimate “latent variables” goes

back to the work of (Opper & Winter 1996b, Opper & Winter 1996a) in the

context of neural networks and is nowadays a widely used idea for systems on

dense graphs. The approach taken in this chapter, starting from the belief prop-

agation equations and working out an iterative form of the TAP equations, can

be traced back to the work of (Kabashima & Saad 1998, Kabashima 2003) on

communications problems. Although the best way to place the time indices in

the TAP equations had probably been guessed before, the approach that starts

from BP is principled and yields unambiguous results. This idea turns out to be

important for algorithmic approaches to more complicated problems. The rig-

orous study of these TAP iterations was pioneered by (Bolthauzen 2014) who

introduced techniques to prove crucial results such as (7.23). These techniques

have then been used to control the performance of the the Approximate Message

Passing algorithm. More on this is found in Chapter 8.

Problems

7.1 Belief propagation equations for pairwise spin systems. Con-

sider a spin system on a general graph G = (V,E) with Hamiltonian H(s) =

−
∑

(i,j)∈E Jijsisj . Derive in detail the BP equations (7.4) for this system.

7.2 Heuristic derivation of the TAP equations. In this problem we go

through a short heuristic argument that corrects the Curie-Weiss mean field

equation and yields the TAP equations.
Complete this

7.3 Distribution of cavity fields in the TAP theory. The goal of this

exercise is to numericaly justify the assumption (7.23) which forms teh bsis for
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the derivation of the RS formula in this chapter. Consider the SK model with

i.i.d Bernoulli(1/2) coupling constants J̃ij = ±1 or J̃ij Gaussian with zero mean

and unit variance. The TAP approximation to the BP equations reads

mt
j = tanh

{
β(h+

∑
i ̸=j

ĥti→j)
}

where the update of the cavity fields is

ĥti→j =
1√
n
J̃ijm

t−1
i − β

n
mt−1

j (1− (mt−1
i )2)

and the initialization ĥ0i→j = 0.

Take a number N = 50 of realizations (coupling constants) of the system

of size n = 500 or 1000 and an iteration number say t = 10. Try values of

(h, T = β−1) in the high temperature regime: the following should be suitable

(h = 0.5, T = 1.2) and (h = 1, T = 0.8).

(i) Plot the histogram of the total cavity field

ĥtcav =
∑
i ̸=j

ĥti→j .

This field is equal to a ”Curie-Weiss” field to which the ”Onsager reaction term”

is subtracted. Plot also the histogram of the total Curie-Weiss contribution

htCW =
∑
i ̸=j

1√
n
J̃ijm

t−1
i .

(ii) Check that the Edwards-Anderson parameter

qtEA =
1

n

n∑
i=1

(mt
i)

2.

is concentrated on its empirical mean over the N realizations.

(iii) Compare both histograms in (i) with the Gaussian distribution of zero mean

and variance equal to the empirical mean of the Edwards-Anderson parameter.

You should observe that the histogram of the cavity field agrees with this Gaus-

sian, but not that of the CW field.

7.4 TAP iterations. Repeat the calculations of section (7.4) for t = 3 to

show that f
(3)
j→i has mean zero and variance q2 = E[(m(2)

i )2] in thermodynamic

limit.

7.5 Replica symmetric equations. Consider the RS equations fixed point

equations for m and q. Show rigorously that for h = 0 besides the trivial fixed

point m = 0, q = 0 for β > 1 there is another non-trivial fixed point m = 0, q ̸= 0

that is stable. Furthermore show that for h ̸= 0 there is a unique fixed point for

all β.
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7.6 Annealed approximation. By Jensen’s inequality we have E[lnZ] ≤
lnE[Z]. Compute the right hand side for Gaussian couplings and deduce a lower

bound for the free energy in the thermodynamic limit.

The expression in the lower bound is called the annealed approximation be-

cause it treats the quenched couplings on the same level as the spins. It can be

shown to be exact for (h = 0, β < 1). Check that on this interval it agrees with

the replica symmetric solution (see (7.32)) fRS = −β−1 ln 2− β
4 . We stress that

the lower bound is strict for h ̸= 0 so the annealed approximation breaks down

even at high temperature as soon as there is a non-zero magnetic field.

7.7 Entropy crisis. The main goal of this exercise is to show that the RS

solution cannot be correct at sufficiently low temperatures. The idea is to show

that the entropy obtained from sRS = −∂fRS

∂T becomes negative at low tempera-

tures which is not possible. Consider the RS fixed point equation (??) for h = 0.

Compute the free energy and entropy corresponding to the unique trivial fixed

point for β < 1. You should find that

fRS = −β−1 ln 2− β

4
and sRS = − ln 2− β2

4

and check that the entropy remains positive for β < 1. Show through an analysis

of the fixed point equation that the non-trivial solution satisfies

q ≈ 1− β−1

√
2

π
for β ≫ 1

and that the free energy and entropy become to leading order

fRS ≈ −
1

2πβ
and sRS ≈ −

1

2π
.

The negativity of sRS shows that the replica symmetric solution cannot be valid

at low temperatures.



8 Compressive Sensing: Approximate
Message Passing and State
Evolution

Recall that a meaningful estimator for the compressive sensing problem is the

Least Absolute Shrinkage Selection Operator (LASSO) given by

x̂LASSO(y) = argminx

{1
2
∥y −Ax∥22 + λ∥x∥1

}
. (8.1)

The use of this estimator can be justified from several points of views as discussed

in Chapters 1 and 3. For example one can settle for this estimator because, in the

noiseless limit and for a certain range of parameters, the ℓ1 and ℓ0 minimization

problems are equivalent (Theorem 1.1). Another point of view is the Bayesian

one. The zero-temperature limit of the β-MMSE estimator for a Laplacian prior

yields the LASSO, and the Laplacian prior is a simple and tractable model for

sparse signals with unknown distribution. A justification for using this estimator

can also be given in hindsight. We will see that this estimator works well in a

fairly general setting. Together with the right structure for the measuring matrix

we can even, in some cases, get optimal performance in terms of its asymptotic (in

the size) behaviour if we look at the required number of measurements compared

to the sparsity of the signal. However it is a long road until we can arrive at this

conclusion in Chapter 14, so for the moment we will not worry about this. In the

present chapter we simply want to implement the LASSO in an algorithmically

efficient manner.

The basic idea to implement the LASSO is straightforward. We first set up a

factor graph corresponding to (8.1) and mechanically write down the message-

passing rules following the general framework about set out in Chapter 5, no

thinking required. Since the LASSO asks for the a minimizer one possible start-

ing point is the min-sum algorithm.1 Quite surprisingly message passing works

although the graph is dense and not at all sparse.

In principle this program only takes a few lines and we could stop at this point.

But there are a few issues. For the straightforward message-passing algorithm

the number of messages which need to be exchanged in each iteration is of

quadratic oder in the graph size. This is true since the graph is dense. The

second problem is that the messages are functions and not numbers as was the

case for coding. This increases the complexity even further. Fortunately, as we

1 This is to some degree a matter of convenience. An alternative derivation would start with
the sum-product equations for a finite temperature formulation and then look at the zero

temperature limit.
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will see, one can approximate the original message-passing algorithm to (i) first

simplify the messages to numbers, and (ii) bring down the number of messages

which need to be exchanged in each iteration to linear order. For this second

point we will proceed similarly to the derivation of TAP equations in Chapter 7.

The final algorithm we derive is called AMP, where AMP stand for Approximate

Message Passing

Besides the practical motivation to reduce complexity there is also another,

perhaps more important, reason for going through these simplifications. The

performance of the resulting AMP algorithm can be rigorously analyzed in detail.

Even though the AMP algorithm is an approximation, it works very well and its

performance can be caracterized precisely. In the context of coding we were able

to assess the performance of belief propagation thanks to density evolution. In the

large-size limit the state of belief propagation is given in terms of a distribution

or density (of messages). Density evolution then allows to track this state as a

function of the iteration. It is possible to develop a similar formalism for the

AMP algorithm. In the context of compressive sensing this formalism is called

state evolution (SE). As we will see, one can derive recursive equations for the

mean square error whose average behaviour is tracked by SE.

An important application of SE pin-points an algorithmic phase transition

curve in the ”sparsity-measurement fraction” plane. Remarkably this curve is

independent of the noise level and determines the region of equivalence of the

ℓ1 and ℓ0 problems. It was first obtained by Donoho and Tanner by completely

independent means.

8.1 LASSO for the Scalar Case

We begin with the analysis of a toy problem, namely the estimation of a scalar

variable corrupted by noise. This turns out to be not only an interesting non-

trivial problem, but also an important ingredient for the solution of the esti-

mation of vector signals. Let then y = x + z where z ∼ N (0, σ2). We ass-

sume that x is “sparse” in the sense that it is a random variable with Dirac

mass 1 − κ at x = 0 and mass of ”small” weight κ distributed (in an unknown

way) for x ̸= 0. More formally, this is the class Sκ of distributions of the form

p0(x) = (1−κ)δ(x)+κϕ0(x) where ϕ0(x) is an unknown non-negative continuous

probability distribution function normalized to one (but we suppose here that κ

is known).

The LASSO estimator

argminx

{1
2
(y − x)2 + λ|x|

}
. (8.2)

corresponds to the Hamiltonian H(x|y) = 1
2 (y − x)

2 + λ|x|. Let us check where

this Hamiltonian takes on its minimum. For x > 0 its derivative with respect to

x equals −(y−x)+λ. Setting this derivative to 0 we find that (8.2) equals y−λ.
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This solution is valid for y > λ. On the other hand for x < 0 the derivative is

−(y − x)− λ. Setting this derivative to 0 we get that (8.2) equals y + λ. This is

valid for y < −λ). For the remaining case −λ < y < λ one checks the inequality
1
2y

2 ≤ 1
2 (y − x)

2 + λ|x| which means that (8.2) equals 0. Summarizing, we get

the scalar estimator

η(y ; λ) ≡


y − λ, if y > λ,

0, if −λ < y < λ,

y + λ, if y < −λ.

This is called the soft thresholding estimator or function, and the corresponding

graph is shown in Figure 8.1.

−λ

λ

y − λ

y + λ

y

Figure 8.1 Graph of the soft-threshold function η(y ; λ). The parameter λ is the
thresholding parameter.

In the above estimator we need to choose the parameter λ. Since ϕ0(x) is

unknown one reasonable criterion is: “choose the best λ for the worst prior in

Sκ.” In mathematical terms we compute the ”risk” or minimax-mean-square-

error

inf
λ>0

sup
p0(·)∈Sκ

E[|η(Y, λ)−X|2]. (8.3)

Writing it explicitly and making the change of variables y → x+ z the minimax-

mean-square-error equals

inf
λ>0

sup
p0(·)∈Sκ

∫
dxp0(x)

∫
dz p0(x)

e−
1

2σ2 z2

√
2πσ2

(
η(x+ z , λ)− x

)2
. (8.4)

It is natural to choose the threshold on the scale of the noise, i.e., we set

λ = ασ. We also note that under the change of variables x→ σx, z → σz

σp0(σx) = (1− κ)δ(x) + κϕ
(σ)
0 (x) with ϕ

(σ)
0 (x) = σϕ0(σx)

is a normalized distribution also belonging to Sκ. In other words the ensemble

Sκ is scale invariant. These important remarks imply that (8.4) equals

σ2 inf
α≥0

sup
p0∈Sκ

∫
dxp0(x)

∫
dz
e−

z2

2

√
2π

(
η(x+ z ; α)− x

)2

(8.5)
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and that the solution of the minimax problem is essentially independent of the

noise level. The only thing that really depends on the noise level is the overall

scale of the minimax-MSE. It should be clear that this is so because, since Sκ is

scale invariant, σ2 is the only scale or “dimensionfull” quantity in the problem.

So dimensional analysis immediately tells us that the minimax-MSE must be

proportional to σ2. This is generally not true for the usual MMSE estimator

which would be used if the prior were known. A known prior introduces another

scale in the problem, besides σ2.

It turns out that in the scalar case one can compute the worst case distribution

and best possible α exactly. Let us set

Mscalar(κ, α; p0) ≡
∫
dxp0(x)

∫
dz
e−

z2

2

√
2π

(
η(x+ z ; α)− x

)2

and

Mscalar(κ, α) ≡ sup
p0∈Sκ

Mscalar(κ, α; p0), Mscalar(κ) ≡ infα>0Mscalar(κ, α)

For fixed α the worst case distribution turns out to be2

p0,worst(x) = (1− κ)δ(x) + κ

2
δ+∞(x) +

κ

2
δ−∞(x).

Using this expression one easily deduces that

Mscalar(κ, α) = κ(1 + α2) + (1− κ)
[
2(1 + α2)Φ(−α)− 2α

e−
α2

2

√
2π

]
, (8.6)

where Φ(α) =
∫ α

−∞ du e−
u2

2√
2π

the cumulative distribution of a standardized Gaus-

sian. To find the best possible α we now minimize (8.6) over α > 0. Setting the

derivative to zero we obtain

κ =
2
(
e−

α2

2√
2π
− αΦ(−α)

)
α+ 2

(
e−

α2
2√

2π
− αΦ(−α)

) . (8.7)

The right hand side of (8.7) is a monotone decreasing function of α, thus given κ

there exist a unique αbest(κ) found by inverting (8.7). Finally, the minimax-MSE

(8.5) for the scalar problem is

σ2Mscalar(κ) = σ2Mscalar(κ, αbest(κ)) . (8.8)

2 This was first derived by Donoho and Johnson (). See the notes and exercises for more

information.
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8.2 The vector case: preliminaries

From the point of view of statistical physics computing (8.1) is equivalent to

minimizing the Hamiltonian (or cost function)

H(x) =
m∑

a=1

1

2
(ya − (Ax)a)

2 + λ
n∑

i=1

|xi| (8.9)

We explained in Chapter 3 that this cost function can be interpreted as a spin-

glass Hamiltonian. The matrix A and the observation y are random, but once we

have a realization they are considered fixed. These are the quenched (or frozen)

variables. The degrees of freedom reside in the signal components xi. These are

“continuous spins” since xi ∈ R rather than the usual binary variable si = ±1.
We are looking for the minimum of the Hamiltonian, and while the scalar

case could be solved straightforwardly, for the vector case we have to settle

for an algorithmic solution. According to the factor graph framework developed

in Chapter 5 we use the min-sum algorithm. The underlying factor graph is

the complete bipartite graph with variable nodes corresponding to the signal

components xi, and two types of factor nodes corresponding to the factors

1

2
(ya − (Ax)a)

2, and λ|xi|.

A straightforward application of message passing rules leads to the following

equations involving two types of messages, call them Êa→i(xi) and Ei→a(xi),

i = 1, · · · , n and a = 1, · · · ,m,3E
t+1
i→a(xi) = λ|xi|+

∑
b∈∂i\a Ê

t
b→i(xi),

Êt+1
a→i(xi) = min∼xi

{
1
2 (ya − (Ax)a)

2 +
∑

j∈∂a\iE
t+1
j→a(xj)

}
.

(8.10)

In addition we have the initialization{
E0

i→a(xi) = λ|xi|,
Ê0

a→i(xi) = min∼xi{ 12 (ya − (Ax)a)
2 +

∑
j∈∂a\i λ|xj |}.

(8.11)

The min-sum estimate at time t, call it x̂ti(λ), is computed from

x̂ti = argminxi
Et

i (xi), (8.12)

where

Et
i (xi) = λ|xi|+

∑
b∈∂i

Êt
b→i(xi). (8.13)

Recall that in Chapter 5 we discussed the BP equations for compressive sensing.

As explained there, the min-sum equations (8.10) can be obtained by taking the

β → +∞ limit of BP equations. Alternatively one can derive them by a direct

application of the distributive law for (min,+) operations.

3 Recall that min∼xi means minimisation over all components of x except xi.



178 Compressive Sensing: Approximate Message Passing and State Evolution

We stress here that x̂t in (8.12) is the min-sum estimate - an algorithmic quan-

tity - and although one might hope that as t → +∞ it converges to x̂LASSO(y)

this is far from obvious a priori. We will have the occasion to come back to this

issue of their comparison in Section 8.8.

Running min-sum on a complete bipartite graph with a bipartition of size n

and m respectively, requires to transmit Θ(mn) messages at each iteration. For

large instances this complexity is prohibitive. We will show that we can get away

with linear complexity. To be sure, the algorithm which we shall develop is an

approximation of the original min-sum message passing.4 How can we derive

such an approximation? The model and the situation is analogous to that of the

SK model. Therefore, it should not come as a surprise that the methodology

which we follow for the analysis is also similar. We have seen in the previous

chapter that for the SK model we can go from the BP equations to the TAP

equations by exploiting the smallness of interaction coefficients, more precisely

Jij ∼ N (0, 1
n ) or Jij = ± 1√

n
with Bernoulli(1/2) signs. In the present case we

can also exploit Aai ∼ N (0, 1/m) or is Bernoulli(1/2) with Aai = ±1/
√
m and as

shown in section 8.4 this leads to significant simplifications and linear complexity.

Both models lead to the same final result and we will use the common notation

Aai ∼ 1
√
m to express the order of magnitude of the matrix elements.

Before we tacle this derivation there is one complication we first have to deal

with. Contrary to the SK or coding models the “spin variables” (here the sig-

nal components) are not binary and therefore the min-sum messages cannot be

exactly parametrized by numbers (the cavity fields in the binary case). However

it turns out that a quadratic approximation of the messages is possible, which

approximates each message by a set of two real numbers. This is the subject of

the next section.

8.3 Quadratic Approximation

The following is a fairly technical calculation. In a first reading the reader may

just look at formulas (8.14) and (8.17) that define a parametrization of messages

in terms of four real values αa→i, βa→i, xi→a, γi→a, and then skip forward

directly to the message passing equations (8.18) and (8.19). These equations are

all that is needed for the derivation of the AMP algorithm in Section 8.4.

A simple but crucial observation is that in the message passing expression

(8.10) for Êt−1
a→i(xi) the xi dependence only enters as Aaixi in (Ax)a. Now since

Aaixi ∼ 1/
√
m this contribution is small as n → +∞, and we can consider the

Taylor expansion of Êt+1
a→i(xi) in powers of Aaixi. Keeping only the lowest order

4 Further, recall that we are not operating on a tree and so even a full fledged message
passing algorithm is not necessarily optimal. There is therefore no reason to insist on an

exact implementation of the BP algorithm.
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terms

Êt+1
a→i(xi) = Êt+1

a→i(0)− α
t+1
a→i(Aaixi) +

1

2
βt+1
a→i(Aaixi)

2 +O((Aaixi)
3), (8.14)

where the Taylor coefficients αt+1
a→i and β

t+1
a→i are real numbers that we determine

later. These are two real valued messages that approximate Êt+1
a→i(xi). Equation

(8.14) constitutes the quadratic approximation for Êt+1
a→i(xi). Replacing (8.14) in

the first message passing equation (8.10) we get

Et+1
i→a(xi) ≈ E

t+1
i→a(0) + λ|xi| − xi

∑
b∈∂i\a

Abiα
t
b→i +

x2i
2

∑
b∈∂i\a

A2
biβ

t
b→i

= Et+1
i→a(0)−

λ(at1)
2

2at2
+

λ

at2

{
at2|xi|+

1

2
(xi − at1)2

}
(8.15)

where

at1 =

∑
b∈∂i\aAbiα

t
b→i∑

b∈∂i\aA
2
biβ

t
b→i

, at2 =
λ∑

b∈∂i\aA
2
biβ

t
b→i

. (8.16)

The second equality in (8.15) has been obtained by completing the square. The

calculation presented for the scalar case shows that the minimum of the term

{. . . } is equal to η(at1 ; at2). Thus, when the right hand side of (8.15) is expanded

around its minimum one finds (this is justified below)

Et+1
i→a(xi) = Constant +

1

2γt+1
i→a

(xi − xt+1
i→a)

2 +O((xi − xi→a)
3) (8.17)

where

xt+1
i→a = η(at1 ; a

t
2), γt+1

i→a =
at2
λ
η′(at1 ; a

t
2) (8.18)

where η′ is the derivative of η with respect to the first argument. Equation (8.17)

constitutes the quadratic approximation for Et+1
i→a(xi).

Why can one hope that it is a good approximation to expand (8.15) near its

minimum? One way to understand this is to recall the connection between min-

sum and BP. For β large the BP messages are proportional to e−βEt+1
i→a(xi), a

weight that is dominated by xi close to the minimum of the exponent. Once this

is accepted, it remains to find this minimum and write down the Taylor expansion

around it. For λ ̸= 0 the absolute value is not differentiable at the origin so the

derivation involves a few technical subtleties that are worth discussing. 5 In the

scalar minimisation problem we learned that the minimum of (8.15) over xi is

attained at xti→a = η(at1 ; a
t
2). The expansion is best performed by first assuming

that xti→a > 0, i.e. xti→a = η(at1 ; a
t
2) = at1 − at2. In this case we can set |xi| = xi

and the first derivative of (8.15) is (at2 + (xi − at1))λ/at2 which vanishes at xti→a.

The second derivative is equal to λ/at2 = λ/(at2η
′(at1 ; a

t
2)) = 1/γti→a. Therefore

(8.17) holds when xti→a > 0. The reader can work out the case xti→a < 0 in

5 For λ = 0 we have η(y;λ) = y so that cubic and higher order terms in (8.17) vanish, and

xt+1
i→a = at1, γ

t+1
i→a = 1/

∑
b∈∂i\a A2

aiβ
t
b→i.
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a similar way. Finally we consider the singular case xti→a = 0, i.e. η(at1 ; a
t
2) =

η′(at1 ; a
t
2) = 0. At the origin the first derivative of |xi| has a jump, and the

second derivative is formally infinite. Therefore we have to take γti→a = 0 which

is consistent with γti→a = η′(at1 ; a
t
2)a

t
2/λ.

The final step is to determine αt
b→i and β

t
b→i. For this we replace (8.17) in the

second message passing equation (8.10). Then we compare with the expansion

(8.14). After a tedious but exact algebraic calculations this yields

αt
a→i =

ya −
∑

j∈∂a\iAajx
t
j→a

1 +
∑

j∈∂a\iA
2
ajγ

t
j→a

, βt
a→i =

1

1 +
∑

j∈∂a\iA
2
ajγ

t
j→a

. (8.19)

Let us summarize these calculations. The quadratic approximation assumes

that the expansions (8.14) and (8.17) to second order are good approximations

and neglects cubic and higher order terms. The min-sum equations (8.10) then

reduce to a set of four equations (8.18), (8.19) for real valued messages xti→a,

γti→a, α
t
a→i, β

t
a→i.

8.4 Derivation of the Approximate Passing Algorithm

The scaling A2
ai ∼ 1/m induces important simplifications that we now derive

heuristically. It is useful to keep in mind the Bernoulli model for which A2
ai =

1/m and many arguments become more transparent. But the end results do not
Since we are deriv-

ing an algorithm in

a sense we don’t care

about making this

paragraph rigorous.

I don’t think there

is a rigorous deriva-

tion in the litera-

ture. Rigor is only

needed in sec 8.6 in

principle. Maybe we

should spell out this

clearly somewhere.

depend on the model as long as the matrix elements are iid with sub-gaussian

distribution.

First simplications of (8.18) and (8.19)

Our derivation rests on the assumption that the term in the denominator of

(8.19)

1 +
∑

j∈∂a\i

A2
ajγ

t
j→a

can be treated as independent of a and i. Why might this be true? Note that

A2
aj ∼ 1/m and that we sum over n − 1 terms. This sum is therefore up to a

negligible term equal to the empirical mean of γtj→a over all edges of the graph,

and we therefore expect this to concentrate on a value independent of a and i.

Thus we set

1 +
∑

j∈∂a\i

A2
ajγ

t
j→a ≡

θt
λ

(8.20)

and we treat θt as independent of a and i. The update equation for θt is discussed

later on. We also set

rta→i = ya −
∑

j∈∂a\i

Aajx
t
j→a, (8.21)
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so that (8.19) become

αt
a→i =

λ

θt
rta→i, βt

a→i =
λ

θt
. (8.22)

Let us now look at at1 and at2 in (8.16). From βt
b→i = λ/θt we deduce that the

denominator of at1 and at2 is equal to

λ

θt

∑
b∈∂i\a

A2
bi

Furthermore note that
∑

b∈∂i\aA
2
bi ≈ 1 With these remarks we obtain

at1 =
∑

b∈∂i\a

Abirb→i, at2 = θt. (8.23)

Replacing (8.23) in the first message passing equation (8.18) one finds

xt+1
i→a = η

( ∑
b∈∂i\a

Abir
t
b→i ; θt

)
. (8.24)

So far the message-passing rules boil down to (8.21) and (8.24). But we still

need an equation for the updates of θt. This is easily obtained by multiplying

the second equation in (8.18) by A2
ai and summing over i. We get

1 +
∑
i∈∂a

A2
aiγ

t+1
i→a = 1 +

∑
i∈∂a

A2
ai

at2
λ
η′(at1 ; a

t
2) (8.25)

which, in the large size limit, becomes equivalent to (using (8.20), (8.23) and

A2
ai ∼ 1/m)

θt+1 = λ+
θt
m

∑
i∈∂a

η′(
1

µ

∑
b∈∂i\a

Abir
t
b→i ;

θt
µ
) (8.26)

Notice a nice property of the thresholding function: the derivative η′ = 0 when

η = 0 and η′ = 1 when η ̸= 0. This prompts us to introduce a notation for the

“0-absolute value” of a real number,

|z|0 =

{
1, if z ̸= 0,

0, if z = 0.

Thanks to (8.24) the update equation (8.26) can be written in the nice form

θt+1 = λ+
θt
m

∑
i∈∂a

|xt+1
i→a|0. (8.27)

We have simplified the min-sum equations down to (8.21), (8.24) and (8.27)

but at this point we still have Θ(nm) messages to update at each iteration. A

further simplification bringing this complexity down to linear order is the subject

of the next subsection.

But before we address this issue it is useful to first consider the estimate
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obtained by minimizing Ei(xi) (see Equs. (8.12), (8.13)). Without going into all

details of calculations (similar to Section 8.3) the reader should not be surprized

that within the quadratic approximation one finds

Et
i (xi) ≈

1

2γti
(xi − x̂ti)2 +O((xi − x̂ti)3), (8.28)

where

x̂ti = η(ãt1 ; ã
t
2), (8.29)

and

ãt1 =

∑
b∈∂iAbiα

t
b→i∑

b∈∂iA
2
biβ

2
b→i

, ãt2 =
λ∑

b∈∂iA
2
biβ

t
b→i

. (8.30)

This leads to an estimate at time t of the form

x̂ti = η(
∑
b∈∂i

Abir
t
b→i ; θt). (8.31)

In (8.31) all messages rtb→i entering nodes i are involved, wheras in (8.24) the

message rta→i is ommitted. This is a usual feature of mesage passing.

Finals steps

We are now ready to proceed from (8.21), (8.24), (8.27), to the final steps leading

to the AMP algorithm. From (8.24) we have

xt+1
i→a = η(

∑
b∈∂i

Abir
t
b→i −Aair

t
a→i ; θt)

≈ η(
∑
b∈∂i

Abir
t
b→i ; θt)−Aair

t
a→iη

′(
∑
b∈∂i

Abir
t
b→i ; θt)

= x̂ti −Aair
t
a→i|x̂ti|0, (8.32)

The second approximate equality above is obtained by a Taylor expansion to

first order in Aair
t
a→i ∼ 1/

√
m. A similar step was performed when we derived

TAP from BP equations in Chapter 7. This step is crucial and will lead to a sort

of Onsager reaction term. The last equality follows by remarking again that that

η′ = 1 (resp. η′ = 0) whenever η ̸= 0 (resp. η = 0) and using (8.31). Replacing

(8.32) in (8.21),

rta→i = ya −
∑

j∈∂a\i

Aaj x̂
t−1
j +

∑
j∈∂a\i

A2
ajr

t−1
a→j |x̂

t−1
j |0

= ya −
∑
j∈∂a

Aaj x̂
t−1
j +

∑
j∈∂a

A2
ajr

t−1
a→j |x̂

t−1
j |0 +Aaix̂

t−1
i −A2

air
t−1
a→i|x̂

t−1
i |0.

We see that rta→i consists of the three first terms which are of order one and are

independent of i, and the last two which do depend on i but are of order 1/
√
m
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and 1/m. So let us write

rta→i = rta + δrta→i,

with

rta = ya −
∑
j∈∂a

Aaj x̂
t−1
j + rt−1

a

∑
j∈∂a

A2
aj |x̂t−1

j |0 (8.33)

for the O(1) terms, and a rest δrta→i ≈ Aaix̂
t−1
i for the O(1/

√
m) term. The

O(1/m) term is neglected. Using again A2
ai ∼ 1

m (8.33) yields

rta = ya −
∑
j∈∂a

Aaj x̂
t−1
j + rt−1

a

∥x̂t−1∥0
m

. (8.34)

Moreover, replacing rtb→i = rtb + δrtb→i ≈ rtb +Abix̂
t−1
i in estimate (8.31) we find

x̂ti = η(
∑
b∈∂i

Abir
t
b +

∑
b∈∂i

A2
bix̂

t−1
i ; θt)

= η(
∑
b∈∂i

Abir
t
b + x̂t−1

i ; θt). (8.35)

Finally retaining the leading term in (8.32) the update equation (8.27) for θt
becomes

θt+1 = λ+ θt
∥x̂t∥0
m

. (8.36)

Equations (8.34), (8.35) and (8.36) form the AMP algorithm.

To conclude, recall that the current form of AMP has been derived for an

unknown sparse prior distribution. With only minor extra effort we can derive a

variant of AMP adapted to the case of a known (sparse) prior signal distribution

when the MMSE estimator is used instead. This is discussed in Section 8.9.

8.5 AMP algorithm for the LASSO

Let us now collect the fruits of our efforts and discuss the AMP algorithm as

well as a practical variant.

The final AMP equations (8.34), (8.35), (8.36) can be written in a somewhat

more compact notation
x̂ti = η(x̂t−1

i + (AT rt)i ; θt),

rta = ya − (Ax̂t−1)a + rt−1
a

∥x̂t∥0

m ,

θt+1 = λ+ θt
∥x̂t∥0

m .

(8.37)

Clearly, in (8.37) there are no messages flowing on edges, but instead Θ(n) values

updated at each iteration; we have gained one order of complexity with respect to

the initial message passing equations. This is similar to the complexity reduction
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we encountered when going from BP to TAP equations for the Sherrington-

Kirkpatrick model.

There are other ways to update θt which are somewhat more heuristic and

lead to similar algorithmic performance. Here we discuss a variant of (8.37) with

a simpler update of θt which has the advantage of lending itself more easily to

a theoretical performance analysis (as shown in the next two sections). In the

scalar case we saw in Section 8.1 that the threshold in η is naturally set on the

scale of the noise, i.e. λ = ασ (and then the best possible α is determined by

solving a minimax problem). In that case, σ was the standard deviation of y−x.
By analogy, for the vector case it is natural to take θt on the scale of the standard

deviation of (AT rt)i which is the term added to the estimate x̂t−1
i in the first

AMP equation (8.37). A rough guess for this standard deviation is√
rTE[AAT ]rt =

1√
m
∥rt∥2.

Therefore we take the following heuristic value for the soft threshold at time t

θt =
α√
m
∥rt∥2. (8.38)

This completely defines a useful variant of the AMP algorithm{
x̂ti = η(x̂t−1

i + (AT rt)i ;
α√
m
∥rt∥2),

rta = ya − (Ax̂t−1)a + rt−1
a

∥x̂t∥0

m .
(8.39)

whose performance we will assess in Section 8.6.

The AMP algorithm (8.39) is almost the same than the much older Iterative

Soft Thresholding (IST) algorithm,{
x̂ti = η(x̂ti + (AT rt)i ;

α√
m
∥rt∥2),

ra
t = ya − (Ax̂t−1)a.

(8.40)

The fundamental difference between IST and AMP lies in the Onsager reaction

term, namely rt−1
a

∥x̂t−1∥0

m which is absent in (8.40). One can run experiments

and check that this term is responsible for the improved performance of AMP

over IST. One typically obtains a much smaller empirical MSE with much lesser

iterations.

One could perhaps hope that, when the IST algorithm is tested numerically,

the unthresholded estimate

x̂ti + (AT rt)i = x̂ti +
1√
m

m∑
b=1

Ãbir
t
b

has a Gaussian histogram (here we set A = 1√
m
Ã). It is the subject of an ex-

ercise to show that this is not so. Correlations between the terms in the sum

develop along the trajectory of the IST algorithm and the central limit the-

orem does not hold. Remarkably, it turns out that when the extra Onsager



8.6 Heuristic Derivation of State Evolution 185

correction term is added to rtb (so AMP is used) the histogram of this un-

thresholded estimate becomes Gaussian! The Onsager term has the effect of

cancelling the correlations between the terms in the sum. Again, the situa-

tion is exactly analogous to the one in the SK model. We saw that the naive

Curie-Weiss mean field, 1√
n

∑n
i=1;i ̸=j J̃ijm

t−1
i , does not have a Gaussian his-

togram; whereas when the Onsager correction is added the TAP local field,
1√
n

∑n
i=1;i ̸=j J̃ijm

t−1
i − βm(t−1)

j (1− qt−1), has a Gaussian histrogram.

8.6 Heuristic Derivation of State Evolution

In coding theory we derived density evolution equations that track the state of

the BP algorithm, i.e. the probability distributions of messages. Density evolu-

tion then allows to compute the probability of a decoding error and assess the

performance of a coding ensemble. There exist a similar formalism called State

Evolution (SE) that tracks the state of the AMP algorithm (8.39) and allows

to calculate its performance. For the “state” at time t we take the square error

∥x̂t − x∥2 incurred by the estimate x̂t for a given input signal x. State evolution

tracks the average behavior of the square error in the large size limit. In other

words we seek an update equation for

τt = lim
n→+∞

1

n
∥x̂t − x∥2 (8.41)

where the limit is taken at fixed measurement fraction µ = m/n and sparsity

κ = k/n. A priori this is a random quantity which depends on the quenched

variables: measurement matrix, noise and input signal. However we will see that it

satisfies a deterministic equation, and although the analysis is semi-heuristic this

strongly suggests that (8.41) concentrates. This is indeed true and can be shown

rigorously. More precisely with probability one τt = limn→+∞ E[∥x̂t − x∥2]/n.
What is known

about the exchange

of t and n limits here

?

The key feature that allows us to derive a closed form equation relating τt+1

to τt is the Gaussianity of the untresholded estimate for a given the input signal.

As explained in the previous section numerical experiments show that with the

Onsager term present, the sum 1√
m

∑m
b=1 Ãbir

t
b behaves as if the central limit

theorem applied (from now on we set Ã = 1√
m
A). Effectively, it is equivalent to

remove the Onsager term from the algorithm and sample afresh the measure-

ment matrix at each time step so that the law of large numbers applies. This

remarkable observation is at the basis of the “conditioning technique”6 which

allows for a rigorous derivation of SE. The rigorous proofs would lead us too far

here, and we will simply accept, based on numerical observations, that the On-

sager term rt−1
a

∥x̂t∥0

m can be removed if simultaneously we replace the quenched

measurement matrix elements Ãbi by new iid realizations Ãt
bi sampled afresh

from N (0, 1) or uniformly from {−1,+1}.
6 Originally developed by Erwin Bolthauzen in his analysis of TAP iterations for the

Sherrington-Kirkparick model ().
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In other words we are analyzing the following set of equations (compare with

(8.39)) {
x̂ti = η(x̂t−1

i + 1√
m
(Ãt T rt)i ;

α√
m
∥rt∥2),

ra
t = 1√

m
(Ãtx)a + za − 1√

m
(Ãtx̂t−1)a.

(8.42)

where to be consistent we have also replaced the measurements y = 1√
m
Ãx+ z

by “new measurements” at each time step yt = 1√
m
Ãtx + z, za ∼ N (0, 1). We

will shortly show that in thermodynamic limit: (i) the first argument of the

thresholding function in (8.42) tends to a Gaussian with mean x and variance

(σ2+µ−1τ2t−1)
1/2; (ii) the second argument α√

m
∥rt∥2 tends to α(σ2+µ−1τ2t−1)

1/2.

Thus in (8.42) each component xti is distributed as the random variable

x̂t = η

(
x+ u

√
σ2 +

τ2t−1

µ
; α

√
σ2 +

τ2t−1

µ

)
(8.43)

where u ∼ N (0, 1) and x ∼ p0(·). Using definition (8.41) and the law of large

numbers, we obtain the SE updates

τ2t =

∫
dx p0(x)

∫
du

e−
u2

2

√
2π

{
η

(
x+ u

√
σ2 +

τ2t−1

µ
; α

√
σ2 +

τ2t−1

µ

)
− x
}2

.

(8.44)

The consequences of SE for the phase diagram the AMP algorithm are discussed

in the next section. For completeness we first give a somewhat informal proof of

points (i) and (ii) above.

Technical details leading to (8.44)

Let us show point (i). Merging the two equations together in (8.42) the first

argument of the thresholding function becomes

xi +
1√
m

m∑
b=1

Ãt
bizb +

n∑
j=1

(δij −
1

m
(Ãt⊤Ãt)ij)(x̂

(t−1)
j − xj) (8.45)

We discuss the behavior of each sum in the thermodynamic limit. Clearly, given

z, from the central limit theorem

1√
m

m∑
b=1

Ãt
bizb (8.46)

tends to a Gaussian with zero mean and variance 1
m

∑m
b=1 z

2
b → σ2. Next, again

by the central limit theorem, one shows that the matrix entries (δij− 1
m (Ãt⊤Ãt)ij)

tend to a zero mean Gaussian with variance 1/m. Looking at the covariance of

these entries we see that they are independent to leading order. Thus the term

n∑
j=1

(δij −
1

m
(Ãt⊤Ãt)ij)(x̂

t−1
j − xj) (8.47)
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is also a Gaussian, with zero mean and variance

1

m

n∑
j=1

(x̂t−1
j − xj)2 =

τ2t−1

µ

Finally, one can look at the covariance of the two approximate Gaussian variables

in (8.46) and (8.47) and show that they are approximately independent. Let us

summarize: we have obtained that in the thermodynamic limit (8.46) is N (0, σ2),

that (8.47) is N (0, τ2t−1/µ), and that they are independent. Thus their sum is

N (0, σ2 + τ2t−1/µ) and the first argument of the thresholding function (8.45)

tends to the random variable

x+ u

√
σ2 +

τ2t−1

µ
(8.48)

where u ∼ N (0, 1) and x ∼ p0(·) as announced.
It remains to show point (ii). Using the second equation in (8.42) and expand-

ing the Euclidean norm,

α2

m
∥r∥22 =

α2

m

m∑
b=1

(
zb +

1√
m

n∑
i=1

At
bi(xi − x̂t−1

i )

)2

=
α2

m

m∑
b=1

z2b +
2α2

m3/2

m∑
b=1

n∑
i=1

zbÃ
t
bi(xi − x̂t−1

i )

+
α2

m

m∑
b=1

n∑
i=1

n∑
j=1

Ãt
biÃ

t
bj(xi − x̂t−1

i )(xj − x̂t−1
j )

Clearly the first term tends to α2σ2. By similar arguments as in point (i) the

second term can be shown to tend to zero and the third term to (α2/µ)τ2t−1.

Thus in the thermodynamic limit

α√
m
∥rt∥2 → α

√
σ2 +

τ2t−1

µ
. (8.49)

as announced.

8.7 Performance of AMP

In this section we derive the phase diagram of AMP in the plane of parameters

(κ, µ). Recall κ = k/n is the fraction of non-zero components in the signal and

µ = m/n the fraction of measurements.7

The phase diagram is deduced from a study of SE updates (8.44), so the first

7 It is also common in the literature to parametrize the phase diagram in terms of (ρ, µ)

where ρ = k/m = κ/µ, but then the transition lines look more complicated.
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question we should address is to determine the multiplicity of solutions of the

corresponding fixed point equation

τ2 =

∫
dxp0(x)

∫
du
e−

u2

2

√
2π

{
η

(
x+ u

√
σ2 +

τ2

µ
; α

√
σ2 +

τ2

µ

)
− x
}2

. (8.50)

It is the subject of an exercise to show that this equation has a unique solution

τ2∗ (κ, µ, α, p0, σ) in the extended real half-line [σ2,+∞]. Therefore SE iterations

will tend to this fixed point solution.

It is useful to note for further use the following property

τ2∗ (κ, µ, α, p0, σ) = σ2τ2∗ (κ, µ, α, p
σ
0 , 1), (8.51)

where pσ0 (x) = σp0(σx) = (1− κ)δ(x) + σp0(σx). To prove (8.51) we set τ = στ ′

and notice that τ ′ satisfies the fixed point equation (8.50) with σ and p0 replaced

by 1 and pσ0 respectively. To see this last point one makes the change of variables

x → σx and uses η(σy ; σλ) = ση(y ; λ). We already remarked that pσ0 ∈ Sκ if

p0 ∈ Sκ, in other word the class of distributions Sκ is scale invariant. This scale

invariance property played a crucial role in the scalar case, and not surprisingly

we will shortly see that it is also fundamental in the vector case.

Minimax Criterion and noise sensitivity phase transition

We have to make a suitable choice for the parameter α of the AMP algorithm

(8.39). Recall, since p0 is unknown, we must choose the best possible α given

the worst possible p0 ∈ Sκ. Formally we have to compute the minimax-MSE of

AMP

inf
α≥0

sup
p0∈Sκ

τ∗
2(κ, µ, α, p0, σ). (8.52)

Using (8.51) and the scale invariance of Sκ we find

inf
α≥0

sup
p0∈Sκ

τ∗
2(κ, µ, α, p0, σ) = σ2 inf

α≥0
sup

p0∈Sκ

τ∗
2(µ, ρ, α, pσ0 , 1)

= σ2 inf
α≥0

sup
p0∈Sκ

τ∗
2(µ, ρ, α, p0, 1)

≡ σ2M(κ, µ). (8.53)

The quantity M(κ, µ) is the rate of change of the minimax-MSE of AMP un-

der small variations of the noise. It has been called the noise sensitivity in the

literature.8.

Remarkably, the noise sensitivity is independent of the level of noise and a look

at the derivation above shows this is due to the scale invariance of the class of

8 In statistical physics language one would call it a ”response function” or a ”susceptibility”.
This is a measure of the response of the state of the system to an external perturbation.

Here the external perturbation is the variation of the noise.
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sparse distributions. It turns out that scale invariance has more consequences,

for example, it allows to derive an explicit formula for the noise sensitivity

M(κ, µ) =


Mscalar(κ)

1− 1
µMscalar(κ)

µ > Mscalar(κ)

+∞ µ < Mscalar(κ),
(8.54)

where Mscalar(κ) is given by (8.8). Moreover the saddle point (p0,worst, αbest) is

the same as the one for the scalar problem in Section 8.1. Figure 8.2 shows the

phase diagram of the AMP algorithm. The curve µ = Mscalar(κ) is an algorith-

ρ

δ

Figure 8.2 Left: the algorithmic noise sensitivity phase transition line in the (κ, µ)
plane. Right: the same line in the (µ, ρ) plane.

mic threshold line, which separates the (κ, µ) plane in two regions. Below the

curve the measurement fraction is too small and the noise sensitivity (as well as

minimax-MSE) are infinite. There is no hope to recover the sparse signal with

the AMP estimate. Above the curve, the measurement fraction is large enough

so that we can recover the signal with finite error.

We point out that the noise sensitivity phase transition line has a rather ex-

plicit parametrized form whose derivation is the subject of an exercise.
µ =

2 e
−α2

2√
2π

α+2
(

e
−α2

2√
2π

−αΦ(−α)
)

κ =
2
(

e
−α2

2√
2π

−αΦ(−α)
)

α+2
(

e
−α2

2√
2π

−αΦ(−α)
) .

(8.55)

Derivation of (8.54)

The starting point is again a scaling argument applied to the fixed point equation

(8.50). With the change of variables x→ x
√
σ2 + τ2

µ we obtain

τ2 = (σ2 +
τ2

µ
)Mscalar(κ, α, p

τ
0) (8.56)
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with

Mscalar(κ, α, p
τ
0) ≡

∫
dxpτ0(x)

∫
du
e−

u2

2

√
2π

{
η(x+ u , α)− x

}2
(8.57)

and pτ0(x) =
√
σ2 + τ2

µ p0(x
√
σ2 + τ2

µ ). Looking back at the solution of the

LASSO for the scalar problem we see thatMscalar(κ, α, p
τ
0) is noting else than the

scalar MSE for a scaled signal distribution pτ0 and a noise level σ2 = 1. Remark

also that scale invariance of Sκ implies

sup
p0∈Sκ

Mscalar(κ, α, p
τ
0) = sup

p0∈Sκ

Mscalar(κ, α, p0) =Mscalar(κ, α) (8.58)

where the supremum is attained for p0worst.

Suppose the parameters are such that Mscalar(κ, α) > µ. Then replacing p0 by

p0,worst in (8.56) we find that the only solution is τ∗(κ, µ, α, p0,worst, σ) = +∞.

Therefore we necessarily have supp0∈Sκ
τ∗ = +∞ when Mscalar(κ, α) > µ. On the

other hand if Mscalar(κ, α) < µ we also have Mscalar(κ, α, p
τ
0) < µ and Equ. (8.56)

has a finite solution,

τ2∗ = σ2 Mscalar(κ, α, p
τ∗
0 )

1− 1
µMscalar(κ, α, p

τ∗
0 )

(8.59)

This ratio is an increasing function of Mscalar(κ, α, p
τ∗
0 ) so it also follows that for

Mscalar(κ, α) < µ

sup
p0∈Sκ

τ2∗ = σ2 Mscalar(κ, α)

1− 1
µMscalar(κ, α)

. (8.60)

Now it remains to minimise over α. Recall infα>0Mscalar(κ, α) = Mscalar(κ). So

when α varies over the positive real line,Mscalar(κ, α) varies over [Mscalar(κ),+∞].

Since the ratio in (8.60) is an increasing function of Mscalar(κ, α) which diverges

at Mscalar(κ, α) = µ (and remains infinite thereafter), its minimum is attained at

Mscalar(κ) when Mscalar(κ) < µ and at +∞ when Mscalar(κ) > µ. This is precisely

the statement of (8.54).

8.8 Relation between AMP and solution of LASSO

We wish to revisit here a few issues that have been swept under the rug. We

started by formulating a minimization problem (8.1) which yields the LASSO.

We cannot a priori solve this problem analytically (except for the scalar case)

so we settled for a min-sum approach. After several natural approximations of

the min-sum equations, we where led to the AMP algorithm (8.37) which gives

an estimate of the signal parametrized by λ. We switched to a variant of this

algorithm, the AMP algorithm (8.39) which gives an estimate parametrized by

α instead. The reason for introducing this variant is that its performance can be

neatly analyzed thanks to state evolution.
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This approach raises two natural questions. First, what is the relation between

the two variants of AMP and how do their performance compare? In particular,

do they have the same algorithmic phase transition line? Second, what is the

relation between the true LASSO and AMP estimate? The first question is a

purely algorithmic one, whereas the second really belongs to the third part of

the course where we discuss the relations between message passing algorithms

and optimal solutions. In the present case we can quite simply obtain at least

partial answers which are worth stating immediately.

The Hamiltonian (8.9) is a convex function of x ∈ Rn, so the minima are

solutions of the stationnarity condition

AT (y −Ax) = λv (8.61)

where vi = sign(xi) for xi ̸= 0 and vi ∈ [−1,+1] for xi = 0.

Take the AMP iterations (8.37) and consider a fixed point (x̂∗, r∗, θ∗). One

can see that x∗ satisfies (8.61) provided we take equation λ = θ∗(1− ∥x̂∗∥0

m ). This

is also a condition that the fixed point of AMP iterations (8.37) must satisfy. So

we conclude that, for any fixed λ, when the updates converge to a fixed point,

this fixed point is also a solution of the LASSO minimization problem.

Consider now the α-AMP update equations (8.37), (8.38) and a corresponding

fixed point (x̂∗, r∗). This time x∗ satisfies (8.61) provided we take λ = α ∥r∥2√
m
(1−

∥x̂∗∥0

m ). Using the analysis of Section 8.6 (specifically (8.48) and (8.49)) this

relation becomes for m→ +∞

λ(α) =α
√
σ2 + τ2∗

{
1−

µ−1

∫
dxp0(x)

∫
du
e−

u2

2

√
2π

[
η′(x+ u

√
σ2 + τ2∗ ;α

√
σ2 + τ2∗ )

]}
.

We conclude that when they converge the α-AMP and λ(α)-AMP algorithms

converge to the same fixed point, and this fixed point is a solution of the LASSO

minimization problem.

The two variants of AMP are equivalent in terms of performance in the large

size limit. In particular the noise sensitivity phase transition line is the same.

8.9 AMP for the MMSE estimator

Even if this is perhaps a less realistic situation, it is instructive to consider the

case of a signal with known prior distribution from the class Sκ. In other words

p0(x) = (1−κ)δ(x)+κϕ0(x) for a known ϕ0(x). A good example to keep in mind

is a Gaussian distribution ϕ0(x) = e−x2/2/
√
2π; one then refers to p0(x) as the

Bernoulli-Gauss model.

As explained in Chapter 3, in this setting the optimal estimator is the MMSE

estimator (3.35). Since we cannot a priori hope to compute it exactly we re-

sort to a message passing calculation. In Chapter 5 we went through the BP
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FIGURE

Figure 8.3 The denoiser η1(y ; ν) for the Bernoulli-Gauss model.

equations in Example 16, and this approach can be systematically developed in

order to recursively compute the BP-estimate for the signal. The complexity of

the message passing step is again quadratic because the factor graph is bipartite

complete; but following the same route as in Sections 8.3 and 8.4, the message-

passing equations can be simplified in order to arrive at algorithm that is very

similar to (8.39). Instead of embarking in this lengthy route, one can make an

educated guess of the form of the new algorithm, just by skimming through the

previous results.

In Section 8.5 the AMP algorithm uses the soft thresholding function η(y ; λ)

found by solving the scalar LASSO problem. The reader should not be too sur-

prised that now the updates will involve a thresholding function given by the

MMSE estimator of the scalar case. Consider a scalar measurement y = x+ z of

“signal” x affected by Gaussian noise with variance ν2. The ”softer” thresholding

function is now

η1(y ; ν) = E[X|Y = y] =

∫
dxx p0(x)e

− (y−x)2

2ν2∫
dx p0(x)e

− (y−x)2

2ν2

. (8.62)

and is also called a denoiser (see Figure 8.3). We stress that, contrary to the case

of LASSO, here η0(y ; ν) is not universal and depends on the prior. The corre-

sponding mean square error is the MMSE function (by convention the argument

of the MMSE function is a signal-to-noise-ratio, here ν−2)

mmse(ν−2) = E
[
(X − E[X|Y ])2

]
=

∫
dx p0(x)

∫
dz

e−
z2

2ν2

√
2πν2

{
x− η1(x+ z ; ν)

}2
. (8.63)

The AMP updates (for the vector case) are similar to (8.39){
x̂t+1
i = η1(x

t
i + (AT rt)j ; νt),

rta = ya − (Ax̂t)
(t−1)
a + btr

t−1
a .

(8.64)

with a number of differences that we now discuss. As already pointed out, nat-

urally η1 replaces η. The Onsager term is also different. In the derivations of

Section 8.4 this term can be traced back to a derivative of the soft thresholding
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function. We can therefore guess that now

bt =
1

m

n∑
i=1

η′1
(
xt−1
i + (AT rt)a ; νt

)
. (8.65)

Finally recall that for the AMP algorithm (8.39) we expressed in Section 8.6 the

threshold level thanks to the MSE through the relation θt = α
√
σ2 +

τ2
t

µ . Here

the analysis leads to a similar conclusion, namely9

νt =

√
σ2 +

τ2t
µ
. (8.66)

Note that the MMSE problem does not involve any parameter λ or α over which

one should optimise. Note also that to run the AMP updates (8.64) one has to

precompute τt. To do this one has to write down the corresponding SE equations.

The performance analysis follows the same steps than in Section 8.7. The result

is a SE recursion with η0 replacing η

τ2t+1 = mmse((σ2 +
τ2t
µ
)−1)

=

∫
dx p0(x)

∫
du

e−
u2

2

√
2π

{
η1

(
x+ u

√
σ2 +

τ2t
µ

;

√
σ2 +

τ2t
µ

)
− x
}2

.

(8.67)

This equation has a nice interpretation: at time t + 1 the mean square error

τ2t+1 for the AMP estimate is given by the MMSE of a scalar signal (8.63) with

effective noise variance σ2 +
τ2
t

µ at time t.

Let us summarize. Equation (8.67) gives the evolution of the mean square

error of the AMP estimate. Equations (8.64), (8.65), (8.66) define the mmse-

AMP algorithm, and allow to compute the estimates for the signal. Note that

(8.66) is independent of the input signal and can be precomputed once for all.

We now turn our attention towards the phase diagram. As usual we must get

a hold on the solutions of the fixed point equation associated to (8.67). Contrary

to the LASSO case where only one solution exists, here the situation is more

complicated and multiple solutions can appear. Moreover for the LASSO the

solution could be determined rather explicitly because of scale invariance. In the

present case there is no such scale invariance since p0(x) is a fixed distribution

and typically brings in another scale besides the noise. But it is still possible to

make qualitative statements that are valid for a fairly wide class of distributions.

Moreover the phase transition line can precisely characterised in a simple manner.

For the Bernoulli-Gauss model η1(y ; s) can be explicitly be computed and all

statements that follow fairly explicitly checked; this is the subject of an exercise.

9 Where by definition τ2t = limn→+∞
1
n
∥x̂t − x∥2.
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FIGURE

Figure 8.4 Phase diagram of mmse-AMP for the Bernoulli-Gauss distribution. The
performance is better than LASSO since we exploit prior knowledge of the signal
distribution.

Define

D(p0) ≡ sup
ν≥0

[
ν−2mmse(ν−2)

]
(8.68)

Note that limν→0 ν
−2mmse(ν−2) = κ so we always have D(p0) > κ.

For a measurement rate µ > D(p0) there exists only one fixed point solution

called τ2∗,good such that the ”noise sensitivity” limσ→0(τ
2
∗,good/σ

2) remains finite.

Thus for µ > D(p0) the algorithm yields a correct reconstruction in the small

noise limit σ → 0 (and more generally a finite error for finite noise). Now,

decrease the measurement rate in the range D(p0) < µ < κ. One finds two or

more stable fixed points (as well as unstable ones) for all σ2 > 0. Besides the

”good” fixed point which satisfies τ2∗,good = Θ(σ2) there is a ”bad” one, i.e.

τ2∗,bad = Θ(1).10 Clearly, initializing iterations with τ20 = +∞ one is driven to

the largest stable fixed point i.e τ2∗,bad. This means that the noise sensitivity

limσ→0 τ
2
∗,bad/σ

2 diverges, and exact reconstruction is not possible even for very

small noise.

We therefore conclude that (8.68) is the algorithmic phase transition threshold

of AMP for a known prior; a remarkably neat result! It has been called the

information dimension since it represents the minimum fraction of measurements

needed to reconstruct a signal exactly in the noiseless limit. Note that with this

interpretation in mind the inequality D(p0) > κ now appears as trivial. This

threshold is lower than the Donoho-Tanner curve derived in Section 8.6. This is

not surprising since the later concerns the worst case distribution for p0 ∈ Sκ.
Figure 8.4 illustrates the phase diagram of AMP with known prior in the (κ, µ)

plane for the Bernoulli-Gauss model and compares it with AMP for LASSO.

10 When there are more than two stable fixed points we define it as the maximal one.
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8.10 Approximate Message Passing at Finite Temperature11

The AMP equations for the LASSO and MMSE estimator can be derived in a

unified way by considering the finite temperature formulation discussed at the

end of Section 3.4. Recall that we extended the usual posterior distribution by

introducing the Gibbs distribution (3.43) at arbitrary inverse temperature β. The

β-MMSE estimator was defined as the magnetization (3.44); the usual MMSE

estimator was recovered simply by setting β = 1 and the LASSO by taking

p0(x) ∝ e−β λ
σ2 |x| and β → +∞.

In this section we start with the BP (or sum-product) equations and indi-

cate how the finite temperature AMP algorithm is obtained. This has the merit

to confirm equations (8.64)-(8.65) and will also be useful when we introduce

the Bethe free energy of compressive sensing in Chapter 11. The spirit of the

derivation is similar to Sections 8.3 and 8.4: we first derive a Gaussian approxi-

mation of message passing and then with further simplifications we bring down

the complexity from quadratic to linear order.

Gaussian approximation

A look at (3.43) shows that the sum-product equations are{
µt+1
i→a(xi) = (p0(xi))

β
∏

b∈∂i\a µ̂
t
b→i(xi),

µ̂t+1
a→i(xi) =

∫
e−

β

2σ2 (ya−(Ax)a)
2 ∏

j∈∂a\i dxjµ
t+1
j→a(xj)

(8.69)

In the second equation the free variable xi appears in

(Ax)a = Aaixi +
1√
m

n∑
j ̸=i

Ãajxj

and the integration variables can be considered i.i.d distributed xj ∼ µt+1
j→a(xj),

j ̸= i. Thus, according to the central limit theorem,for a given realization of

the measurement matrix and n large, 1√
m

∑n
j ̸=i Ãajxj behaves like a Gaussian

random variable. As a consequence µ̂t+1
a→i(xi) is well approximated by a Gaussian

distribution

µ̂t+1
a→i ∝ e

β

σ2 At+1
a→i(Aaixi)− β

2σ2 Bt+1
a→i(Aaixi)

2

(8.70)

parametrized by two real valued messagesAt+1
a→i and B

t+1
a→i. Replacing this parametri-

sation in the first message passing equation (8.69) and completing the square we

get

µt+1
i→a(xi) ∝ (p0(xi))

βe
−β

(xi−Ut
a→i)

2

2σ2V t
a→i (8.71)

11 This section is not needed for the main development and can be skipped in a first reading.
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where

U t
a→i =

∑
b∈∂i\aAt

b→iAbi∑
b∈∂i\a Btb→iA

2
bi

, V t
a→i =

1∑
b∈∂i\a Btb→iA

2
bi

. (8.72)

We will shortly see that it suffices to track the mean χt+1
i→a and variance Γt+1

i→a

of the distribution ∝ µt+1
i→a(xi). These can be expressed in terms of a denoising

function generalising (8.62), namely

ηβ(y ; ν) ≡=
∫
dxx (p0(x))

βe−β
(y−x)2

2ν2∫
dx (p0(x))βe

−β
(y−x)2

2ν2

. (8.73)

From (8.71) and (8.73) we find

χt+1
i→a = ηβ

(
U t
a→i;σ

√
V t
a→i

)
, Γt+1

i→a =
σ2V t

a→i

β
η′β

(
U t
a→i;σ

√
V t
a→i

)
(8.74)

where η′β denotes the derivative with respect to the first argument. Equations

(8.74), (8.72) form the first half of the message passing equations.

It remains to relate At+1
a→i, B

t+1
a→i to χ

t+1
i→a, Γ

t+1
i→a. To do this we recall that in the

second message passing equation za ≡
∑

j∈∂a\iAajxj has a normal distribution.

Since its mean and variance are∑
j∈∂a\i

Aajχ
t+1
j→a and

∑
j∈∂a\i

A2
ajΓ

t+1
j→a,

we get

µ̂t+1
a→i(xi) ∝

∫
dza exp

{
− β

2σ2
(ya −Aai − za)2 −

(za −
∑

j∈∂a\iAajχ
t+1
j→a)

2

2
∑

j∈∂a\iA
2
ajΓ

t+1
j→a

}

∝ exp

{
−
(ya −Aaixi −

∑
j∈∂a\iAajχ

t+1
j→a)

2

σ2

β +
∑

j∈∂a\iA
2
ajΓ

t+1
j→a

}
,

and identifying with the parametrization (8.70) we find

At+1
a→i =

ya −
∑

j∈∂a\iAajχ
t+1
j→a

1 + β
σ2

∑
j∈∂a\iA

2
ajΓ

t+1
j→a

, Bt+1
a→i =

1

1 + β
σ2

∑
j∈∂a\iA

2
ajΓ

t+1
j→a

.

(8.75)

Summarizing, equations (8.74), (8.75) (together with (8.72)) constitute the

Gaussian approximation of message passing. Essentially, because the underlying

factor graph is (bipartite) complete, the messages can be characterized by their

mean and variance and one can work with real valued messages. This approx-

imation has also been called relaxed Belief Propagation in the literature. This

is perfectly analogous to the quadratic approximation (8.18), (8.19) and (8.16)

where the messages are characterised by their minimum and curvature.
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From quadratic to linear complexity

Now we proceed to reduce the quadratic complexity of the above update equa-

tions. The main idea is to exploit the scaling Aai = Ãai/
√
m where Ãai ∼ N (0, 1)

or Ãai = ±1 with equal probabilities. Then for the denominator in (8.75) we set

1 +
β

σ2

∑
j∈∂a\i

A2
ajΓ

t+1
j→a ≈ 1 +

β

σ2m

n∑
j=1

Γt+1
j→a ≈ ∆t+1 (8.76)

where we have assumed that ∆t+1 is to leading order independent of a (if the

messages were independent this would follow from the law of large numbers).

Then defining

Rt+1
a→i = ya −

∑
j∈∂a\i

Aajχ
t+1
j→a

equations (8.75) become ∆t+1At+1
a→i = Rt+1

a→i and B
t+1
a→i =

1
∆t+1 and (8.74) become

χt+1
i→a = ηβ

( ∑
b∈∂a\i

Rt+1
b→iAbi;σ

√
∆t

)
, Γt+1

i→a =
σ2∆t

β
η′β

( ∑
b∈∂a\i

Rt+1
b→iAbi;σ

√
∆t

)
.

(8.77)

From the first equation in (8.77) we have to leading order

χt+1
i→a = ηβ

( m∑
b=1

Rt+1
b→iAbi;σ

√
∆t

)
−AaiR

t
a→iη

′
β

( m∑
b=1

Rt+1
b→iAbi;σ

√
∆t

)
≡ x̂(β),ti −AaiR

t
a→iv̂

(β),t
i

from which we deduce

Rt
b→i = yb −

n∑
j=1

Abjχ
t
j→b +Abiχ

t
i→b

= yb −
n∑

j=1

Abj x̂
(β),t
j +

n∑
j=1

A2
bjR

t−1
b→j v̂

(β),t
j +Abix̂

(β),t
i −A2

biR
t
b→iv̂

(β),t
i .

Now we set Rt
b→i = Rt

b+δR
t
b→i where the dominant contribution is independent

of i and equals by definition

Rt
b = yb −

n∑
j=1

Abj x̂
(β),t
j +

n∑
j=1

A2
bjR

t−1
b v̂

(β),t
j

≈ yb −
n∑

j=1

Abj x̂
(β),t
j +

1

m

n∑
j=1

Rt−1
b v̂

(β),t
j (8.78)

while the correction term is to leading order

δRt
b→i ≈ Abix̂

(β),t
i +O(

1

m
). (8.79)
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Replacing (8.78), (8.79) in the definitions of x̂
(β),t
i and v̂

(β),t
i we find

x̂
(β),t
i = ηβ

(
x̂
(β),t
i +

∑m
b=1R

t
bAbi;σ

√
∆t

)
v̂
(β),t
i = η′β

(
x̂
(β),t
i +

∑m
b=1R

t
bAbi;σ

√
∆t

) (8.80)

Finally summing the second equation in (8.77) over i = 1, . . . , n and using (8.76)

and Rt
b→i ≈ Rt

b +Abix̂
(β),t
i we get an update equation for ∆t,

∆t+1 = 1 +
∆t

m

n∑
i=1

η′β

( ∑
b∈∂a\i

Rt+1
b→iAbi;σ

√
∆t

)

≈ 1 +
∆t

m

n∑
i=1

η′β

(
x̂
(β),t
i +

m∑
b=1

Rt+1
b Abi;σ

√
∆t

)
. (8.81)

We have obtained a closed set of equations (8.78), (8.80), (8.81) which are the

finite temperature version of the AMP algorithm. We collect them here for the

convenience of the reader
x̂
(β),t
i = ηβ

(
x̂
(β),t
i + (ATRt)i;σ

√
∆t
)

Rt
b = yb − (Ax̂(β),t)b +

Rt−1
b

m

∑n
j=1 η

′
β

(
x̂
(β),t
j + (ATRt)j ;σ

√
∆t
)

∆t+1 = 1 + ∆t

m

∑n
i=1 η

′
β

(
x̂
(β),t
i + (ATRt+1)i;σ

√
∆t
)
.

(8.82)

For β = 1 we obviously recover (8.64), (8.65). It is also not difficult to see that

for p0(x) ∝ e−
βλ

σ2 |x|, β → +∞ they reduce to (8.37).

8.11 Notes

Donoho Jonhson scalar case (1994) paper. Montanari et al min-sum to AMP; sate

evolution. Paris group other but equivalent approach mmse-AMP. alpha-lambda

calibration map. A word about convex optimisation for lasso, and gradient de-
to do

scent, and IST.

Problems

8.1 A generalization of IST and its connection to LASSO. The stan-

dard Iterative Soft Thresholding algorithm has the form{
xt+1
i = η(xti + (AT rt)i ; λ)

rt = y −Axt

starting from the initial condition x0i = 0. Consider the following generalization.

Let θt and bt be two sequences of scalars (called respectively “thresholds” and

“reaction terms”) that converge to fixed numbers θ and b. Construct the sequence
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of estimates according to the iterations{
xt+1
i = η(xti + (AT rt)i ; θt)

rt = y −Axt + btr
t−1

The goal of the exercise is to prove the following claim. If x∗, r∗ is a fixed point

of these iterations, then x∗ is a stationary point of the LASSO cost function

H(x) = 1
2 ||y −Ax||

2
2 + λ||x||1 for λ = θ(1− b).

Note that this claim does not say how to specify suitable sequences bt and

θt. The point of AMP is that it specifies unambiguously that one should take

bt = ||x||0/m (for θt there is more flexibility). The proof proceeds in three steps.

(i) Show that the stationarity condition for the LASSO cost function is

AT (y −Ax∗) = λv,

where vi = sign(x∗i ) for x
∗
i ̸= 0 and vi ∈ [−1,+1] for x∗i = 0.

(ii) Show that the fixed point equations corresponding to the iterations above

are {
x∗i + θvi = x∗i + (AT r∗)i

(1− b)r∗ = y −Ax∗

(iii) Remark that these two steps imply λ = θ(1− b).
8.2 Statistics of AMP and IST unthresholded estimates. Consider a

sparse signal x0 with n iid components distributed as

(1− κ)δ(x0) +
κ

2
δ(x0 − 1) +

κ

2
δ(x0 + 1).

Generatem noisy measurements y = 1√
m
Ãx0+z where Ãai = ±1 are Bernoulli(1/2)

and za are iid Gaussian zero mean and variance σ2. Consider the AMP iterations

(8.37) with the choice θt = α∥rt∥2/
√
m. The derivation of state evolution rests

on the assumption that the i-th component of the unthresholded estimate

x̂ti +
1√
m

m∑
b=1

Ãbir
t
b,

(given x0) has Gaussian statistics. The mean is x0i and the variance σ2 + τ̃2

where τ̃2 = ∥xt − x0∥22/n.
Perform an experiment to check this numerically. Compute also the statistics of

the un-thresholded estimate for the IST iterations, i.e. when the Onsager term

rt−1
a

∥x̂t∥0

m is removed. Compare the two histograms. Indications: Fix a signal

realization x0. Try n = 4000, m = 2000, κ = 0.125 and 40 instances for A and z.

Try various values for σ and α. Look at the i-th components of the un-thresholded

estimate for components such that say x0i = +1 (or −1, or 0).
8.3 Unicity of solution of SE fixed point equation. Consider the SE

fixed point equation (8.50). Show that there is a unique fixed point solution in

[σ2,+∞] (the value +∞ included). Hint: write the fixed point equation for the
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new variable τ̃2 = σ2+τ2/µ in the form τ̃2 = F (τ̃) and show that F is a concave

function of τ̃ . Proceed graphically.

8.4 Noise sensitivity phase transition. Derive the parametrised form

(8.55) of the noise sensitivity threshold line.

8.5 State evolution at finite temperature. Consider the finite tempera-

ture AMP algorithm of Section 8.82 and derive the corresponding state evolution

equations. Recover the state evolution equation (8.67) for MMSE estimation and

(8.44) for the LASSO.

8.6 Bernoulli-Gauss model. Consider the prior

p0(x) = (1− κ)δ(x) + κ
e−

x2

2

√
2π

.

(i) Compute the denoiser (8.62) and check,

η1(y ; ν) =
y

1 + ν2

κ e
− y2

2(1+ν2)√
2π(1+ν2)

κ e
− y2

2(1+ν2)√
1+ν2

+ (1− κ) e
− y2

2ν2
√
ν2

.

(ii) Check also from (8.63)

mmse(ν−2) = κ− κ

1 + τ2

∫ +∞

−∞
dy y2

e−
y2

2√
2π

1 + 1−κ
κ

√
1+τ2

τ2 e−
y2

2τ2

(iii) Show that limν→0 ν
−2mmse(ν−2) = κ. This implies D(p0) ≥ κ.

(iv) Finally analyse the solutions of the mmse-AMP fixed point equation when

the undersampling rate satisfies µ > D(p0) and D(p0) < µ < κ. Plot the phase

transition line µ̃(p0) and compare with the LASSO phase transition line.
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The satisfiability problem is considerably more difficult to analyze than either

coding or compressive sensing. One reason for this difficulty is that it is not an

inference problem. Indeed, in the regime where a random formula is satisfiable

with high probability (i.e., when the number of clauses per Boolean variable is

sufficiently small) there are exponentially many solutions contrary to coding or

compressive sensing where we typically only have one valid solution. At first we

might guess that this makes the problem easy: we are not asking for a particular

solution – any solution will do. But in fact it is exactly this lack of uniqueness

which makes the problem hard.

Why does this non-uniqueness cause trouble? Pick a specific Boolean variable.

From the perspective of this variable there are typically solutions for which

this variable takes on the value 0 but also solutions for which it takes on the

value 1. In fact, of the exponentially many solutions there are typically roughly

equally many of either type. So even if the message-passing algorithm succeeded

in computing the marginals of all bits correctly (here we assume that we put a

uniform measure on all solutions and compute the marginal with respect to this

measure) all these marginals would be roughly uniform and we cannot extract

from them a globally valid solution. Therefore a straightforward application of

a message-passing algorithm does not work. A new ingredient is needed.

One approach is quite natural given the above description. Assume for a mo-

ment that message-passing is capable of accurately computing marginals (or if

you prefer assume that they are given by an “oracle”). Then we can proceed as

follows. Compute the marginal for one variable. As long as this marginal does

not put all mass on either 0 or 1 it means that there are solutions which take on

the value 0 as well as solutions which take on the value 1 for this variable. So in

this case choose any value for this variable, and reduce the formula by eliminat-

ing this variable and all clauses which are now satisfied. This reduction is called

the decimation step. If the marginal has all its mass on 0, then pick the value

0, and if it has all its mass on 1 then choose the value 1. Again, decimate. It is

clear that this procedure succeeds in finding a satisfiable formula if one exists.

The above description assumed that message-passing is capable of exactly

computing the marginals (or that we have an oracle). Since this is generally

not the case, we proceed slightly differently. Estimate marginals for all variables

thanks to a message passing algorithm, say Belief propagation. Then pick a
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variable with maximal bias and decimate according to this bias. The hope is

that by picking a variable with maximal bias we minimize the chance of making

a mistake. This will be true as long as the message-passing algorithm predicts

the marginals with reasonable accuracy. The above idea is what is used in Belief

Propagation Guided Decimation (BPGD). We will talk in more detail about

this algorithm in the present chapter. In Chapter 17 when we shall have more

concepts and tools at our disposal, we develop an upgraded version of BPGD

called Survey Propagation Guided Decimation (SPGD).

Unfortunately, currently there does not exist a rigorous analysis for BPGD. It

is instructive to first consider the much simpler Unit Clause Propagation (UCP)

algorithm and show how to analyse it rigorously. Unit clause propagation is a

decimation algorithm where we do not decimate according to a good estimate

of the marginals but according to a much simpler rule. As long as degree one

clauses are present we satisfy them (this is also what belief propagation would

“tell us”), while if degree one clauses are not present we select a variable at

random and set its value at random. This sort of algorithm has a somewhat

mediocre performance, i.e., the threshold αUCP(K) up to which it works is much

below the actual satisfiability threshold αs(K). But it is relatively easy to analyze

and it will give us the excuse of introducing a very powerful general machinery

of analyzing such types of graph processes, called the Wormald method. This is

our starting point in the next section.

9.1 Analysis of a stochastic process by differential equations

Simple algorithms can often be formulated in terms of a stochastic process and

if the state space is sufficiently simple the progress of the algorithm can often

be analyzed in terms of a system of differential equations. Here we give an el-

ementary introduction to this method via a very simple toy example. We first

treat this example formally and then discuss the Wormald theorem which allows

to make the analysis rigorous. Although the Wormald theorem is rather long to

state, it has a general applicability and it is often not very hard to verify the

hypothesis.

A toy example

Consider n particles in a box of volume V . Think of n and V as large with the

initial density of particles ρ = n/V fixed as n, V → +∞. These particles can

annihilate each other according to a simple model. Assume that time is discrete

and takes integer values. At each time instant and for each pair of particles (i, j)

present, the probability that these two particles annihilate each other is equal

to 1/V 2. How will the number of particles evolve? Let N(t) denote the number

of particles which are left at time t, with N(0) = n. This is a stochastic process
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described by its current state N(t). We have the relationship

N(t+ 1) = N(t)− 2
∑

1≤i<j≤n

1((i, j) is annihilated between t and t+ 1). (9.1)

It is easy to write down the expected progress in one time step given the current

state N(t) by taking the conditional expectation of (9.1). Using linearity of the

expectation, the probability 1/V of annihilation, and that there are N(t)(N(t)−
1)/2 pairs, we obtain

E[N(t+ 1) | N(t)] = N(t)− 2
N(t)(N(t)− 1))

2

1

V 2

= N(t)− ρ2N(t)(N(t)− 1))

n2
.

This means1

E[N(t+ 1)−N(t) | N(t)] = −ρ2N(t)2

n2
+O

( 1
n

)
(9.2)

As long as the number of remaining particles is large one may hope that N(t)

concentrates on its expectation. If this is the case we can drop the expectation.

Wormald’s theorem essentially makes this step rigorous. Dropping the expecta-

tion in (9.2) and setting N(t) = nz(t/n) we have

nz
( t
n
+

1

n

)
− nz

( t
n

)
= −ρ2z

( t
n

)2
+O

( 1
n

)
(9.3)

The natural time scale is τ = t/n and for n ≫ 1 we are lead to consider the

differential equation

dz(τ)

dτ
= −ρ2z(τ)2 (9.4)

for the deterministic time evolution of the average particle density. One easily

verifies that with the initial condition z(0) = 1 (i.e., N(0) = n) the solution

is z(τ) = 1/(τρ2 + 1). If we undo the scalings we see that according to this

model the expected number of remaining particles evolves as n2/(tρ2 + n). In

this derivation we have replaced the stochastic process (9.1) by a deterministic

description (9.4). One might hope that the behaviour of specific instances of

N(t) are close to the deterministic solution, at least as long as N(t) is large.

Wormald’s theorem gives general conditions under which this is indeed correct.

The Wormald Theorem

There are myriads of versions of increasing sophistication. We will be content

with stating and applying one particular incarnation.

theorem 9.1 Let Y
(n)
i (t) be a sequence (indexed by n) of real valued discrete

time random processes, 1 ≤ i ≤ k, where k is fixed, and so that for all 1 ≤
1 To get the O(1/n) term one uses N(t)/n2 ≤ N(0)/n2 ≤ 1/n.
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i ≤ k, all 0 ≤ t < m(n), and all n ∈ N |Y (n)
i (t)| ≤ Bn for some constant

B. Let I ⊂ Rk defined as I = {(y1, . . . , yk) : P{Y (n)
i (t) = nyi, 1 ≤ i ≤ k} >

0, for some n} and let D ⊂ Rk+1 be some open connected bounded set containing

the closure of {(0, y1, · · · , yk) : (y1, · · · , yk) ∈ I}. Denote by H(t) the history

of the processes up to time t, i.e., H(t) = {Y (n)(0), Y (n)(1), . . . , Y (n)(t)} where

Y (n) = (Y
(n)
1 , . . . , Y

(n)
k ).

Suppose there are functions fi : Rk+1 → R, 1 ≤ i ≤ k such that:

1. [Trend] For all i and uniformly for all t < t
(n)
D

E[Yi(t+ 1)− Yi(t) | H(t)] = fi(
t

n
,
Y

(n)
1 (t)

n
, · · · ,

Y
(n)
k (t)

n
) + o(1).

2. [Tail] For all i and uniformly for all t < t
(n)
D

Pr(|Y (n)
i (t+ 1)− Y (n)

i (t)| > n1/5 | H(t)) = o(n−3).

3. [Regularity] For each i, the function fi is a Lipschitz continuous on D.

Then we have:

a. [Differential equation] For (0, ẑ1, · · · , ẑk) ∈ D the system of differential equa-

tions

dzi
dτ

= fi(τ, z1, · · · , zk), 1 ≤ i ≤ k,

has a unique solution in D with initial condition zi(0) = ẑi, 1 ≤ i ≤ k. This

solution extends to points arbitrarily close to the boundary of D.

b. [Concentration] Almost surely

Y
(n)
i (t) = nzi

( t
n

)
+ o(n),

uniformly for 0 ≤ t ≤ min{t(n)D , nτmax} and for each i, where zi(τ) is the

solution in (a) with ẑi(0) = Y
(n)
i (0)/n and where τmax is the maximum time

until the solution can be extended before reaching ϵ-close to the boundary of D

where ϵ is arbitrary but strictly positive.

In our simple toy example the stochastic process is integer valued Y (n)(t) =

N(t) (it is indexed by the initial number of particles n). Obviously there is a

”trend“ governed by the function f(t/n,N(t)/n) = −ρ2N(t)2/n2 in (9.2). The

”tail“ condition essentially states that at least for some time the probability that

nearly all remaining particles annihilate at once is small. Obviously the square

function is Lipshitz and the ”regularity“ condition is satisfied. This allows to

conclude that almost surely N(t) = nz(t) for t finite with respect to n, where

z(t) is the solution of (9.4). We leave it as an exercise to check in more detail

that all conditions of the theorem are satisfied.
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9.2 The Unit-Clause Propagation Algorithm

Suppose that we have an algorithm that allows to find solutions of random K-

SAT formulas with uniformly positive probability (uniformly with respect to

the size n of the formulas) for some range of densities, say α < αalg(K). Then

invoking the threshold behavior (1.12) guaranteed by Friedgut’s theorem we

conclude that the formula is almost surely satisfiable for α < αalg(K). We also get

an algorithmic lower bound on the satisfiability threshold, αalg(K) < αs(K). The

challenge is to find an algorithm that is sufficiently simple to analyze rigorously

and at the same time finds solutions (with strictly positive probability) in a

”decent“ range of densities.

The unit clause propagation (UCP) algorithm is a simple and important

paradigm among a class of similar algorithms that provably find solutions with

positive probability. The analysis of these algorithms is based on the differential

equation method. Variants of UCP are discussed in the exercises.
Exercise with variant

of simple UCP? The

class is teh one of

unitary algos where

one takes the unit

clause step and has

a more complicated

rule for the free step

Let us briefly recall the setting and notations of Chapter 1. We have n Boolean

variables xi ∈ {0, 1} out of which we can construct 2K
(
n
K

)
clauses (disjunctions)

containing K variables, where each variable enters as xi or x̄i (the negation of

xi). A random formula from the ensemble F(n,m,K) is sampled by taking m

clauses uniformly at random with replacement. We will often think of the number

of variables contained in a clause as the length of a clause. In particular, initially

all clauses have length K and each variable entering in a clause is negated with

probability 1/2.

UCP algorithm

The algorithm is stated in table 1. Here is an informal description.

The algorithm sets the value of one variable at a time according to a rule to

be specified and reduces the formula. The clauses that are satisfied by setting

the variable are removed from the formula. Those that are not satisfied are

shortened, which simply means the variable is removed from the formula. Initially

all clauses have length K. As the algorithm proceeds some clauses disappear and

others become shorter. Once a variable is fixed, the value stays fixed and is never

changed (the algorithm never backtracks). If eventually all clauses disappear, the

formula is satisfied and we have found a solution. If a clause of length zero appears

then we have failed (indeed a clause of length zero appears it means none of its

variables satisfied it).

We still have to specify a rule to set variables one at a time. The rule is the

simplest possible and takes advantage of clauses of length one, called unit clauses.

As long as there are unit clauses present in the formula we set its unique variable

to the value that satisfies the unit clause. Note that once a unit clause appears

we are anyway forced to do so if we want to satisfy the formula (since we do not

backtrack). When there are no unit clauses we simply pick a random a variable

at random and set its value at random.
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Algorithm 1: Unit Clause Propagation algorithm

1. As long as no zero-length clause appears, iterate the two steps:

– (Forced step) if the formula contains unit clauses choose one and

satisfy it. Reduce the formula.

– (Free step) if the formula does not contain unit clauses, choose a

variable at random and set its value at random. reduce the formula.

2. If a zero-length clause appears output ”fail”.

3. If no zero-length clause has appeared after n steps output a ”solution”.

We discuss the application of Wormald’s theorem for the analysis of UCP with

K = 3. Through this analysis one finds the algorithmic threshold αUCP(3) =

8/3 ≈ 2.666 (compare with the satisfiability threshold αs(3) ≈ 4.26). The gener-

alization to any K ≥ 3 is found in the exercises. We define ’time“ t as the number

of steps, i.e., the number of variables that have been eliminated. At time t the

remaining formula has n− t variables. The number of clauses of length i = 1, 2, 3

at time t is denoted Ci(t). The state of the stochastic process associated with

UCP is given by C(t) = (C1(t), C2(t), C3(t)). We do not explicitly indicate the

superscript n that indexes the sequence of stochastic processes.

An crucial property of the UCP algorithm that makes the differential equation

tractable is the uniform randomness property. This property means that at any

time step t, given the state C(t), the formula belongs to the uniformly random

ensemble constructed out of n−t variables and Ci(t) clauses of lengths i = 1, 2, 3.

Here we only give an intuitive justification of this statement. At a free step we

set a variable at random (and reduce the formula) so no information is revealed

about the reduced formula. At a forced step the variable is not set at random

because it has to satisfy a unit clause. However this unit clause itself is random

(it contains the variable or its negation with probability 1/2) so from the point

of view of the reduced formula this is equivalent to a free step. In both cases at

each UCP step we get no information about the reduced formula which therefore

remains uniformly random. In other words the reduced formula could as well have

been generated ”on the fly” at the current time t from the uniform ensemble with

n− t variables and Ci(t) clauses of length i = 1, 2, 3. Generating formulas on the

fly given the current state of the algorithm is sometimes called the principle of

deferred decisions.

Differential equations

We first write down the set of ”trend“ equations. At any time t, a variable is

chosen among the n−t remaining ones and is set to some (permanent) value. This

will destroy a certain number of clauses, either because they become satisfied or

because they are shortened. Clauses of length 3 can only be destroyed. Clauses

of length 2 can be destroyed, but also created from the shortening of 3-clauses.
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Thus
C3(t+ 1) = C3(t)−

∑
3-clauses 1(3-clause ∋ chosen variable)

C2(t+ 1) = C2(t)−
∑

2-clauses 1(2-clause ∋ chosen variable)

+
∑

3-clauses 1(3-clause ∋ chosen variable and is not satisfied)

Now take the expectation conditioned on the current state. Because of the uni-

form randomness property this expectation is with respect to a uniform weight

over the current formulas and it does not matter if the chosen variable is set in

a free or a forced step. The number of clauses of length i = 2, 3 that contain

the chosen variable has a binomial distribution Bin(Ci(t), i/(n − t)). So in ex-

pectation there are iCi(t)/(n− t) clauses of length i = 2, 3 containing the chosen

variable, and among them iCi(t)/2(n−t) are not satisfied. We obtain the ”trend”

equations{
E[C3(t+ 1)− C3(t)|C(t)] = −3C3(t)

n−t = 3C3(t)/n
1−t/n .

E[C2(t+ 1)− C2(t)|C(t)] = −2C2(t)
(n−t) + 3C3(t)

2(n−t) = −
2C2(t)/n
1−t/n + 3C3(t)/n

2(1−t/n) .

(9.5)

At this point we need to check that all the conditions of the Wormald theorem

are fulfilled. Obviously the number of clauses is at all times smaller than αn. Also

the initial condition is deterministic. Further, changes at each step are small with

high probability, so the tail condition is also easily checked. The function giving

the trend is Lipschitz for τ ∈ [0, 1[. In conclusion according to the Wormald

theorem almost surely C2(t) = nc2(τ), C3(t) = nc3(τ) with τ = t/n, where c2(τ)

and c3(τ) satisfy differential equations{
dc3(τ)
dτ = −3c3(τ)

1−τ ,
dc2(τ)
dτ = 3c3(τ)

2(1−τ) −
2c2(τ)
1−τ ,

(9.6)

for any fixed time strictly bounded away from τ = 1. The initial conditions are

c3(0) = α, c2(0) = 0.

It is straightforward to check that the solution of (9.6) is

c3(τ) = α(1− τ)3, c2(τ) =
3α

2
τ(1− τ)2, (9.7)

As τ → 1 the total number of clauses of length 2 and 3 becomes o(n).

Unit clause process

The reader will have noticed that we did not write a differential equation for

C1(t). Indeed as long as the algorithm does not fail C1(t) = O(1) and the changes

at each time step are of the same order, so that the process C1(t) does not

concentrate on the solution of a deterministic differential equation. Also, if at

some time C1(t) = Θ(n), the algorithm has already failed anyway.
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The number of unit clauses is correctly described by a Galton-Walton branch-

ing process. The process starts with a free step which generates a cascade of

unit clauses. When a variable is set (in a free or forced step) an average of

2C2(t)/2(n− t) new unit clauses are born. Thus, using (9.7), the (birth) rate of

the Galton-Walton process is

ρ1(τ) ≡
c2(t)

1− τ
=

3α

2
τ(1− τ). (9.8)

The maximum of (9.8) is attained at τ = 1/2. Thus this rate remains strictly

less than 1 for all times, if and only if α < 8/3. The condition α < 8/3 ensures

that the expected number of unit clauses created during a cascade,

1 + ρ1(τ) + ρ1(τ)
2 + ρ1(τ)

3 + · · · = 1

1− 3α
2 τ(1− τ)

, (9.9)

remains O(1) for all τ ∈ [0, 1[. On the other hand when α > 8/3 the expected

number of unit clauses grows without limit.

It remains to show that for α > 8/3 the algorithm almost certainly fails and

that for α < 8/3 it succeeds with strictly positive probability (i.e., probability

not going to zero as n → +∞). We only give the main arguments, and refer to

the notes for references with detailed analysis.

Final steps of the analysis

That the algorithm fails for α > 8/3 can be seen as follows.2 Note C2(t)/(n −
t) is the density of 2-clauses at time t. Therefore from (9.7) if α > 8/3 we

have c2(τ)/(1 − τ) > 4τ(1 − τ) therefore for times τ ≈ 1/2 (i.e. t ≈ n/2) the

density of 2-clauses is above 1. Using the uniform randomness property we have

at these times a random 2-SAT formula with density larger than 1 (with possibly

additional 3-clauses). It is known that the satisfiability threshold of the 2-SAT

ensemble is αs(2) = 1. So such a formula is unsatisfiable with high probability

and UCP cannot succeed.

Now let us prove that if α < 8/3 then the algorithm succeeds. In this case,

as seen from (9.9), at any point in time C1(t) = O(1) hence the probability

that a variable is connected to two unit clauses is negligible and the probability

that a 0-clause is created is also negligible. In other words the probability that

UCP generates contradictions is negligible. Some care has to be taken to make

this argument completely rigorous. In particular, as we discussed we can only

guarantee the accuracy of the prediction of differential equations up to a time

very close but not equal to τ = 1. So we need in addition an argument which

guarantees that the residual formula is satisfiable with high probability. If we look

at the solution of the differential equation, we see that if we run the algorithm

long enough then there is a time strictly before τ = 1 where the sum of densities

2 Another way to see that UCP fails for α > 8/3 is to use the ”birthday problem”. One can
show that contradictions will be generated with high probability as soon as

C1(t) = Θ(
√
n). See exercises. write exercise
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of 2-clauses and 3-clauses is strictly less than 1.3 We can now argue as follows.

Drop a random variable from each 3-clause. Then the resulting formula is (up

to the O(1) unit clauses) a random 2-SAT formula of density strictly less than

1. It is known from the analysis of the 2-SAT ensemble that such a formula is

satisfiable with high probability.

9.3 Belief Propagation Guided Decimation

In the preceding section we introduced and analysed the simple UCP algorithm.

This analysis established a non-trivial lower bound for the satisfiability threshold.

On the downside, the UCP algorithm is not very powerful and so the bound

is quite far from αs(K) (for example αs(3) ≈ 4.259 and UCP works up to

8/3 ≈ 2.666).

We now introduce and illustrate a more powerful algorithm, called Belief Prop-

agation Guided Decimation (BPGD). The basic idea is similar to that of the UCP

algorithm. At each step we pick a variable and fix its value. This variable belongs

to a certain number of clauses. We remove the clauses it satisfies and shorten

the ones it does not satisfy, in other words we decimate the formula and get a

reduced formula. The difference with UCP lies in how we choose the variable

we decimate and how we set its value. In the UCP algorithm, the choice was

either forced upon us by the presence of unit clauses or was random when no

unit clauses are present. In the BPGD algorithm we use belief propagation to

guide the selection and set the value of the variable.

We first introduce a version of the algorithm which is guaranteed to succeed if

the factor graph is a tree. We will then apply the algorithm to formulas from the

random ensemble F(n,m,K). A rigorous analysis of BPGD for random formulas

is currently out of reach and we therefore have to be assess the performance

through experiments. In Chapter 17 we introduce a even more powerful algorithm

(the Survey Propagation Guided Decimation algorithm).

Counting and finding solutions by decimation

We briefly recall the formulation of K-SAT in Sections 3.6 and 5.6. Given a

formula we can introduce the associated factor graph with the variable nodes

connected to factor nodes by full or dashed edges according to whether a variable

xi, i = 1, · · · , n appears negated or not in a clause a = 1, · · · ,m. A sign Jia =

+1 (resp. −1) is associated to full (resp. dashed) edges for which xi appears

un-negated (resp. negated) in clause a. Recall also that in the spin language

si = (−1)xi . With these definitions si = Jia does not satisfy a, and si = −Jia

3 From (9.7) this sum is c3(τ)/(1− τ) + c2(τ)/(1− τ) = α(1− τ)(1 + τ/2).
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satisfies a. From the indicator functions of the clauses,

fa(s∂a) = 1−
∏
i∈∂a

1

2
(1 + siJia) (9.10)

we form

N0 =
∑
x

m∏
a=1

fa(s∂a). (9.11)

which counts the number of solutions. The ”marginal”

Ni(si) =
∑
∼si

m∏
a=1

fa(s∂a) (9.12)

counts the number of solutions with si fixed. Suppose one is able to compute a

marginal for a node i and suppose that Ni(si) > 0 for si = +1, or si = −1, or
both; then we know that the formula is satisfiable. Moreover we also know the

total number of solutions Ni(+1) +N (−1) = N0.

Suppose for a moment that all the marginals are given to us by an oracle or

that we have some way to compute them. Then the last remarks obviously imply

that we know the number of solutions. The following decimation process uses the

marginals to find solutions.

Algorithm 2: Decimation process

1. Pick an arbitrary variable i and consider the marginal Ni(si).

2. If Ni(+1) > 0 (there exists an assignment with si = +1 or xi = 0) then:

– Set si = +1 in all clauses a ∈ ∂i.
– Eliminate all clauses where variable i appears negated.

– Remove si from the clauses where it does not appear negated.

3. If Ni(+1) = 0 (there does not exist an assignment with si = +1), then:

– Set si = −1 in all clauses a ∈ ∂i.
– Eliminate all clauses where variable i does not appear negated.

– Remove si from the clauses where it appears negated.

4. Repeat the process until no variables are left.

Of course many improved variants of this process can be considered. However

they are not of practical use since generally we do not know the exact marginals,

and this decimation is more of conceptual value. There is one case where this

decimation process can be implemented: we saw in Chapter 5 how to find the

exact marginals when the factor graph is a tree. The following simple example

serves as a reminder and as an illustration of the decimation process. In the

next paragraph we shall formulate an extension of these ideas to general factor

graphs.

example 23 Consider the formula F = x1∧ (x1∨x2∨x3). The corresponding
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Figure 9.1 Left: factor graph of the equation F = x1 ∧ (x1 ∨ x2 ∨ x3). Right: reduced
formula F ′ = x̄2 ∨ x3 obtained when we set x1 = 1.

factor graph is shown in Figure 9.1. We express the indicator functions of each

factor node as

fa(s1) = 1− 1

2
(1 + s1), fb(s1, s2, s3) = 1− 1

8
(1− s1)(1− s2)(1 + s3)

We want to compute (9.11), (9.12),

N0 =
∑

s1,s2,s3

fa(s1)fb(s1, s2, s3), Ni(si) =
∑
∼si

fa(s1)fb(s1, s2, s3).

The factor graph is a tree and therefore we have access to the exact marginals us-

ing BP. We first pick variable node 1 and compute its ”marginal” N1(s1). For the

convenience of the reader let us recall in detail the use of message passing rules.

We initialize leaf node messages, µ1→a(s1) = fa(s1) and µ2→b(s2) = µ3→b(s3) =

1. To compute all messages that flow in node x1 one iteration suffices,

µa→1(s1) = fa(s1) =

{
0 if s1 = +1,

1 if s1 = −1

and

µb→1(s1) =
∑
∼s1

fb(s1, s2, s3)µ2→b(s2)µ3→b(s3) =

{
4 if s1 = +1,

3 if s1 = −1

Finally, multiplying the two messages flowing into node x1 yields the marginal,

N1(s1) = µb→1(s1)µa→1(s1) =

{
0 if s1 = +1,

3 if s1 = −1.

This already tells us that F has 3 solutions. To find a solution, according to

the decimation process, since N1(0) = 0, we set s1 = −1 (or x1 = 1). The

reduced formula then becomes F ′ = x2 ∨ x3. We now pick node 2 and compute
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its marginal using BP on the reduced formula,

N ′
2(s2) =

∑
∼s2

(1− 1

4
(1− s2)(1 + s3)× 1

=

{
2 if s2 = +1,

1 if s2 = −1.

Since N ′
2(+1) > 0 we set s2 = +1. This choice satisfies F ′ so we remove the

clause b′, the reduced formula is empty, and for s3 we thus have two choices s3 =

±1. We have found two solutions (s1, s2, s3) = (−1,+1,+1) and (−1,+1,−1).
Equivalently (x1, x2, x3) = (1, 0, 0) and (1, 0, 1)). Of course, after setting s1 =

+1, since N ′
2(−1) > 0 for F ′, we can also look for solutions with s2 = −1.

This then yields a reduced formula F ′′ = x3 where we are forced to take x3 =

1 or s3 = −1 (note N ′′
3 (+1) = 0, N ′′

3 (−1) = 1). Thus the third solution is

(s1, s2, s3) = (−1,−1,−1). Equivalently (x1, x2, x3) = (1, 1, 1).

We computed N1(+1) = 0 and N1(−1) = 3 which means that there must

exist three solutions in total and also that they all have s1 = −1. The reader can
check that BP applied to F yields N2(+1) = 2, N2(−1) = 1 and N3(+1) = 1,

N3(−1) = 2. Thus there must exist two solutions with s2 = 0 and one solution

with s2 = −1. Also, there must exist one solution with s3 = +1 and two solutions

with s3 = −1. This is all consistent with the solutions that we found.

We point out that if one is interested in the fraction of satisfying solutions we

can just normalize the messages,

νi(si) =
Ni(si)

Ni(+1) +Ni(−1)
. (9.13)

Here we find ν1(+1) = 0, ν1(−1) = 1, ν2(+1) = 2/3, ν2(−1) = 1/3, ν3(+1) =

2/3, ν3(−1) = 1/3.

Of course for such a small formula we can directly obtain solutions and marginals

from the truth table 9.1 (without ever using BP). The reader can verify that ev-

erything is perfectly consistent.

□

BPGD for general formulas

We now adapt the decimation process in order to turn it into an algorithm

applicable to formulas with general factor graphs. However, note that the graphs

we have in mind should be sparse.

Over a tree, BP yields exact marginals and we can pick anyone of them in each

iteration of the decimation process. But for general graphs marginals computed

by BP - call them νBP
i (si) - are not exact so it will matter which ones we pick.

In order to potentially minimise the effect of the uncertainty of a marginal, in

each iteration we pick a node i such that the bias Bi ≡ |νBP
i (+1) − νBP

i (−1)|
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Table 9.1 Satisfiability of F = x1 ∧ (x1 ∨ x2 ∨ x3) for all possible combination of x1, x2

and x3.

is maximized.4 This way, we hope that this node has such a clear bias that its

marginals are quite exact despite the graph not being a tree.

The BPGD algorithm is summarized in table 3

Algorithm 3: BPGD algorithm

1. Run BP and calculate all marginals.

2. Pick a node i with maximum bias Bi = |νBP
i (0)− νBP

i (1)| greater than some

predefined small number δ > 0. If there are many such nodes pick one at

random among them. If all biases are smaller than δ > 0 pick any variable

at random.

3. Set si to the most likely value, i.e., si = +1 if νBP
i (+1) > νBP

i (−1) and to

si = −1 otherwise.

4. Eliminate all clauses satisfied by the value of si set in the previous step.

Remove si from the other clauses.

5. Recurse until all variables are eliminated.

6 Output (s1, . . . , sn) and check if it satisfies the formula.

A few remarks are in order. When we run BP on general graphs we have to

decide in an ad-hoc way an initialisation of the messages and specify a schedule.

A convenient schedule is the flooding schedule. At each iteration step all vari-

able nodes send their messages towards clauses and all clauses send back their

message to variable nodes. For the initialization, since at the beginning we have

no information whatsoever about the true marginals, it is natural to initialise

the (unnormalised) messages uniformly, in other words νi→a(si) = 1/2 for all

i = 1, · · · , n.
We now discuss a few experiments. Before illustrating the performance of the

BPGD algorithm itself, we say a few words on the convergence of BP itself. In

4 The bias is the absolute value of the BP-estimate of the magnetization.
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principle, convergence of the BP messages is a prerequisite for computing the

maximal bias and decimating the formula. To test this issue we can run BP over

many instances and compute the empirical probability that it converges. The

resulting probability of convergence as a function of α is shown on figure 9.2.

For K = 3 we get a convergence threshold αconv(3) ≈ 3.86 and for K = 4 we get

αconv(4) ≈ 10.3.

The empirical probability of success of BPGD computed from runs over many

instances is also illustrated on figure 9.2. The probability of success remains

strictly positive until αBPGD ≈ 3.86 for K = 3 (this is approximately identical

to αconv(3)). For K = 4 it remains strictly positive until αBPGD ≈ 9.3 (which is

here smaller than αconv(4)). These values can be compared to the satisfiability

thresholds, αs(3) ≈ 4.26 and αs(4) ≈ 9.93, predicted by the cavity method.

Actual 
threshold

3.86 4.26

Pr{Being Satisfiable}

1

3

Actual 
threshold

~9.98

Pr{Being Satisfiable}

1

3-SAT 4-SAT

One 
Instance

Many 
Instances

One 
Instance

Many 
Instances

Figure 9.2 Empirical probabilities of convergence of the BP algorithm and of success
of BPGD for 3-SAT (left) and 4-SAT (right).

In Chapters 16 and 17 we develop the cavity method and the associated Survey

Propagation Guided Decimation algorithm which empirically finds solutions for

higher values of α. We will also learn that the limitations of the BPGD algorithm

are fundamentally related to the geometry of the solution space in the Hamming

hypercube {0, 1}n.
Because of Friedgut’s theorem (Chapter 1) a strictly positive probability of

success of an algorithm implies that the formula is satisfiable with probabil-

ity one in the limit n → +∞. Therefore if one would rigorously analyze the

BPGD decimation process, just as we did for UCP, the above thresholds would

be provable lower bounds for αs(K). Unfortunately such an analysis is difficult

and is currently out of reach for small values of K mainly because the uniform

randomness property does not hold and one faces the problem of tracking the

evolution of the ensemble of random formulas. But note that for large values of

K approximations of BPGD have been analysed (see the notes).
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9.4 A convenient parametrization of the BP equations

Since the alphabet is binary we can parametrize the messages in ways similar to

coding and Ising type spin models. In K-SAT we have the extra feature that the

edges of the factor graph carry a sign Jia = ±1, and it turns out that a slightly

different parametrisation is convenient. This parametrisation will mostly be used

in later Chapters but the reader can already use it to implement BPGD in the

exercises.

Our parametrization uses the following loglikelihood variables

hi→a =
1

2
ln

{
µi→a(−Jia)
µi→a(Jia)

}
, ĥa→i =

1

2
ln

{
µ̂a→i(−Jia)
µ̂a→i(Jia)

}
. (9.14)

The sum-product equation for messages µi→a flowing from variable to constraint

nodes is given by

µi→a(±Jia) =
∏

b∈∂i\a

µ̂b→i(±Jia)

=
∏

b∈∂i\a:Jib=Jia

µ̂b→i(±Jib)
∏

b∈∂i\a:Jib ̸=Jia

µ̂b→i(∓Jib)

Taking the logarithm of the ratio of these two equations we find

hi→a =
∑

b∈∂i\a:Jib=Jia

ĥb→i −
∑

b∈∂i\a:Jib ̸=Jia

ĥb→i

=
∑

b∈∂i\a

JiaJibĥb→i (9.15)

This is the first BP equation for K-SAT. Consider now the other sum-product

equation for messages µ̂a→i flowing from constraint to variable nodes. This in-

volves the factor

fa(s∂a) = 1−
∏
j∈∂a

1

2
(1 + sjJja) (9.16)

evaluated at si = ±Jia. For si = −Jia this evaluates to 1 (the clause is satisfied)

µ̂a→i(Jia) =
∑

sj ,j∈∂a\i

∏
j∈∂a\i

µj→a(sj)

=
∏

j∈∂a\i

(µj→a(Jja) + µj→a(−Jja)). (9.17)

For si = Jia the factor (9.16) is equal to 1−
∏

j∈∂a\i
1
2 (1 + sjJja) which implies

µ̂a→i(−Jia) =
∑

sj ,j∈∂a\i

[
1−

∏
j∈∂a\i

1

2
(1 + sjJja)

] ∏
j∈∂a\i

µj→a(sj). (9.18)
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Combining (9.18) and (9.17) we get

µ̂a→i(−Jia) = µ̂a→i(Jia)−
∑

sj ,j∈∂a\i

[ ∏
j∈∂a\i

1

2
(1 + sjJja)

] ∏
j∈∂a\i

µj→a(sj)

= µ̂a→i(Jia)−
∏

j∈∂a\i

µj→a(Jja)

= µ̂a→i(Jia)

[
1−

∏
j∈∂a\i

µj→a(Jja)

µj→a(Jja) + µj→a(−Jja)

]
Finally, dividing both sides by µ̂a→i(Jia) and taking the logarithm we obtain

ĥa→i =
1

2
ln

{
1−

∏
j∈∂a\i

1

1 + e2hj→a

}
. (9.19)

Summarizing, the message passing equations (9.15) and (9.19) for K-SAT can

be cast as {
hi→a =

∑
b∈∂i\a JiaJibĥb→i

ĥa→i =
1
2 ln
{
1−

∏
j∈∂a\i

1
2 (1− tanhhj→a)

} (9.20)

Let us now work out the expresion of the bias used in the BPGD algorithm.

An easy calculation shows that in terms of the ”mean field“

hi =
1

2
ln

{
νBP
i (+1)

νBP
i (−1)

}
the bias is Bi = |νBP

i (+1) − νBP
i (−1)| = | tanhhi|. To compute hi from BP

messages we form the ratio,

νBP
i (+1)

νBP
i (−1)

=

∏
a∈∂i µa→i(+1)∏
a∈∂i µa→i(−1)

=
∏

a∈∂i:Jia=+1

µa→i(Jia)

µa→i(−Jia)
∏

a∈∂i:Jia=−1

µa→i(−Jia)
µa→i(Jia)

=
∏

a∈∂i:Jia=+1

e−2ĥa→i

∏
a∈∂i:Jia=−1

e2ĥa→i . (9.21)

The final expression for the bias is

Bi = |νBP
i (+1)− νBP

i (−1)| = | tanh(
∑
a∈∂i

Jiaĥa→i)| (9.22)

9.5 Notes

Wormald method (other names in other disciplines), Wormald proved general

thm for graph processes. Application to K sat: review of D.A for details. Uniform

randomness and principle of deferred decisions (paper of Kiroussis et al). Nature

of computation book. BPGD see also MM. Give a good reference for analysis of
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2-SAT (say also in Chap one about 2 SAT). Mention recent progress on analysis

of approximations of BPGD for large K

Problems

9.1 Application of Wormald’s theorem. Consider the toy model of sec-

tion 9.1 and check in detail that the hypothesis of Wormald’s theorem hold.

9.2 Peferential attachment. The purpose of this problem is to use the

Wormald method to study a model for “preferential attachment.” Consider n

nodes. Initially all nodes have degree 0. Assume that we allow a maximum degree

of dmax. We proceed as follows. At every step pick two nodes from the set of all

nodes which have degree at most dmax−1 and ”attach” them by an edge. Rather

than picking them with uniform probability pick them proportional to their

current degree. More precisely, assume that at time t you have Di(t) nodes of

degree i. Then pick a node of degree i with probability

Pi(t) =


Di(t)∑dmax−1

j=0 Dj(t)
, 0 ≤ i < dmax,

0, i = dmax.

Initially, we have D0(t = 0) = n and Di(t = 0) = 0 for i = 1, · · · , dmax. Note

that at time t = ndmax/2 all nodes will have maximum degree. Pick dmax = 4.

(i) Write down the set of differential equations for this problem. Are the condi-

tions of Wormald’s theorem fulfilled?

(ii) Plot the evolution of the degree distribution as a function of the normalized

time for τ = t/n ∈ [0, dmax/2]. Hint: In general one cannot expect to solve the

system of differential equations analytically. But it is typically easy to solve them

numerically (with Mathematica for example).

9.3 Unit Clause Propagation for K ≥ 3. We want to generalise the anal-

ysis of UCP to any K ≥ 3.

(i) State the general form of the algorithm.

(ii) Generalize the derivation of the differential equations (9.6).

(iii) Solve analytically the differential equations and obtain the generalised form

of (9.7).

(iv) Compute the rate of unit clause production and obtain the generalised form

of (9.8).

(v) Deduce from the previous point the largeK asymptotics of the UCP threshold

αUCP(K).

9.4 Implementation of Belief Propagation. Implement BP according to

the flooding (or parallel) schedule. Initialize the messages uniformly randomly in

[0, 1]. One iteration means that you send messages from nodes to clauses and back

from clauses to variables. Define the following ”convergence criterion”: declare

that the messages have ”converged” if there is an iteration number (time) tconv(ϵ)

such that no messages changes by more than ϵ at tconv(ϵ) (take the smallest such

time).
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(i) Perform the following experiment. Take 100 K-SAT instances of length say

n = 5000 and 10000 variables and for each instance implement BP as explained

above with ϵ = 10−2. If the iterations do not converge stop them at a large

time say tmax ≈ 1000. When they converge, they should do so in a shorter time

tconv(δ) < tmax that does not change much with n.

(ii) Plot as a function of α the empirical probability that the iterations converge.

You should see that this probability is large for α < αconv and drops abruptly

around some threshold αconv. For K = 3, αconv ≈ 3.85 and K = 4, αconv ≈ 10.3.

9.5 Implementation of Belief Propagation Guided Decimation. Im-

plement the BPGD algorithm for finding SAT assignments. It uses BP (imple-

mented as in the previous exercise) as a guide to take decisions on how to fix

values for the variables. Once a variable has been fixed the K-SAT formula is

suitably reduced - this step is called ”decimation” - and BP is run again.

• Initialize with a K-SAT formula F ∈ F(n,m,K) of length n.

• For t = 1, . . . ,min(tconv(ϵ), tmax) do:

– Run BP on an instance, as in the previous exercise (with the same

convergence criterion).

– If BP does not converge, return ”assignment not found” and exit.

– If BP converges, for each variable i compute its bias Bi (Equ. (9.22))

– Pick a variable i that has the largest bias Bi.

– If νBP
i (+1) − νBP

i (−1) ≥ 0 fix si = +1. Otherwise fix si = −1. (Note

that νBP
i (+1)−νBP

i (−1) is given by Equ. (9.22) without the absolute

value.)

– Replace F by the K-SAT formula obtained by decimating variable i.

• End-For

• Return all fixed variables.

Give for several values of α, the empirical success probability of this algorithm

when tested over 100 instances. Compare this empirical success probability with

the empirical convergence probability of the previous exercise. You should ob-

serve that K = 3 and K = 4 do not behave on the same way. Try to find an

approximate threshold αBPGD beyond which the algorithm does not find SAT

assignments.
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This chapter is an epilogue for the message passing approaches discussed so

far. It is also a preview of the sort of questions we address in part III. The

analysis of message passing has allowed us to determine algorithmic thresholds

for the systems of interest. In coding for example, this threshold is the noise level

computed by density evolution which tracks the belief propagation algorithm.

For random K-SAT we determined critical clause densities associated to unit

clause propagation or to belief propagation guided decimation. For compressive

sensing we found that the threshold of approximate message passing algorithm

for LASSO is the Donoho-Tanner curve determined by state evolution. These

problems typically also have an “optimal” threshold which is independent of the

algorithms. In coding this is the maximum posterior threshold beyond which it

is impossible to reconstruct the input message even by exhaustive search. For

random K-SAT this corresponds to the satisfiability threshold beyond which,

with high probability, there are no solutions. These thresholds are optimal in the

sense that they have nothing to do with algorithms but are associated to a phase

transition inherent to the problem. In general, we want to be able to compute

such thresholds in order to assess how far our algorithmic thresholds are from

the optimal ones.

But is it possible to determine the phase transition (or optimal) thresholds?

This is not at all obvious for problems that are computationally hard. The

Maxwell construction is a method that allows to guess the location of phase

transition thresholds by “looking” at the message passing solution through the

”correct lenses”. Once the Maxwell construction has given us a guess, this can

then often be converted into a rigorous statement. The point here is that typically

the proof uses the guess as an essential input. For us, the Maxwell construction

is a crucial first step in the proof.

Whenever this program works, then this means that the message-passing al-

gorithm is not just a convenient low-complexity algorithm among other ones,

but is fact a fundamental algorithm in caracterising the problem. As we will see

more extensively in Part III, message passing solutions not only allow to guess

the phase transition (optimal) thresholds, but are also intimately related to the

full solution behind the problem at hand.

The original Maxwell construction goes back to the 19th century adventure

of trying to understand the liquid-vapour phase transition for simple substances
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V/N

p

↑ T

V/N

p

↑ T

Figure 10.1 Left: isotherms of the ideal gas equation of state. Right: isotherms of the
van der Waals equation of state. Note that below a critical temperature, the
isotherms are no longer monotone.

(say H2O). Quite surprisingly, even though at first sight this problem seems

to have little to do with coding, compressive sensing or satisfiability, there is

a deep analogy between the original Maxwell construction and the one in our

cases. It is therefore worth to briefly review the original Maxwell construction.

We then point out that we have already seen an example of this construction

for the Curie-Weiss model without so far spelling it out explicitly. After these

preparations we turn to coding theory and treat in some detail the case of the

binary erasure channel where the Maxwell construction is the simplest. A more

comprehensive treatment of the Maxwell construction requires new concepts and

tools that are developed in Part III.

10.1 The Maxwell construction for the liquid-vapor transition

Assume that we have a gas consisting of N molecules in a container of volume

V , at thermal equilibrium at a temperature of T and under a pressure1 of p.

How are these quantities related? The ideal gas law states that

pV = NkBT, (10.1)

where kB is Boltzmann’s constant. The left picture in Figure 10.1 shows this

relationship at different temperatures T . As one can see from this picture and as

we intuitively know, as we decrease the volume, the pressure increases. The ideal

gas law is based on several simplifying assumptions. In reality typical molecules

interact via forces with a very short range and strong repulsive part, and a weak

long range attractive part.2 Because of the short range strong repulsion it is a

good model to assume that the molecules have an “effective volume”. The ideal

gas law simply neglects this effective volume as well as the attractive part of the

1 At thermal equilibrium pressure is constant throughout the bulk of the system and equals

force by unit surface exerted by the system on the walls of the container.
2 Both repulsive and attractive parts have quantum mechanical origin. At short distance

electronic clouds repel each other due to the Pauli principle and at long distances the

quantum fluctuations leave out a dipolar Coulombic interaction between molecules.
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force (all forces are neglected hence the name ideal). The relation expressed in

(10.1) is an equation of state, since it relates quantities (p, V, T,N) that define

the “thermodynamic equilibrium state” of the system.

In 1873 van der Waals derived a more accurate equation of state taking into

account the non-zero effective size of the molecules produced by the strong repul-

sive forces, as well as the weak long range attracting forces. The van der Waals

equation is

(p+ a
N2

V 2
)(V − bN) = NkBT. (10.2)

where a and b are (dimensionfull) constants that characterize the forces between

molecules. This equation is very similar in structure to the ideal gas law, but

both the volume as well as the pressure terms are modified. The constant b takes

into account the strong repulsion equivalent to an effective finite size for each

molecule. Due to this finite size the effective volume of the box which is available

to the N molecules shrinks from V to V −bN . The constant a takes into account

attractive forces between molecules. It is assumed that these attractive forces

act only between molecules of the gas but not between the wall of the container

and gas molecules. Therefore, close to the boundary of the container, a molecule

has more neighbors away from the boundary than towards the boundary and

this creates an effective force “inwards,” reducing the pressure of the gas. The

reduction is proportional to N2 because each molecule close to the wall feels

the effect of approximately N other molecules and there are of the order of N

molecules close to the wall. To obtain an intensive quantity3 we have to divide

by V 2, which gives a reduction in pressure by an amount −aN2/V 2. Taking into

account the reduction in effective volume and pressure the ideal gas law (10.1)

is modified to

p = NkT/(V − bN)− aN
2

V 2
.

This is equivalent to (10.2).4

The right-hand side picture in Figure 10.1 shows the van der Waals isotherms

for some choice of constants a and b and for various choices of T . Comparisons

with measurements show that the predictions of the van der Waals equation are

for the most part more accurate compared to the predictions of the ideal gas

equation. But a closer look at Figure 10.1 shows a somewhat curious and non-

physical behavior. Below a “critical” temperature, the isotherms are no longer

relating the pressure p and the volume per molecule V/N in a monotone fashion.

Below this critical temperature, there is a range where a decrease in volume leads

3 Pressure is intensive, i.e., independent of system size.
4 In terms of the density ρ = N/V the van der Waals equation of state reads

p = ρkBT/(1− bρ)− aρ2, and reduces to the ideal gas law for ρ → 0. The constants a and

b must be determined by experiment. On the other hand statistical mechanics computes
equations of state starting from microscopic Hamiltonians involving the intermolecular
forces, which allows to relate a and b to the expressions of the forces. Thus one can learn

information about the forces from experimental measurements of the equation of state.
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V/N

p

V/N

p

Figure 10.2 The Maxwell construction. Left: one isotherm of the van der Waals
equation of state. Right: the same isotherm, where a part of the curve is replaced by a
horizontal line which is placed so that the two enclosed areas are in balance.

to a decrease in pressure. Clearly, the thermodynamic equilibrium state is not

described accurately in this range.

It was Maxwell who in 1875 suggested a modification of the van der Waals

isotherms to account for this unphysical behavior. Consider Figure 10.2. The

picture on the left shows one van der Waals isotherm which has a non-physical

non-monotonous behavior. The Maxwell construction modifies this curve by re-

placing part of the curve with a horizontal line, so as to obtain a monotonous

isotherm. This line is placed in such a way that the two areas above and below

the line are in balance. Note that these two areas represent a ”work” since they

are equal to a pressure times a volume, i.e., a force times a length. The basic

thermodynamic argument to justify the equality of the two areas is, roughly

speaking, as follows. Suppose one slowly compresses the system starting at large

volumes and then slowly relaxes the volume, so that at any instant the system

remains in thermal equilibrium at the same temperature. The work released to

the system by compressing the gas along the curved van der Waals isotherm and

the work gained by relaxing the volume along the straight line back to its original

value should be equal because the system has returned to its initial state. Indeed

no net work should be gained or done in the process otherwise we would have

a a way to extract energy from a single heat bath at constant temperature, in

contradiction to the second principle of thermodynamics.5

The horizontal line segment corresponds to a situation where the system co-

exists in two phases, namely as liquid and as vapor. Along this line the percentage

of each component changes from all vapor at the right-most point to all liquid at

the left-most point. Note that as soon as all the gas is in liquid form, any further

decrease in volume leads to a very large increase in pressure.

It is important to realize that for this physical system neither the ideal gas

equation, nor the van der Waals equation, and not even the isotherms modified

by the Maxwell construction describe the system exactly. These are all increas-

ingly better and more accurate descriptions, taking into account more and more

physical effects (and one can of course go further by sophisticated statistical

5 Equivalently we would have a perpetual mobile.
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h
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h

m

Figure 10.3 Phase transition in Curie-Weiss model when βJ > 1 as a function of h
(here βJ = 2). The phase transition is at h = 0.

mechanical calculations of the equation of state). The point is that they agree

reasonably well with physical experiments. For our applications we are in a con-

ceptually much easier situation. Our aim is not to find a correct theoretical

description for a real physical system. Rather, we start with a model and there-

fore, in such a situation we can even hope that the Maxwell construction gives

us a mathematically exact result. Still, it is quite remarkable that this is the case

for models about problems of engineering relevance.

10.2 Maxwell construction for the Curie-Weiss model

For the Curie-Weiss model we have already encountered a simple form of the

Maxwell construction! In Chapter 4 we solved the model and computed the

exact relationship between the magnetization m and the external magnetic field

h for a particular temperature. We saw in Section 4.2 that the magnetisation

takes on a value which minimizes the potential function

Φ(m) = −J
2
m2 − hm− β−1h2

(1 +m

2

)
. (10.3)

Recall that if we take the derivative of the above expression, we find that m is a

solution of the fixed-point equation

m = tanh(βJm+ βh). (10.4)

For βJ < 1, this fixed-point equation has a single solution for each h, but for

βJ > 1 it has up to three solutions, depending on the magnitude of h. When

many solutions are present, we have to choose the one that minimises the free

energy function (10.3). The left picture in Figure 10.3 shows the resulting rela-

tionship between h and m for βJ = 2. The dashed part of the curve are points

(h,m) which are solutions to the fixed-point equation but where m is not the

minimizer of (10.3). Equation (10.4) is the analog of the van der Waals equation

of state with magnetisation and magnetic field being the analogs of volume per

particle and pressure. This is vividly visible if one compares the van der Waals
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isotherms Figure 10.3. The left picture on this figure shows the exact solution of

the Curie-Weiss model obtained through the minimisation of (10.3). This exact

solution confirms the Maxwell construction which here consists of correcting the

picture by drawing a vertical line separating the two equal areas on each side

of the curve. To summarise, we see that for the Curie-Weiss model the Maxwell

construction is exact.

So far message passing did not enter our considerations. Indeed on one hand

it is not relevant for the liquid-vapor transition and on the other hand we know

how to solve the Curie-Weiss model by the exact computation of the partition

function, as seen in Chapter 4.

But recall in the end of Section 7.2 we remarked that the simplifications of

BP equations applied to the Curie-Weiss model lead to a message passing form

of the Curie-Weiss equation, namely Equ. (7.20). There is an important lesson

to be drawn here. For this model message passing leads to a correct equation of

state except for the fact that it does not provide a principled way of selecting

the correct solution of the fixed point equation when multiple ones exist. Indeed

in the message passing world we do not know that we “should” minimize the

potential function (10.3). From the message passing perspective we start with a

particular value of m and then we iterate Equ. (7.20), which eventually yields

the “van der Waals” isotherm depicted on the left Fig. 10.3. The Maxwell con-

struction provides the missing step. It allows to ”correct” the message passing

solution in order to recover the exact solution. Moreover it also gives a way to

determine the location of the phase transition threshold, namely h = 0 for the

present model. It might be argued that this last point is somewhat trivial be-

cause it follows from the symmetry of the model. While this is true, at the same

time, we have here a powerful principle that we shall apply in much less trivial

situations with no symmetry present.

Let us pause to see where we are. We have seen the Maxwell construction for

two examples, but so far it is perhaps not very convincing. For the liquid-vapor

system the Maxwell construction might appear like a kludge – a rough fix for an

obvious problem. For the Curie-Weiss model, on the other hand, it might appear

like a very lucky coincidence.

It would be much more compelling if we could start with the belief propagation

equations for a non-trivial system and then from these equations could prove that

the actual equation of state and phase transition threshold have to be of the form

predicted by the Maxwell construction. In particular, this will be compelling

if the actual equation of state and phase transition threshold are difficult to

compute directly. In the next section we discuss exactly such a case – namely

the case of coding on the binary erasure channel. Here the Maxwell construction

does indeed give the correct prediction for the MAP threshold and is the starting

point for a rigorous derivation of this quantity.
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10.3 Coding: the Maxwell construction for the BEC

Let us now consider coding, using Gallager’s (dv, dc)-regular LDPC ensemble,

transmission over the BEC, and BP decoding. For this case we will see how we

can determine the MAP threshold exactly. First we explain how, thanks to the

Maxwell construction, the MAP threshold can be guessed from the DE analysis

of the BP algorithm. In the next two sections we go through the key ideas that

allow to prove that the guess is indeed correct.

Contrary to a fluid or a magnetic system considered in the previous examples,

it is less clear which are the correct analogous “state variables” and “isotherms”

to which we should apply Maxwell’s equal area construction. This is the first

question we have to clarify.

We saw in Chapter 6 that the analysis of BP lead to the DE fixed point

equation for the erasure probability

x = ϵ(1− (1− x)dc−1)dv−1 . (10.5)

By looking at (10.4) and (10.5) one might be tempted to make the following

analogies: ϵ ↔ p or h the “control” parameters and x ↔ V/N or m the “state”

variables. The “van der Waals isotherms” would then be the curves (ϵ(x), x)

where

ϵ(x) =
x

(1− (1− x)dc−1)dv−1
(10.6)

We hasten to say that this is not the correct way to proceed. To find the correct

analogy, let us have a closer look at the message passing “solution” of the Curie-

Weiss model in Section 7.2. If one traces the derivations leading to Equs (7.19)-

(7.20) we notice that the BP-magnetization at a vertex i is a function of incoming

messages that flow on the edges j → i from all neighbors j ∈ ∂i. In density

evolution the analogous quantity is

gBP(x) ≡ (1− (1− x)dc−1)dv , (10.7)

the erasure probability of a randomly chosen variable node, obtained using only

all “internal” messages and ignoring the directly received observation. Let us

compare this expression to this right hand side of (10.5). Since we ignore the

direct observation the factor ϵ is missing; on the other hand we have a power of

dv in this expression and not just (dv − 1) as in the density evolution equation

since we take all internal inputs into account.6 The correct curve to which one

should apply the Maxwell construction is

(ϵ(x), gBP(x)) for 0 < x ≤ 1 and (R, 0) for x = 0. (10.8)

This parametric curve (with parameter 0 ≤ x ≤ 1) is known in the literature

6 This probability is intimately related to the entropy of a BP-decoded bit. If the decoded
bit is not erased then its entropy is zero while if its erased its entropy is ln 2. Thus the

total entropy of a bit under BP decoding is ϵ gBP(x) ln 2.
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as the BP EXIT curve.7. It constitutes the correct analog of the van der Waals

isotherm. Note that here we have only one isotherm since there is no explicit

temperature parameter (equivalently we work with β−1 = 1; see Chapter 3 for

a discussion of this point).

We now illustrate the Maxwell construction with an example.

example 24 (Graphical Characterization of Thresholds) The left-hand side of

Figure 10.4 shows the BP EXIT curve associated to the (3, 6)-regular ensemble.

This is the curve given by (10.8). For all regular ensembles with dv ≥ 3 this curve

has the characteristic “C” shape starting at the point (1, 1) for x = 1 and then

moves downwards and extends to (+∞, 0) for x → 0. For x = 0 we add to this

curve the horizontal axis R. Note that ϵ(x) > 1 cannot interpret it as a channel

erasure probability. Nevertheless, in the Maxwell construction we must take into

account the whole curve. One inserts a vertical line at that unique spot so that
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Figure 10.4 Left: the BP EXIT curve of the (dv = 3, dc = 6)-regular ensemble. The
curve goes “outside the box” and tends to infinity and “comes back” on the
horizontal axis. Right: the Maxwell construction places a vertcal line such that the
two shaded areas balance. The position of this line yields ϵMAP.

the two shaded areas have the same area. One can prove that the location of this

line is precisely equal to ϵMAP. Note that the BP threshold is also found from

the BP EXIT curve as the location of a vertical line tangent to the “C” shape.

10.4 Formal statement of the Maxwell construction and related
definitions

The Maxwell construction only gives us a guess of the MAP threshold, and to

prove this conjecture needs more work. This section formalises the conjecture

and introduces a few key definitions that are useful for the proof (in section ??).

7 Here EXIT stands for extrinsic information transfer. This is the information acquired
when one takes into account all incoming messages except the one coming from the
channel observation. This parametric curve has also been called “extended EXIT curve” in

the literature to distinguish it from EXIT functions introduced below.
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definition 10.1 (Trial entropy and area threshold) We define the trial en-

tropy as

A(x) =

∫ x

0

dϵ(x′) gBP(x
′)

= x+
dv
dc

(1− x)dc−1(dv + x(dvdc − dv − dc))−
dv
dc
. (10.9)

This integral is easily computed from (10.7) and (10.6). Note that A(x) is the

area under the EXIT curve, from the point (ϵ(0), gBP(0)) = (+∞, 0) for until

the point (ϵ(x), gBP(x)), as indicated in Figure 10.5. By definition A(0) = 0. The

xBP

Figure 10.5 The trial entropy A(x) measures the shaded area below the BP EXIT
curve.

function A(x) is decreasing for 0 ≤ x ≤ xBP where xBP is the unique parameter

such that ϵBP = ϵ(xBP). For xBP ≤ x ≤ 1 it is increasing, and A(1) = 1− dv

dc
> 0.

It follows that there is a unique value of x in the region [xBP, 1], call it xA, such

that A(xA) = 0. We call ϵ(xA) the area threshold, and write ϵA = ϵ(xA).

The Maxwell construction conjectures that the MAP threshold is equal to the

area threshold, namely

ϵMAP = ϵA. (10.10)

Thus the MAP threshold can be computed from the BP EXIT curve, which itself

results from the density evolution equation.

In the previous paragraph we explained that the Maxwell construction applies

to the BP EXIT curve parametrized by 0 ≤ x ≤ 1. Here we introduce two

closely related objects: EXIT functions which are well defined functions of ϵ.

Take a code from the (dv, dc)-regular LDPC ensemble of length n. Let X denote

the codeword, chosen uniformly at random from the set of all codewords and

let Y be the received word when we transmit over a BEC with parameter ϵ. We

set Y∼i = (Y1, . . . Yi−1, Yi+1, . . . Yn) the observation vector without Yi. Consider,

x̂BP
i (Y∼i) and x̂MAP

i (Y∼i), the BP and bit-MAP estimates when bit i is not

observed or erased.

definition 10.2 (BP and MAP EXIT functions) We define the BP EXIT
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function as

gBP(ϵ) = lim
t→∞

lim
n→∞

E

[
1

n

n∑
i=1

P[x̂BP,t
i (Y∼i) = E]

]
. (10.11)

where the expectation is over the code ensemble. This limit exists and is given

by density evolution. It is explicitly given by a formula similar to the BP bit

error probability, Equ. (6.23) without the prefactor ϵ because we do not take into

account the observation Yi. Similarly we define the MAP EXIT function as

gMAP(ϵ) = lim sup
n→∞

E

[
1

n

n∑
i=1

P[x̂MAP
i (Y∼i) = E]

]
. (10.12)

where the expectation is again over the code ensemble. It can be shown that the

limit exists, however this is not obvious and this is why the definition involves a

limsup.

As the notations and terminology suggest the notions of BP EXIT curve and

function are very closely related. This is best seen on figure 10.6. The “envelope”

of the EXIT curve is precisely equal to the EXIT function gBP(ϵ) as a function of

ϵ. Moreover, we can give an alternative definition of the area threshold directly

gBP

0
ϵ

1

(ϵ(x), gBP(x))�������)

Figure 10.6 The BP EXIT curve (ϵ(x), gBP(x)) and its envelope gBP(ϵ). The BP EXIT
function vanishes for 0 ≤ ϵ ≤ ϵBP and follows the branch of the BP EXIT curve
corresponding to the non trivial stable fixed point for ϵ ≤ ϵBP

in terms of the BP EXIT function. Indeed the area threshold is the solution of∫ 1

ϵA

dϵ gBP(ϵ) = 1− dv
dc

(10.13)

The proof of these facts is left as an exercise.

The two EXIT functions defined above satisfy the obvious but important in-

equality

gMAP(ϵ) ≤ gBP(ϵ). (10.14)

Indeed, the MAP decoder is optimal in the sense that it minimizes the bit-

error probability. In particular it has a smaller probability of error than the BP

decoder for t iterations. This means P[x̂MAP
i (Y∼i) = E] ≤ P[x̂BP,t

i (Y∼i) = E].
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The inequality then follows by summing over i, taking limits n→ +∞ first and

t→ +∞ second.

Key to the proof of (10.10) is the following alternative represenation of the

MAP EXIT function.

lemma 10.3 (Alternative formula for the MAP EXIT function) Consider trans-

mission over the BEC and let X and Y be the input and output vectors. The MAP

EXIT function defined by (10.12) satisfies

gMAP(ϵ) = lim sup
n→+∞

1

n

d

dϵ
E [H(X|Y (ϵ))] (10.15)

Here the expectation is over the code ensemble.

Proof Representation (10.15) follows directly from the claim

1

n

d

dϵ
H(X|Y ) =

1

n

n∑
i=1

P[x̂MAP
i (Y∼i) = E] . (10.16)

Note that this equation does not involve any average over the code ensemble so

the lemma is in fact valid for a fixed finite length code. Now, to prove (10.16)

assume for a moment that each bit i is transmitted over a BEC with independent

parameter ϵi. We have

1

n

d

dϵ
H(X|Y (ϵ)) =

1

n

n∑
i=1

∂

∂ϵi
H(X|Y (ϵ1, · · · , ϵn))

∣∣
ϵi=ϵ

=
1

n

n∑
i=1

∂

∂ϵi
H(Xi|Y (ϵ1, · · · , ϵn))

∣∣
ϵi=ϵ

=
1

n

n∑
i=1

P[x̂MAP
i (Y ∼i) = E] (10.17)

To get the second line we used the chain rule

H(X | Y ) = H(Xi | Y ) +H(X∼i|Xi, Y )

= H(Xi | Y ) +H(X∼i|Xi, Y ∼i), (10.18)

where in (10.18) we dropped Yi inH(X∼i|Xi, Y ) since the channel is memoryless.

Further, note H(X∼i|Xi, Y ∼i) does not depend on ϵi so that this term does not

contribute to the partial derivative with respect to ϵi. The partial derivative of

H(Xi | Y ) with respect to ϵi then yields (10.17). To see this note that

H(Xi | Y ) = P[x̂MAP
i (Y ) = E)]

= P[Yi = E]P[x̂MAP
i (Y ) = E | Yi = E] + P[Yi ̸= E]× 0

= ϵiP[x̂MAP
i (Y∼i) = E] (10.19)

and also that P[x̂MAP
i (Y∼i) = E] is independent of ϵi. This settles (10.16).
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10.5 Proof of the Maxwell construction for the BEC: key ideas

We first have to clarify a fine point concerning various possible definitions of

the MAP threshold. From an operational point of view the MAP threshold is

the greatest possible channel parameter below which a MAP decoder can decode

with high probability. Mathematically

ϵMAP = sup{ϵ ∈ [0, 1] : lim sup
n→+∞

1

n
E[

n∑
i=1

P(x̂MAP
i (Y ) ̸= Xi)] = 0}

Instead, we will use a definition of the MAP threshold that directly uses the

entropy and has the advantage to connect more readily to the quantities that

appear in our analysis.

definition 10.4 (MAP Threshold) The MAP threshold of the (dv, dc)-regular

ensemble is defined by

ϵMAP = sup{ϵ ∈ [0, 1] : lim sup
n→∞

1

n
E[H(X | Y (ϵ))] = 0}.

Are the two definitions equivalent? From Fano’s inequality one can show that

if one transmits above the MAP threshold of definition 10.4 then the bit-MAP

error probability is strictly positive. But, it is not generally true that transmitting

below the MAP threshold defined in 10.4 implies the bit-MAP error probability

vanishes as n→ +∞. However one can show for the codes considered here that

this is in fact true. Therefore for our purposes definition 10.4 and the operational

one are in fact equivalent. At this point the reader may just accept these remarks.

They are discussed further in the exercises.

Derivation of the upper bound: ϵMAP ≤ ϵA
From inequality (10.14) and Lemma (10.3) we have

lim sup
n→+∞

1

n

d

dϵ
E [H(X|Y )] ≤ gBP(ϵ) (10.20)

The essential idea of the proof is to integrate (10.20) over ϵ.

First we integrate the left hand side on an interval [ϵ̄, 1] with ϵ̄ > ϵBP.∫ 1

ϵ̄

dϵ lim sup
n→+∞

1

n

d

dϵ
E [H(X|Y (ϵ))] ≥ lim sup

n→+∞

1

n

∫ 1

ϵ̄

dϵ
d

dϵ
E [H(X|Y (ϵ))]

= lim sup
n→+∞

{
1

n
E [H(X|Y (ϵ = 1))]− E [H(X|Y (ϵ̄))]

}
= (1− dv

dc
)− lim inf

n→+∞

1

n
E [H(X|Y (ϵ̄))] (10.21)

The lower bound follows from Fatou’s lemma by observing that the integrand
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is bounded. To get the last line we note that 1
nH(X|Y (ϵ = 1)) is equal to

the logarithm of the number of codewords normalized by the blocklength. It is

intuitive that the limit n → ∞ of this quantity, averaged over the ensemble, is

equal to the “design rate” of the code which is 1 − dv

dc
. The proof of this claim

is purely combinatorial and we skip the steps here, but the result is valid for all

(dv, dc)-regular ensembles with 2 ≤ dv ≤ dc.
Let us now integrate the right hand side of (10.20). By the definition 10.1

of the trial entropy we find (recall that x∞(ϵ) is fixed point attained by DE

iterations discussed in Section 6.7),

∫ 1

ϵ̄

dϵ gBP(ϵ) =

∫ x∞(1)

x∞(ϵ̄)

dϵ(x) gBP(x)

= A(x∞(1))−A(x∞(ϵ̄))

= (1− dv
dc

)−A(x∞(ϵ̄)) (10.22)

Putting together (10.20), (10.21) and (10.22) we obtain

lim inf
n→+∞

1

n
E [H(X|Y (ϵ̄))] ≥ A(x∞(ϵ̄)) (10.23)

Finally take any ϵ̄ > ϵA. Then A(x(ϵ̄)) > 0, thus lim infn→+∞
1
nE [H(X|Y (ϵ̄))] >

0, which means ϵ̄ > ϵMAP. This implies ϵA ≥ ϵMAP as announced.

The last inequality (10.23) is a special case of a general inequality valid on

any binary input memoryless symmetric channels. It is also closely related to a

similar inequality that we will obtain by the interpolation method in Chapter

13.

Brief discussion of the lower bound: ϵMAP ≥ ϵA
So far we have seen that the threshold given by the Maxwell construction is

an upper bound on the MAP threshold. There are several ways of proving the

reverse inequality. For the specific case at hand, namely transmission over the

BEC, one can give a purely combinatorial proof. The idea is to prove that when

ϵ < ϵA, with high probability, the matrix which we get if we start with the parity-

check matrix and remove all columns which correspond to non-erased bits has

rank equal to the number of erased bits. This shows that with high probability

the codeword can be reconstructed by solving the corresponding linear system

of equations, i.e., with high probability the MAP decoder succeeds. Since this

proof is very specific to the erasure channel we skip it. There is a second more

conceptual approach using spatial coupling and the interpolation technique which

applies to general BMS channels. We will get back to this approach in part III.
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10.6 Generalization to BMS channels8

The Maxwell construction can be generalized to BMS channels but proving that

it yields the correct MAP threshold requires to develop more powerful tools as

well considerable more work. We will come back to this question in part III. For

the moment we give natural generalizations of the concepts of BP and MAP

EXIT functions which allow us to state the conjecture. The formalism of Section

6.8 is used.

We consider transmission over ”smooth” families of BMS channels cϵ parametrized

by a noise level ϵ. Examples of such families are the BEC(ϵ), BSC(ϵ) or the

BIAWGNC(ϵ). We will not formalise this notion of smoothness here except for

saying that, roughly speaking we demand H(cϵ⊗x) is continuously differentiable

in ϵ for all reasonable symmetric densities x (here H is the entropy functional

given by Equ. (6.38)). Note that we ask for continuous differentiability with re-

spect to the explicit ϵ dependence of the channel and not any other implicit ϵ

dependence possibly hidden in x. Indeed in our applications the ϵ dependencies

in the DE fixed points densities yield discontinuities.

Let us begin with the right notion of MAP EXIT function. The definition

(10.12) is really only useful for the BEC and doesn’t generalise well. At the same

time, the identity (10.16) is only valid for the BEC. For more general channels

it turns out that the identity (10.15) yields the good definition that we seek.

definition 10.5 (MAP EXIT function: general definition) Consider transmis-

sion over a smooth family of BMS channels. Let X denote the codeword, chosen

uniformly at random from the set of all codewords and let Y be the received

word. The general MAP EXIT function is defined as

gMAP(ϵ) = lim sup
n→+∞

1

n

d

dϵ
E [H(X|Y )] (10.24)

where E is the average over the code ensemble. For the BEC this reduces to

(10.12) by virtue of Lemma 10.3.

The MAP threshold is defined in 10.4 (this definition is valid in general pro-

vided we relax the range of the noise to ϵ ≥ 0). We immediately see gMAP(ϵ) = 0

for ϵ < ϵMAP. It is also intuitively clear that this function is monotone increasing

for ϵ ≥ ϵMAP. For dv ≥ 3 it is discontinuous at ϵMAP which therefore represents

a first order phase transition point.

We now introduce a BP EXIT function. A little thought shows that for the

BEC this function is equal to

lim
t→+∞

(1− (1− xt)dc−1)dv = lim
t→+∞

∂

∂ϵ
H(cϵ ⊗ (x⊞dc−1

t )⊗dv )

where xt are the density evolution iterations initialised with x0 = 1 (or x0 = ϵ)

and xt = xt∆0 + (1− xt)∆∞. In this expression the partial derivative indicates

8 This section is not needed for the main development and can be skipped in a first reading.
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that the derivative acts only on the explicit ϵ dependence in cϵ and not on the

implicit dependence in xt. The natural generalisation is

definition 10.6 (BP EXIT function: general definition) Consider transmis-

sion over a smooth family of BMS channels. The general BP EXIT function is

defined as

gBP(ϵ) = lim
t→+∞

∂

∂ϵ
H(cϵ ⊗ (x⊞dc−1

t )⊗dv ) (10.25)

As above the partial derivative acts only on cϵ. For the BEC this reduces to

(10.11).

Recall that at the end of Section 6.8 we defined the BP threshold as ϵBP =

sup{ϵ : x∞(ϵ) = ∆∞}. It is not difficult to see that Lemma 6.2 implies gBP(ϵ) = 0

for ϵ < ϵBP and is monotone increasing for ϵ > ϵBP (for dv ≥ 3 the function is

discontinuous at ϵBP). Thus, the easiest way to define the area threshold is to

consider (10.13).

definition 10.7 (Area threshold for regular codes and BMS channels) Con-

sider transmission over a smooth family of BMS channel with codes from the

(dv, dc) regular ensemble with 2 ≤ dv < dc. We define the area threshold ϵA as

that unique solution of the equation∫
ϵ>ϵA

dϵ gBP(ϵ) = 1− dv
dc

(10.26)

We are now ready to discuss the Maxwell construction in this general setting.

This construction conjectures that ϵMAP = ϵA and therefore provides a con-

structive way to calculate the MAP threshold. We will see in Chapter 13 that,

similarly to the case of the BEC, the upper bound ϵMAP ≤ ϵA follows from a

Lemma proved using a ”correlation inequality” from statistical mechanics.

lemma 10.8 (Comparison of general EXIT functions) The generalised BP and

MAP EXIT functions satisfy

gBP(ϵ) ≤ gMAP(ϵ) (10.27)

For the lower bound ϵMAP ≤ ϵA we cannot resort to the combinatorial method

used on the BEC. We will have to use the ideas of ”interpolation method” and

”spatial coupling” and developed in Chapters 13 and 14, 15. With these tools in

our hands we will be able to sketch the proof of the following theorem.

theorem 10.9 (Maxwell construction) Consider transmission over a smooth

family of BMS channel with codes from the (dv, dc) regular ensemble with 2 ≤
dv < dc. For high enough but fixed degrees we have ϵMAP = ϵA.

It is believed that this theorem has much wider generality and in particular,

as stated here, is valid for all degree pairs such that dc ≥ 3. We will also see in

Chapter 15 that the proof yields much more. It provides us with a rather explicit

variational expression for the conditional entropy H(X|Y (ϵ)). This expression is
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analogous to ”one-letter” formulas of information theory and to ”replica formu-

las” of spin glass theory.

10.7 Discussion

Besides the original liquid-vapor physical system, we have given two explicit

examples of the Maxwell construction. For the CW model, the Maxwell con-

struction appears somewhat like a coincidence (at least if one forgets about

the physical interpretation). We first computed the exact relationship between

average magnetization and the external field and then we computed the same

relationship from a message-passing perspective. Comparing the two expressions

we see that they are related by a Maxwell construction, just like in the original

construction for an ideal gas.

Even more interesting is the situation if we cannot (or do not know how to)

in fact compute the exact free energy expression but, starting with the message-

passing formulation, can derive it using a Maxwell construction. This was the

case for our second example, namely coding. There is currently essentially no

other way of computing the MAP threshold. We have seen that the Maxwell

construction gives us a guess of where this phase transition appears and we have

also sketched some proof ideas. In the third part of these notes we will see how

we can complete these proofs using the concepts of spatial coupling and the so-

called interpolation method. So in this case, the Maxwell construction, together

with further techniques, allows us to solve, what from a classical perspective

seems to be a hard problem, namely rigorously compute the MAP threshold.

This is a general theme that applies to numerous other phase transitions. But,

there is no trivial recipe for how to apply the Maxwell construction and how to

prove that it is indeed correct. Each case requires some slightly different tricks

and techniques. In fact, it is easy to construct examples (like K-SAT with belief

propagation guided decimation) where the predictions given by a naive Maxwell

construction are not even correct. But with a little bit of experience the Maxwell

construction is a powerful paradigm.

10.8 Notes

The thesis of van der Waals in 1873 represented a fundamental step in the long

and difficult process leading from the earlier thermodynamic and kinetic theories

of gases of Boyle, Bernoulli, Gay-Lussac, Clausius and others to the description

of states of matter by the statistical mechanical laws of atoms and molecules.

Earlier experiments in the 19th century had already established that vapour can

be changed into a liquid by continuous as well as discontinuous processes (second

and first order phase transitions) and this prompted van der Waals to extend

the gas theory of Clausius to the liquid state. He managed to correctly take into
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account, at least qualitatively, the intermolecular forces, thereby also clarifying

their nature and role. An english translation of the original work (Van der Waals

1873) and an account on its consequences on the physics of liquids well into the

20th century is found in (Van der Waals & Rowlinson 1988). Maxwell recognized

the importance of this thesis and “corrected” it with his equal area construction.

This construction appears very explicitly in (Maxwell 1875) and his explanation

is still essentially unchanged in the modern textbooks. As always history is much

more complicated, rich and fascinating and the interested reader may find an

excellent account of it in (Brush 1983).

In a classic work of modern statistiscal mechanics (Lebowitz & Penrose 1966)

the van der Waals-Maxwell has been shown to be rigorously exact for systems of

particles interacting through forces containing a hard core part and an attractive

part in the limit where the attraction becomes infinite range and at the same

time infinitely weak. This is often called the Kac limit. Surprizingly similar limits

also seem to be of relevance in coding theory and compressive sensing and we

come to this question in Chapter 14.

The relevance of the Maxwell construction in coding theory was first discovered

in (Méasson, Montanari & Urbanke 2004, Méasson, Montanari & Urbanke 2008).

For Low-Density Parity-Check codes used for transmission over the binary era-

sure channel, a constructive relationship between the belief progation and MAP

decoders is established through a new decoding algorithm called the “Maxwel de-

coder” and it is shown that the MAP threshold can be found from an equal area

construction on the EXIT function (Equ. (10.10)). This approach was partly

generalized to more general channels in (Méasson, Montanari, Richardson &

Urbanke 2009) which introduced many useful tools such as generalized EXIT

functions and proved Lemma 10.8. A different proof using correlation inequali-

ties was provided in (Macris 2007b). The complete proof of Theorem 10.9 relies

on more advanced tools introduced in part III and was finally carried out only

quite later (Giurgiu, Macris & Urbanke 2016). The main ideas are sketched in

Chapters 14 and 15.

Problems

10.1 Van der Waals equation, first and second order phase transi-

tions. The goal of this exercise is to illustrate that phase transitions predicted

by the van der Waals equation are perfectly analogous to the ones for ferromag-

nets predicted by the Curie-Weiss equation analysed in Chapter 4. Express the

pressure p in Equ. (10.2) as a function of T and v = V/N (volume per particle).

This equation is analogous to the one expressing h as a function of T and m (see

e.g., (4.24)).

(i) Let vL = VL/N and vG = V/N the two extreme points of the Maxwell

plateau of an isotherm. These are the volume per particle occupied by the liquid

and vapour states when they coexist. Compute the critical parameters Tc, pc, vc
such that the width of the plateau vG − vL vanishes, in other words when the
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van der Waals isotherm has a flat inflexion point. One finds Tc = 8a/(27bkB),

pc = a/(27b2), vc = 3b.

(ii) Show that for T > Tc and given p there is a single solution for v as a function

of p. The volume per particle is a smooth function of p and there is no phase

transition.

(iii) Show that for T < Tc there are three solutions for the volume. According

to the Maxwell construction as p increases (at fixed temperature) the volume is

reduced discontinuously from vG to vL. This is a first order phase transition: the

transition between the liquid and vapour states is discontinuous.

(iv) Show that as T → Tc from below vG−vL ∝ |T −Tc|1/2. This a second order

phase transition behavior: the transition between the liquid and vapour states is

continuous. The critical exponent is equal to 1/2 and is the same as the one of

the Curie-Weiss theory.

(v) Define the reduced variables T̄ = T/Tc, p̄ = p/pc, v̄ = v/vc. Show that the

van der Waals equation becomes (p̄ + 3/v̄2)(3v̄ − 1) = 8T̄ . Although for each

fluid the coefficients a and b are different and have to be determined experimen-

tally, the van der Waals equation displays a universality which is well observed

experimentally. In particular the critical behaviour at the second order phase

transition is independent of the fluid.

10.2 Enveloppe of the BP EXIT curve. Starting from definition 10.11

for the BP EXIT function prove that it is the enveloppe of the parametric BP

EXIT curve (10.8) as indicated on Figure 10.6. Moreover show that Definitions

10.1 and 10.13 for the area threshold are equivalent.

10.3 Details of proof of Lemma 10.3. If you have never done it before

prove the chain rule used in (10.18). Starting from the definition of the MAP

estimate in Chapter 3 for the BEC show in detail that H(Xi|Y ) = P[x̂MAP
i (Y ) =

E], used in (10.19).

10.4 On the definition of the MAP threshold I. The goal of this

exercise is to show that if we are transmitting above the MAP threshold de-

fined according to 10.4 then the average bit error probability is non vanish-

ing. Set Pi = P(x̂MAP
i (Y ) ̸= Xi)]. Note that by the Fano inequality we have

H(Xi|Y ) ≤ h2(Pi) where h2 is the binary entropy function. Use concavity of h2
and subadditivity of H(X|Y ) to show that

1

n
E
[
H(X|Y )

]
≤ h2

(
E
[ 1
n

n∑
i=1

Pi

])
.

Deduce that if ϵ > ϵMAP there exist δ > 0 independent of n such that

E
[ 1
n

n∑
i=1

Pi

]
≥ h−1

2 (δ).

In other words the average bit error probability remains strictly positive.

10.5 On the definition of the MAP threshold II. In general we cannot
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conclude that if we are transmitting below the MAP threshold defined accord-

ing to 10.4 then the average bit error probability vanishes. In other words from

E[H(X | Y )/n] ≤ δ does not in general imply that the average bit error proba-

bility is small. However this is the case if we have the slightly stronger condition

E[
∑n

i=1H(Xi | Y )/n] ≤ δ. Let Pi = P(x̂MAP
i (Y ) ̸= Xi)]. The goal of this exercise

is to show that under the stronger condition we have 1
nE[
∑n

i=1 Pi] ≤ δ/2.
First, convince yourself that under MAP decoding the error probability con-

ditioned that we observed y is equal to minx p(x | y). Then, prove the following

statements

1

n
E[

n∑
i=1

H(Xi | Y )] =
1

n
E[

n∑
i=1

EY [h2(min
x
p(x | Y ))]]

≥ 1

n
E[

n∑
i=1

EY [2min
x
p(x | Y )]]

=
2

n
E[

n∑
i=1

Pi].

The claim follows.

10.6 Large degree limit of the area threshold: BEC. Consider the

limit of large degrees dv, dc → +∞ with a fixed ratio dv/dc. This means that the

design rate R = 1 − dv

dc
of the code ensemble is fixed. Use (10.13) to show that

in the large degree limit ϵA → 1 − R. Note that this means the area threshold

tends to the Shannon threshold (or capacity) of the BEC in this limit.

10.7 Large degree limit of the area threshold: BMS channels. Us-

ing the tools introduced in Section 6.8 it can be shown that if xn is a sequence

of symmetric densities ordered by degradation (i.e. xn+1 ≻ xn) which tends to

x∗ in the sense d(xn, x∗) = H(xn − x∗)→ 0 as n→ +∞, then

lim
n→+∞

∂

∂ϵ
H(cϵ ⊗ xn) =

∂

∂ϵ
H(cϵ ⊗ x∗)

provided cϵ is sufficiently ”smooth” (e.g. see the next exercise). It follows that if

x∞ is the limit of density evolution iterations

gBP(ϵ) =
∂

∂ϵ
H(cϵ ⊗ (x⊞dc−1

∞ )⊗dv ).

Now, consider the large degree limit as in the previous exercise and show that

x∞ → ∆0 as dv, dc → +∞ with fixed ratio dv/dc. Deduce that the area threshold

satisfies

lim
dv,dc→+∞

H(cϵA) = 1−R.

Verify this means ϵA tends to the Shannon threshold of the channel (equivalently

1−H(cϵ) is the capacity of a BMS).
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10.8 A smoothness condition on degraded channel families. Let cϵ
a degraded channel family, i.e., cϵ′ ≻ cϵ for ϵ′ > ϵ. We want to show that the

regularity condition (κ a strictly positive numerical constant)

H((cϵ′ − cϵ)
⊗2)1/2 ≤ κ|ϵ′ − ϵ|

is sufficient for

lim
n→+∞

∂

∂ϵ
H(cϵ ⊗ xn) =

∂

∂ϵ
H(cϵ ⊗ x∗)

to hold where xn+1 ≻ xn and limn→+∞H(xn − x∗) = 0.

Use the duality rule, the moment expansion (see Section 6.8) and the Cauchy-

Schwarz inequality to show that

H((cϵ′ − cϵ)⊗ (xn − x∞)) ≤ H((cϵ′ − cϵ)
⊗2)1/2H((xn − x∞)⊗2)1/2.

Deduce the claim from this inequality.

10.9 BP EXIT function for general BMS channels. Consider a smooth

family of degraded channels where smoothness is defined as in the previous ex-

ercise. Consider the definition 10.6 of the BP EXIT function and show that the

limit: (i) equals ∂
∂ϵH(cϵ⊗(x⊞dc−1

∞ )⊗dv ); (ii) vanishes for ϵ < ϵBP; (iii) is monotone

increasing for ϵ > ϵBP (use the moment expansion).
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11 The Bethe Free Energy

We have discussed how we can analyze the performance of various low-complexity

algorithms, in particular algorithms of message-passing type. We have seen that

in the limit of infinite system size, such algorithms have thresholds and we were

able to characterize these thresholds quantitatively. Such thresholds are often

called dynamical thresholds since they are associated to the dynamics of a pro-

cess. For us this process is the algorithm.

But there is typically also a static phase transition. This corresponds to a

phase transition which describes a change in the properties of the system it-

self, independent of any algorithmic question. We already discussed such phase

transitions in the Curie-Weiss and Ising model on a tree where the threshold

appeared as a non-analyticity in the free energy. In this context one also speaks

of a ”thermodynamic” phase transition. Similar phase transitions also occur

in our coding, compressive sensing and K-SAT problems. These belong to the

realm of spin glasses described by random Gibbs distributions and their phase

transitions are considerably more subtle. In coding we can ask how much noise

we can add so that with high probability there is a unique codeword which is

“compatible” with the received information. In communications language, this

corresponds to the MAP threshold. For compressive sensing we can ask how the

number of measurements has to scale with the number of unknowns so that with

high probability there is a unique sparse vector which is compatible with the

measurements. In K-SAT we can ask how many constraints we can have per

Boolean variable so that with high probability a random formula is satisfiable.

This is usually referred to as the SAT-UNSAT phase transition threshold.

Why are we interested in these quantities? Some systems are given to us and

we cannot change them (e.g., K-SAT). In this case, in order to gauge how well

our algorithm is performing, it is important to know how well a computationally

unbounded system could in principle do. But often we are actually in control

of the system itself. Think of the coding problem or also compressive sensing.

It is typically us who design the code or the measurement matrix. So in these

cases it is important to know that the system itself is designed in such a way

that at least in principle, if we had unbounded computational resources at our

disposal, it has a good performance comparable to the information theoretic

ultimate limit. For example, in coding we can then compare the MAP threshold
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to the ultimate limit, namely the Shannon threshold, and hopefully these two

thresholds are close.

As we will see, there are two basic themes which appear. First, static phase

transition thresholds are in general much harder to compute than the dynamical

ones. In a few cases we are able to derive rigorous quantitative statements. In

some other ones, we will have to be content with computations which are believed

to yield the correct value but fall short of a mathematical proof. The second,

perhaps more surprising theme is that the analysis of the static phase transition

threshold can often be carried out by looking at the behaviour of the message-

passing algorithm! Why message-passing, a sub-optimal and local algorithm,

should have any bearing on the description of the static phase transition is at

first glance puzzling.

As we will see in the next few chapters, the key object which connects these

two themes is the so-called Bethe free energy. Roughly speaking, it is an “ap-

proximation” to the true free energy which itself depends on the fixed points

of the message-passing algorithm. In some instances the static thresholds, the

average free energy and related information theoretic quantities, are correctly

predicted by a suitably averaged form of the Bethe free energy.

Let us briefly discuss the philosophy behind the introduction of the Bethe

free energy. Computing the true free energy for typical statistical mechanics (or

general graphical) models is an impossible task. An important approximation

philosophy is the so-called ”mean-field theory.” In this theory, when looking at

the interactions of a “spin” with the rest of the system, we take into account

very close neighbors exactly, while we model influences of the remaining system

simply by a mean field, i.e., a field which accounts for the average influence of the

remaining of the system. For models defined on sparse graphs that are locally

tree-like, or on complete graphs with the interactions suitably scaled,1 a ”correct”

form of mean field theory was developed by Bethe and Peierls. This leads to the

so-called Bethe free energy approximation, which is a “sophisticated” version of

the most basic Curie-Weiss mean field theory. As we will see the Bethe-Peierls

theory involves fixed point equations that are the same as those occurring in

Belief-Propagation - hence the connection with message passing algorithms. The

use and to some extent interpretation of these equations is however different.

We consider a general Gibbs measure of the form

p (x) =
1

Z

m∏
a=1

fa (x∂a) , (11.1)

where the variables xi ∈ X , i = 1, . . . , n and fa, a = 1, . . . ,m are kernel functions

associated to factor nodes and depend on x∂a = {xi, i ∈ ∂a}. In Chapter 5

we discussed the sum-product algorithm that computes BP-marginals for such

measures. Recall when the graph is a tree these are the exact marginals. Similarly

1 Recall for the Curie-Weiss model Jij = J̃ij/n, for SK and compressive sensing

Jij = J̃ij/
√
n, Aai = Ãai/

√
m.
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we will see that on a tree the free energy F = −β−1 lnZ can be expressed exactly

in terms of the marginals. This is the starting point of the formalism developed

in this chapter. Remarkably it turns out that this is also a useful formalism when

the graph is far from being a tree as long as the influence of each spin on the

other ones is very weak.

This chapter only introduces the concept of Bethe free energy, and the power of

the tool will appear in later ones. The exact formula that we first derive on trees

forms the basis for the general definition of the Bethe free energy on general factor

graphs. Once this is settled we directly derive the specific expressions for the Ising

model on a k regular graph, coding and K − SAT . The SK and compressive

sensing models require quite more work in order to exploit the completeness of

the underlying graph and are treated in the last two sections.

11.1 The Gibbs measure on trees

Consider the (exact) marginals

νi (xi) =
∑
∼xi

µ (x) , νa (x∂a) =
∑
∼x∂a

µ (x) .

As explained in Chapter 5, on a tree these can be computed exactly by the

sum-product algorithm. More is true.

lemma 11.1 The Gibbs distribution on a tree can be expressed in terms of its

marginals as follows,

p (x) =
m∏

a=1

νa (x∂a)
n∏

i=1

(νi (xi))
1−di (11.2)

where di is the degree of variable node i.

Proof We prove (11.2) by induction over number the number m of factor nodes.

For m = 1 the unique clause is connected to variable nodes with di = 1. Thus

(11.2) is trivial in this case. Now, we assume (11.2) is true for a tree graph G

with m check nodes and prove that it also holds for the new Gibbs distribution

with m+1 factor nodes, obtained when one adds one factor node c connected to

a variable node i in such a way that the new graph is a tree (we do not discuss

the somewhat trivial case where the new factor is disconnected). The original

tree G and the new tree are depicted on figure 11.1. If x = (x1, · · · , xn) are the

variables on G, the new distribution reads

pnew

(
x∂c\i, x

)
=

1

Znew

fc (x∂c)
m∏

a=1

fa (x∂a) . (11.3)

Consider the conditional probability p
(
x∂c\i | x

)
of an assignement x∂c\i given
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Figure 11.1 Induction procedure: G is the original tree with m check nodes
a = 1, · · · ,m and variables x = (x1, · · · , xn) to which we add a new factor c
connected to a unique i ∈ G. The new graph is also a tree.

x. We observe that

pnew

(
x∂c\i | x

)
= pnew

(
x∂c\i | xi

)
=
νnew,c (x∂c)

νnew,i (xi)
, (11.4)

where νnew,c and νnew,i stand for marginals of pnew. At this point it is a good

idea to pause and remark that the first equality in (11.4) is valid for any factor

graph model2 but the second is valid because the new factor c preserves the tree

structure.3 Therefore, if νnew (x) is the marginal of (11.3) with respect to x∂c\i,

we have

pnew

(
x∂c\i, x

)
= pnew

(
x∂c\i | x

)
νnew (x)

=
νnew,c (x∂c)

νnew,i (xi)
νnew (x) . (11.5)

We now turn our attention to the term νnew (x). By definition

νnew (x) =
1

Znew

{∑
x∂c\i

fc (x∂c)

} m∏
a=1

fa (x∂a)

=
1

Znew

f̃c (xi)
∏
a

fa (x∂a) . (11.6)

where we have set
∑

x∂c\i
fc (x∂c) = f̃c (xi). The distribution (11.6) has the

factor graph depicted on figure 11.2. There are n variable nodes but the tree still

has m+ 1 check nodes. However c can be ”absorbed” in any arbitrarily selected

2 This identity is an instance of the Markov random field property.
3 See Section ?? for a brief discussion of the case where the new factor is attached to more

than one node and creates loops.
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Figure 11.2 Factor graph for the marginal distribution (11.6). We select an arbitrary
check b ∈ ∂i \ c.

check b ∈ ∂i \ c,

νnew (x) =
1

Znew

f̃c (xi) fb (x∂b)
∏
a̸=b

fa (x∂a)

=
1

Znew

f̃b (x∂b)
∏
a̸=b

fa (x∂a)

where we have set f̃c (xi) fb (x∂b) = f̃b (x∂b). We recognize this last expression as

a Gibbs distribution defined on the original tree-graph with m check nodes and

variable node degrees di, i = 1, · · · , n. So we can apply the induction hypothesis

to νnew,

νnew(x) =

m∏
a=1

νnew,a (x∂a)

n∏
i=1

(νnew,i (xi))
1−di . (11.7)

Here νnew,a and νnew,i are marginals of νnew. But clearly, since νnew is itself a

marginal of pnew, they also are marginals of pnew. Replacing (11.7) in (11.5) yields

the desired result for the Gibbs distribution pnew with m+ 1 factor nodes.

11.2 The free energy on trees

We first recall a general and important expression (not restricted to trees) for

the free energy which we have seen in Chapter 2. This formula is best expressed

when the Gibbs measure (11.1) is represented in its traditional physics form

p (x) =
1

Z
exp (−βH (x)) . (11.8)

where the relation between the Hamiltonian and the kernel functions is

H (x) = −β−1
∑
a

ln fa(x∂a) (11.9)
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Replacing (11.8) in the definition of the free energy (??) one easily finds for the

free energy F = −β−1 lnZ,

F = ⟨H⟩ − β−1S [p] (11.10)

where

⟨H⟩ =
∑
xp(x)

H (x) , S [p] = −
∑
x

p (x) ln p (x) .

Here ⟨H⟩ is the Gibbs average of the Hamiltonian. Physically it represents the

total average internal energy that the system possesses, and is commonly called

the internal energy. S[p] is called the Gibbs entropy and is nothing else than the

Shannon entropy of the Gibbs measure.

We now apply relation (11.10) to the Gibbs measure on a tree graph.

theorem 11.2 On a tree graphical model the (un-normalized) free energy F =

−β−1 lnZ can be expressed in terms of its marginals as

F = β−1
m∑

a=1

∑
x∂a

νa (x∂a) ln
νa (x∂a)

fa (x∂a)
+ β−1

n∑
i=1

(1− di)
∑
xi

νi (si) ln νi (xi)

(11.11)

Proof Using (11.9) the internal energy contribution yields

⟨H⟩µ = −β−1
m∑

a=1

∑
x

µ (x) ln fa(x∂a)

= −β−1
m∑

a=1

∑
x∂a

ν (x∂a) ln fa (x∂a) .

This expession for the internal energy is completely general and does not depend

on having a tree graph. To compute the contribution of the entropy we use (11.2)

in lemma 11.1. This gives

S [p] = −
m∑

a=1

∑
x

p (x) ln νa (x∂a)

−
∑
i

(1− di)
∑
x

p (x) ln νi (xi)

= −
m∑

a=1

∑
x∂a

νa (x∂a) ln νa (x∂a)−
n∑

i=1

(1− di)
∑
xi

νi (xi) ln νi (xi)

This expression for the entropy is exact only for tree graphs. Combining the

energetic and entropic contributions yields (11.11)

In chapter 5 we learned how to compute the marginals in terms of exact

message passing equations on the tree. We have two types of messages: those
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flowing from variable to check nodes µi→a(xi) and those flowing from check to

variables node µa→i(xi). The exact marginals are given by, νi (xi) =
∏

a∈∂i µ̂a→i(xi)∑
xi

∏
a∈∂i µ̂a→i(xi)

νa (x∂a) =
fa(x∂a)

∏
i∈∂a µi→a(xi)∑

x∂a
fa(x∂a)

∏
i∈∂a µi→a(xi)

.
(11.12)

with messages satisfying the sum-product equations{
µi→a (xi) =

∏
b∈∂i∖a µ̂b→i (xi)

µ̂a→i (xi) =
∑

∼xi
fa (x∂a)

∏
j∈∂a∖i µj→a (xj)

(11.13)

On a tree the messages are uniquely defined by their “initial” values at the leaf

nodes. From a leaf factor the outgoing message equals fa(x∂a), and from a leaf

variable it equals 1.

Using these expressions in (11.11), a straightforward calculation (exercise)

leads to the alternative expression for the free energy

theorem 11.3 On a tree graphical model the free energy F = −β−1 lnZ can be

expressed in terms of the BP messages as a sum of three contributions associated

to variable nodes, check nodes and edges

F =
n∑

i=1

Fi +
m∑

a=1

Fa −
∑

(i,a)∈E

Fia, (11.14)

where the three contributions are

Fi = −β−1 ln

{∑
xi

∏
b∈∂i

µ̂b→i (xi)

}
(11.15)

Fa = −β−1 ln

{∑
x∂a

fa (x∂a)
∏
i∈∂a

µi→a (xi)

}
(11.16)

Fia = −β−1 ln

{∑
xi

µi→a (xi) µ̂a→i (xi)

}
(11.17)

It is worth to note that in this formula the normalisation of the messages

is irrelevant (here we derived the formula with the unnormalised messages of

(11.13)). This can be seen by checking (exercise) the invariance of F under the

renormalizations µ̂a→i → ẑa→i µ̂a→i and µi→b → ẑi→a µi→a for any arbitrary

numbers ẑa→i and zi→a. In particular one can use normalized or unnormalised

messages in (11.14)-(11.17).

11.3 Bethe free energy for general graphical models

We now turn our attention to general graphical models of the type (11.1) with

a general factor graph (not necessarily a tree). We assign to each edge two ditri-

butions µi→a(si) and µ̂a→i(si). The collection of all distributions forms two |E|-
dimensional vectors denoted by µ and µ̂ indexed by the directed edges i→ a and
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a→ i. The notation is the same than for the sum-product messages for reasons

that will become clear, however the reader should bear in mind that conceptually

these are general distributions, and are not (for the moment at least) solutions

of the sum-product equations (for one thing the sum-product equations do not

necessarily have a unique solution on a non-tree graph).

The Bethe free energy is, by definition, the functional (or function)

FBethe

[
µ, µ̂

]
=
∑
i

Fi [{µi→b, b ∈ ∂i}] +
∑
a

Fa [{µi→a, i ∈ ∂a}]

−
∑
ai

Fai [{µi→a,µ̂a→i}] . (11.18)

with the three contributions associated to variable and factor nodes, and edges,

given by the same formulas as in (11.15)-(11.17). Again, as remarked in the pre-

vious section, FBethe is invariant under the transformation µ̂a→i → ẑa→i µ̂a→i and

µi→b → ẑi→a µi→a for any arbitrary numbers ẑa→i and zi→a. However here - by

convention - we complete the definition of FBethe by requiring that the messages

are normalized probability distributions. This will allow a clearer formulation of

Theorem 11.4 below.

What is the idea behind this definition? The Bethe free energy exactly gives

the true free energy for factor graphs that are trees. For a loopy factor graph

it may seem a reasonable idea to propose the Bethe free energy as an educated

guess that hopefully approximates well the true free energy. Although this is a

very useful point of view, there is no simple universal and positive answer to

this question. We will see that for the coding problem a positive answer can be

given for an ”average” form of the Bethe free energy. It should not be thought

that this is natural since our codes have locally tree-like Tanner graphs. Indeed

for the K-SAT problem the answer turns out to considerably more subtle. Also,

surprisingly at first sight, a positive answer can also be given in the case of

compressive sensing which has a bipartite complete factor graph (again for an

average form of the Bethe free energy). For the moment we just point out that

a crucial issue which may already have come to the mind of the reader. How

does one choose the messages? The rule of thumb of the physicist would be to

take messages that minimize the Bethe free energy functional. One could hope

to motivate this guess by the variational principle (see Chapter 2) where the

variational ansatz for the free energy must be minimized over the set of trial

parameters in order to find the best possible approximation to the true free

energy. However the Bethe free energy does not satisfy the variational principle

for the simple reason that for general non-tree graphs the right hand side in (11.2)

is not a normalized probability distribution and therefore not a valid variational

ansatz. There is no a priori fundamental justification for choosing the messages

as the ones that minimize the Bethe free energy functional. We will come back

to this issue in Chapter 12. When we connect an ”average form” of the Bethe

free energy with the exact one in coding and compressive sensing we will that,

in a sense, it is saddle points that play an important role.
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In any case, the stationary points of the Bethe free energy do play an important

role and a first important step is to determine them. One then discovers the

following important result.

theorem 11.4 The stationary points of FBethe

[
µ, µ̂

]
satisfy the sum-product

equations and conversely the solutions of the sum-product equations are station-

ary points of the Bethe free energy.

Proof We only discuss discrete alphabets X . We have function of 2|E||X | vari-
ables restricted to the simplex defined by µ̂a→i(xi) ≥ 0, µi→a(xi) ≥ 0,

∑
xi
µa→i(xi) =∑

xi
µi→a(xi) = 1, (ia) ∈ E. Moreover this function is invariant under renormal-

izations of the messages. Therefore it is convenient to parametrize the messages

by free variables {m̂a→i(xi),mi→a(xi)} ∈ R2|E||X |
+ ,

µ̂a→i(xi) =
m̂a→i(xi)∑
xi
m̂a→i(xi)

, µi→a(xi) =
mi→a(xi)∑
xi
mi→a(xi)

(11.19)

and vary FBethe over the free variables.

Let {µ̂a→i(xi), µi→a(xi) ≥ 0} be a stationary point. Using the invariance under

renormalisation the stationarity conditions becomes

∂FBethe[µ, µ̂]

∂mi→a (xi)
=
∂FBethe[m, m̂]

∂mi→a (xi)
= 0,

∂FBethe[µ, µ̂]

∂m̂a→i (xi)
=
∂FBethe[m, m̂]

∂m̂a→i (xi)
= 0.

(11.20)

Simple calculus then shows that this is equivalent to

m̂a→i (xi) =

{ ∑
xi
mi→a (xi) m̂a→i (xi)∑

x∂a
fa (x∂a)

∏
j∈∂amj→a (xj)

}∑
∼xi

fa (x∂a)
∏

j∈∂a∖i

mj→a (xj)

(11.21)

and

mi→a (xi) =

{∑
xi
mi→a (xi) m̂a→i (xi)∑
xi

∏
b∈∂i m̂b→i (xi)

} ∏
b∈∂i∖a

m̂b→i (xi) . (11.22)

Note that the prefactors {· · · } are constants. It is therefore clear that the normal-

ized messages (11.19) must satisfy the message passing equations (in normalized

form)

µ̂a→i (xi) =

∑
∼xi

fa (x∂a)
∏

j∈∂a∖i µj→a (xj)∑
x∂a

fa (x∂a)
∏

j∈∂a∖i µj→a (xj)
(11.23)

and

µi→a (xi) =

∏
b∈∂i∖a µ̂b→i (xi)∑

xi

∏
b∈∂i∖a m̂b→i (xi)

. (11.24)

The reader can check the algebra explicitly. So far we have shown that a station-

ary point must satisfy the message passing equations (11.23), (11.24).
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Now we show the converse. Suppose that (µ, µ̂) satisfies (11.23), (11.24). Then

(11.19) implies

m̂a→i (xi) =

{ ∑
xi
m̂a→i(xi)∑

x∂a
fa (x∂a)

∏
j∈∂a∖imj→a (xj)

}∑
∼xi

fa (x∂a)
∏

j∈∂a∖i

mj→a (xj)

(11.25)

and

mi→a (xi) =

∑
xi
mi→a (xi)∑

xi

∏
b∈∂i∖a m̂b→i (xi)

∏
b∈∂i∖a

m̂b→i (xi) . (11.26)

These two expressions imply that the prefactors {· · · } in (11.21) and (11.22)

are equal to the prefactors {· · · } in (11.25) and (11.26). To see this, replace

m̂a→i(xi) in the prefactor {· · · } of (11.21) by the right hand side of (11.25).

Similarly replace mi→a(xi) in the prefactor {· · · } of (11.22) by the right hand

side of (11.26). We can now conclude: (11.25)-(11.26) imply (11.21)-(11.22) which

are equivalent to the stationarity condition.

11.4 Ising model on a random k-regular graph

As a first and simplest application we treat in detail the Ising model on a k-

regular graph. We already discussed the solution of this model on a tree and on

a random regular graph in Chapter 4. Recall the Hamiltonian

H(s) = −J
∑

{i,j}∈E

sisj − h
n∑

i=1

si

where si ∈ {+1,−1} are binary spins, J > 0 (ferromagnetic case), the magnetic

field h ∈ R is constant, and each edge is counted once in the interaction term.

Note that we must have 2|E| = kn. The Gibbs distribution is

p(s) =
1

Z
e−βH(s) =

1

Z

∏
{i,j}∈E

eβJsisj
n∏

i=1

eβhsi

Let us describe the factor graph representation of this distribution. Each edge

is represented by a degree two factor (square) node {i, j} ∋ a = 1, . . . , kn2 with

a factor

fa(si, sj) = eβJsisj . (11.27)

Variables are represented by circle nodes i = 1, . . . , n of degree k. There are also

factor nodes î = 1, . . . , n of degree one attached to variable nodes, with factors

f̂i(si) = eβhsi . (11.28)

In order to write down the Bethe free energy we first identify all relevant
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messages. For binary spins we can parametrize messages flowing from factor to

variable nodes as usual,

µ̂a→i(si) ∝ eβĥa→isi ∝ 1 + si tanhβĥa→i, µ̂î→i(si) ∝ e
βhsi . (11.29)

Note that we have fixed the loglikelihood in µ̂î→i(si) to h because this is a

degree one leaf factor node which does not receive incoming updates. Similarly,

the messages flowing from variable to factor nodes are

µi→a(si) ∝ eβhi→asi ∝ 1 + si tanhβhi→a, µi→î(si) ∝ e
βhi→îsi . (11.30)

As pointed out above the normalization factors of the messages cancel out in the

Bethe free energy, and this is why our parametrization only involves proportion-

ality relations.

Now we can compute all contributions to the Bethe free energy.

Variables. With the help of (11.29) the contribution of variable nodes (11.15) to

the Bethe free energy is found to be

Fi = −β−1 ln

{ ∑
si=±1

eβhsi
∏
a∈∂i

(1 + si tanhβĥa→i)

}
= −β−1 ln

{
eβh

∏
a∈∂i

(1 + tanhβĥa→i) + e−βh
∏
a∈∂i

(1− tanhβĥa→i)

}
.

(11.31)

Factors. Replacing (11.30) in (11.16) we find the contribution of factor nodes of

degree two

Fa = −β−1 ln

{ ∑
si,sj=±1

eβJsisj (1 + si tanhβhi→a)(1 + sj tanhβhj→a)

}

= −β−1 ln coshβJ − β−1 ln

{
1 + tanhβJ tanhβhi→a tanhβhj→a

}
(11.32)

and those of degree one

Fî = −β
−1 ln

{ ∑
si=±1

eβhsi(1 + si tanhβĥî→i)

}
. (11.33)

Edges. For the edges (11.17) we also have two types of contributions,

Fai = −β−1 ln

{ ∑
si=±1

(1 + si tanhβhi→a)(1 + si tanhβĥa→i)

}
= −β−1 ln

{
1 + tanhβhi→a tanhβĥa→i

}
(11.34)

and

Fîi = −β
−1 ln

{ ∑
si=±1

eβhsi(1 + si tanhβĥî→i)

}
(11.35)
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Replacing (11.31)-(11.35) in the Bethe free energy (11.18) we see that (11.33)

and (11.35) cancel4 and we are left with

βFBethe(h, ĥ) =−
n∑

i=1

ln

{
eβh

∏
a∈∂i

(1 + tanhβĥa→i) + e−βh
∏
a∈∂i

(1− tanhβĥa→i)

}

−
m∑

a=1

ln

{
1 + tanhβJ tanhβhi→a tanhβhj→a

}
+
kn

2
ln coshβJ

+
∑

(a,i)∈E

ln

{
1 + tanhβhi→a tanhβĥa→i

}
(11.36)

From this expression it is straightforward to check that the stationarity equa-

tions ∂FBethe/∂hi→a = ∂FBethe/∂ĥi→a = 0 reduce to the BP equations{
hi→a = h+

∑
b∈∂i\a ĥb→i,

ĥa→i = β−1 tanh−1
{
tanhβJ tanhβhj→a

}
which directly proves Theorem 11.4 for the present model.

We have obtained the general form of the Bethe free energy in terms of two

sets of messages h and ĥ. In the next chapter we will see how this expression

connects to the average free energy for the model on a random k-regular graph

that we already derived in Section 4.7.

In fact, it will be convenient to work with a reduced form of the Bethe free

energy expressed in terms of only one set of messages. This reduction uses one

of the two BP equations to express one set of messages as a function of the other

one. This is particularly easy (and useful) to perform each time that the factor

nodes have degree two. Indeed from the second BP equation we have

tanhβĥa→i = tanhβJ tanhβhj→a, {i, j} ∈ ∂a

Replacing this equation in (11.36) we obtain5

βFBethe(h) =−
kn

2
ln coshβJ −

n∑
i=1

ln

{
eβh

∏
a∈∂i

(1 + tanhβJ tanhβhj→a)

+ e−βh
∏
a∈∂i

(1− tanhβJ tanhβhj→a)

}

+
m∑

a=1

ln

{
1 + tanhβJ tanhβhi→a tanhβhj→a

}
One can now forget the factor graph language and rewrite this expression in

terms of messages flowing on the original graph by setting hj→a ≡ hj→i where

4 It is a general fact that the contributions coming from degree one factors cancel in the
Bethe free energy. We will encounter this feature again in the application to coding.

5 In the first sum for each i fixed and a ∈ ∂i there is a unique j = ∂a \ i; in the second sum

for each a there is a unique {i, j} = ∂a.
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i = ∂a \ j. We have

βFBethe(h) =−
kn

2
ln coshβJ −

n∑
i=1

ln

{
eβh

∏
j∈∂i

(1 + tanhβJ tanhβhj→i)

+ e−βh
∏
j∈∂i

(1− tanhβJ tanhβhj→i)

}

+
∑

{i,j}∈E

ln

{
1 + tanhβJ tanhβhi→j tanhβhj→i

}
(11.37)

The stationarity condition for this reduced Bethe free energy is

hi→j = h+ β−1
∑

k∈∂i\j

tanh−1
{
tanhβJ tanhβhk→i

}
.

Note that this can also be obtained directly from the two original BP equations.

The reader can already compare (11.37) to (4.48) and remark the close analogy

between the two expressions. We will see in the next chapter that (4.48) is an

averaged form of (11.37) obtained by assuming all messages are independent and

identically distributed.

11.5 Application to coding

We saw in Chapter 5 that the posterior measure used for MAP decoding is

1

Z(h)

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

ehisi .

where si ∈ {−1,+1}. There are two types of kernel functions

f̂i(si) = ehisi , and fa(s∂a) =
1

2
(1 +

∏
i∈∂a

si), (11.38)

associated to leaf factors (representing channel observations) and usual parity

checks. For an example with the corresponding factor graph we refer to figure

5.6.

The messages flowing on edges connecting variable nodes and parity checks

are

µi→a (si) ∝ eli→asi , µ̂a→i (si) ∝ el̂a→isi ∝ 1 + si tanh l̂a→i

and the ones flowing on edges connecting leaf factors and variable nodes are

µî→i(si) ∝ e
hisi , µi→î(si) ∝ e

li→îsi .

Replacing these messages in expressions (11.15)-(11.17) it is possible to perform

exactly all sums over the spins, and express the Bethe free energy as a function

of (l, l̂) = {li→a, l̂a→i}. We give the main steps of this calculation (observe that

here β = 1).
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Variables. From (11.15) the contribution of variable nodes is

Fi = − ln

{ ∑
si=±1

ehisi
∏
a∈∂i

(1 + si tanh l̂a→i)

}
= − ln

{
ehi

∏
a∈∂i

(1 + tanh l̂a→i) + e−hi

∏
a∈∂i

(1− tanh l̂a→i)

}
. (11.39)

Factors. From (11.16), for parity checks we have

Fa = − ln

{∑
s∂a

1

2
(1 +

∏
i∈∂a

si)
∏
i∈∂a

(1 + si tanh li→a)

}
.

Observe that∑
s∂a

∏
i∈∂a

(1 + si tanh li→a) =
∏
i∈∂a

∑
si=±1

(1 + si tanh li→a)

= 2|∂a|

and ∑
s∂a

∏
i∈∂a

si
∏
i∈∂a

(1 + si tanh li→a) =
∏
i∈∂a

∑
si=±1

(si + tanh li→a)

= 2|∂a|
∏
i∈∂a

tanh li→a.

Thus the contribution of parity checks is

Fa = − ln

{
1

2
(1 +

∏
i∈∂a

tanh li→a)

}
+ |∂a| ln 2. (11.40)

The contribution from leaf checks is given by

Fî = − ln

{ ∑
si=±1

f̂i(si)µi→î(si)

}
= − ln{2 cosh(hi + li→î)} (11.41)

and cancels with an identical contribution Fîi from edges. As pointed out in

Section 11.4 this is a general mechanism when the degree of leaf factors is one.

Edges. There remains the contribution of edges connecting variable and parity

check nodes

Fai = ln

{ ∑
si=±1

(1 + si tanh li→a)(1 + si tanh l̂a→i)

}
= ln

{
1 + tanh li→a tanh l̂a→i

}
+ ln 2. (11.42)

Finally, the contribution of edges connecting variables and leaf factors is

Fîi = − ln

{ ∑
si=±1

µî→i(si)µi→î(si)

}
= − ln{2 cosh(hi + li→î)} (11.43)

and cancels with Fî.
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The Bethe free energy is given by the sum of the three types of contributions

(11.39), (11.40) and (11.42)

FBethe(l, l̂) =−
n∑

i=1

ln

{
ehi

∏
a∈∂i

(1 + tanh l̂a→i) + e−hi

∏
a∈∂i

(1− tanh l̂a→i)

}

−
m∑

a=1

ln

{
1

2
(1 +

∏
j∈∂a

tanh lj→a)

}

+
∑
ai∈E

ln

{
1 + tanh li→a tanh l̂a→i)

}
(11.44)

From this expression it is straightforward to check explicitly that the stationar-

ity condition ∂FBethe/∂li→a = ∂FBethe/∂l̂a→i = 0 is equivalent to the BP fixed

equations li→a = hi +
∑

b∈∂i\a l̂b→i,

l̂a→i = tanh−1

{∏
j∈∂a\i tanh lj→a

}
.

This confirms Theorem 11.4 in the particular case of coding.

We will see that the average over the channel outputs and the graph ensemble

of the Bethe free energy allows to derive the so-called replica-symmetric (RS)

formula for the average free energy6. It is known that for a large class of LDPC

codes and BMS channels the RS free energy is equal to the exact free energy.

In particular it allows to correctly predict the MAP noise threshold. In the next

chapters we will derive the RS formula with the specific application of the BEC

in mind, and partly prove that the RS formula is exact.

11.6 Application to K-SAT

Recall from Chapter 3 the partition function of K-SAT at finite temperature

(here again si = (−1)xi , xi ∈ {0, 1})

Z =
∑

s∈{−1,+1}n

m∏
a=1

(
1− (1− e−β)

∏
i∈∂a

1

2
(1 + siJia)

)
. (11.45)

The Bethe free energy here serves as a first guess for −(βn)−1 lnZ. Recall that

for β = +∞, Z counts the number of solutions. Under the proviso that there

exist at least one solution lnZ is well defined for β = +∞, and one can also use

the Bethe formula to write down a guess for the entropy of the uniform measure

over solutions (the Boltzman entropy!).

6 The adjective “replica-symmetric” is due to historical reasons. indeed these formulas were
first derived thanks to the so-called replica method which we do not cover in this course.
The approach of the replica method is algebraic in nature but mathematically more

mysterious.
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To compute Bethe free energy we use the parametrization (9.14) introduced

in Chapter 9.3 and replace the factor

fa(x∂a) = 1− (1− e−β)
∏
i∈a

1

2
(1 + siJia).

in (11.15)-(11.17). The resulting expressions are easily found to be (exercise)

FBethe(h, ĥ) =
n∑

i=1

Fi({ha→i, a ∈ ∂i}) +
m∑

a=1

Fa({ĥi→a, i ∈ ∂a})

−
∑

(ia)∈E

Fia(hi→a, ĥa→i) (11.46)

with

Fi = −β−1 ln

{∏
a∈∂i

(1 + Jia tanhβĥa→i) +
∏
a∈∂i

(1− Jia tanhβĥa→i)

}
(11.47)

Fa = −β−1 ln

{
1− (1− e−β)

∏
i∈∂a

1− tanhβhi→a

2

}
(11.48)

Fai = −β−1 ln

{
1 + tanβhi→a tanhβĥa→i

}
(11.49)

Again, the reader can easily check that the stationarity condition for FBethe(h, ĥ)

is equivalent to BP equations presented in Chapter 9.3 (in Chapter 9.3 the equa-

tions (9.15)-(9.19) are written down for β = +∞).

In the next chapter we discuss an important application of these formulas.

When −βFBethe[h, ĥ]/n is averaged over the graph ensemble one get a specific

prediction for the entropy of the K-SAT ensemble. This prediction is not consis-

tent with rigorous upper bounds on the SAT-UNSAT threshold. This means that

the Bethe formulas and the corresponding BP equations are not good enough to

inform us on the SAT-UNSAT transition. But this is not the end of the story.

We will see that it is necessary to further develop the approach taken in this

chapter and wander into the cavity method.

11.7 Thouless-Anderson-Palmer free energy

The three applications discussed so far concerned systems defined on sparse

graphs, however concept of Bethe free energy as defined in Section 11.3 is com-

pletely general. In particular it is also useful for systems with complete factor

graphs such as the SK model and compressive sensing. We saw in Chapters 7 and

8 that for such systems BP equations simplify down to TAP and AMP equations

which do not involve messages flowing on edges of the graph but rather, updates

of purely local “magnetizations” defined on vertices (variable nodes). Also, we

have already seen in this chapter that BP equations are stationnarity conditions

for the Bethe free energy. Thus it is quite natural at this point, to expect for the
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SK model and compresive sensing, that the Bethe free energy simplifies down to

a function of local “magnetizations” with stationary points given by the TAP

and AMP equations. For the SK model such a function of magnetizations is

called the TAP free energy.

The TAP free energy can be derived from the Bethe free energy as defined

in terms of messages (11.18) or in terms of marginals (11.11).7 Here we choose

(11.11) as a starting point.

Recall the Hamiltonian (7.1). Just as in the k-regular Ising model or coding

we distinguish two types of factors

fa(si, sj) = e
β

J̃ij√
n
sisj and fî(si) = eβhsi

where a ≡ {i, j} runs over all n(n − 1)/2 edges of the complete graph and

î = 1, · · · , n are degree one factor nodes connected to variable nodes i = 1, · · · , n.
Each variable node i has one edge connected to a factor î and n − 1 edges

connected to factors of type a: thus variable nodes have degree di = n. The

Bethe free energy (11.11) then becomes

−
∑

1≤i<j≤n

∑
si,sj=±1

J̃ij√
n
sisjνij (si, sj)− h

n∑
î=1

∑
si=±1

siνî(si)

+ β−1
n∑

i=1

∑
si∈±1

νî(si) ln νî(si) + β−1
∑

1≤i<j≤n

∑
si,sj=±1

νij (si, sj) ln νij (si, sj)

+ (1− n)β−1
n∑

i=1

∑
si=±1

νi (si) ln νi (si)

where for νi(si), νî(si), νij(si, sj) we take BP marginals. We immediately remark

that νî(si) = νi(si). Indeed,

νî(si) =
eβhsiµi→î(si)∑
si
eβhsiµi→î(si)

=
µ̂î→i(si)

∏
a∈∂i µ̂a→i(si)∑

si
µ̂î→i(si)

∏
a∈∂i µ̂a→i(si)

= νi(si).

Thus the free energy reads

−
∑

1≤i<j≤n

∑
si,sj=±1

J̃ij√
n
sisjνij (si, sj)− h

n∑
î=1

∑
si=±1

siνi(si)

+ β−1
∑

1≤i<j≤n

∑
si,sj=±1

νij (si, sj) ln νij (si, sj)

+ (2− n)β−1
n∑

i=1

∑
si=±1

νi (si) ln νi (si) . (11.50)

We want to use the TAP approximations to express this free energy entirely in

terms of local magnetizations mi. This is straightforward for the contributions

7 These two definitions are perfectly equivalent if one uses the BP marginals in (11.11).
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involving8 νi(si) = (1 +misi)/2. We have

−h
n∑

i=1

∑
si=±1

siνi(si) + (2− n)β−1
n∑

i=1

∑
si=±1

νi (si) ln νi (si)

= −h
n∑

i=1

mi + (2− n)β−1
n∑

i=1

h2(
1 +mi

2
). (11.51)

where we recall h2(x) = −x lnx − (1 − x) ln(1 − x), 0 ≤ x ≤ 1 is the binary

entropy function. The other two terms require to derive a TAP approximation

to order 1/n for the BP marginal9

νij(si, sj) =
e
β

J̃ij√
n
sisjµi→a(si)µj→a(sj)∑

si,sj=±1 e
β

J̃ij√
n
sisjµi→a(si)µj→a(sj)

which, with the help of

µi→a(si) = µ̂î→i(si)
∏

b∈∂a\i

µ̂b→i(si) ∝ eβhsi
∏

b∈∂a\i

eβĥb→isi

∝ νi(si)e−βĥa→isi ,

becomes

νij(si, sj) =
νi(si)νj(sj)e

β
J̃ij√

n
sisje−βĥa→isie−βĥa→jsj∑

si,sj=±1 νi(si)νj(sj)e
β

J̃ij√
n
sisje−βĥa→isie−βĥa→jsj

. (11.52)

Now recall the TAP approximation for messages flowing from factors to variables

(see (7.4), (7.5) and (7.16))

ĥa→i ≈
J̃ij√
n
mj −

J̃2
ij

n
mi(1−m2

j ).

Replacing this expression in (11.52) and expanding to order 1/n we get an expres-

sion of the marginal entirely in terms of the magnetizations. A slightly lengthy

computation yields

νij(si, sj) ≈ νi(si)νj(sj)
{
1 +

βJ̃ij√
n
(si −mi)(sj −mj)

+
2β2J̃2

ij

n
mimj(si −mi)(sj −mj)

}
. (11.53)

Note that this formula is consistent with the constraints
∑

si=±1 νij(si, sj) =

νj(sj),
∑

sj=±1 νij(si, sj) = νi(si), and
∑

si,sj=±1 νij(si, sj) = 1. Within this

8 This formula follows from νi(1) + νi(−1) = 1 and νi(1)− νi(−1) = mi, and is independent
of any approximation.

9 Higher order terms yield sub-extensive contributions to the free energy.
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approximation (minus) the entropy of a factor node is∑
si,sj=±1

νij (si, sj) ln νij (si, sj) ≈
∑

si,sj=±1

νi(si)νj(sj)(ln νi(si) + ln νj(sj))

+
∑

si,sj=±1

νi(si)νj(sj) ln

{
1 +

βJ̃ij√
n
(si −mi)(sj −mj)

+
2β2J̃2

ij

n
mimj(si −mi)(sj −mj)

}
≈ 2

∑
si=±1

νi(si) ln νi(si)−
β2J̃2

ij

2n

∑
si,sj=±1

νi(si)νj(sj)(si −mi)
2(sj −mj)

2

= 2
∑

si=±1

νi(si) ln νi(si)−
β2J̃2

ij

2n
(1−m2

i )(1−m2
j )

(where we expanded the logarithm to second order to get the second equality

and used
∑

si=±1 ν(si)(si−mi)
2 = 1−m2

i in the last one). Therefore the entropy

contribution of factor nodes in (11.50) becomes

β−1
∑

1≤i<j≤n

∑
si,sj=±1

νij (si, sj) ln νij (si, sj)

= (n− 1)β−1
n∑

i=1

∑
si=±1

νi(si) ln νi(si)−
∑

1≤i<j≤n

βJ̃2
ij

2n
(1−m2

i )(1−m2
j )

(11.54)

For the internal energy associated to a factor (interaction energy of a pair of

spins) the approximation (11.52) leads to

−
∑

si,sj=±1

J̃ij√
n
sisjνa (s∂a)

= − J̃ij√
n

∑
si,sj=±1

νi(si)νj(sj)sisj

{
1 +

βJ̃ij√
n
(si −mi)(sj −mj)

}

= − J̃ij√
n
mimj −

βJ̃2
ij

n
(1−m2

i )(1−m2
j )

and the total contribution to the free energy (11.50) is

−β
∑

1≤i<j≤n

∑
si,sj=±1

J̃ij√
n
sisjνij (si, sj)

= −
∑

1≤i<j≤n

J̃ij√
n
mimj −

∑
1≤i<j≤n

βJ̃2
ij

n
(1−m2

i )(1−m2
j ) (11.55)

Finally, putting together (11.50), (11.51), (11.54) and (11.55) we arrive at the
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famous TAP free energy function

FTAP(m) =−
∑

1≤i<j≤n

{
J̃ij√
n
mimj +

βJ̃2
ij

2n
(1−m2

i )(1−m2
j )

}

− h
n∑

i=1

mi + β−1
n∑

i=1

h2(
1 +mi

2
). (11.56)

We leave it as an exercise to check that the stationarity condition ∂FTAP

∂mj
= 0

is equivalent to the TAP fixed point equations

mj = tanh

{
βh+

n∑
i=1,i ̸=j

βJ̃ij√
n
mi −mj

n∑
i=1,i̸=j

β2J̃2
ij

n

(
1−m2

i

)}
. (11.57)

In Chapter 7 we derived the iterative form (7.18) of this equation, and we re-

marked that there is a non-trivial arrangement of time indices, that naturally

follows from the BP iterations, and is important in order to avoid numerical

instabilities in iterations. We stress that the present approach, which is not al-

gorithmic, does not give precise clues on this issue. In Chapter 12 we will see

that the RS free energy which is valid in the high temperature region above the

Almeida-Thouless line (see Section 7.5) is nothing else than an averaged form of

the TAP free energy.

11.8 Application to compressive sensing

The starting point of our derivation is, like in the previous section, expression

(11.11). The factor graph representation is analogous to that of the SK model. It

involves variable nodes i = 1, · · · , n and two types of factor nodes a = 1, · · · ,m
and î = 1, · · · , n with factors

fa(x1, · · · , xn) = e−β
(ya−(AT x)a)2

2σ2 , fî(xi) = (p0(xi))
β .

The following marginals are needed: those associated to variable nodes νi(xi)

and those associated to factor nodes νa(x1, · · · , xn), νî(xi). The first step is to

find the AMP expressions for these marginals.

We first remark the exact identity νî(xi) = νi(xi). Indeed

νî(xi) ∝ fî(xi)µ̂î→i(xi) = (p0(xi))
β

m∏
a=1

µ̂a→i(xi) ∝ νi(xi)

Now, looking back at the analysis in Section 8.82 it is an easy exercise to find

the following AMP formulas for the messages (dropping all time indices)

µ̂a→i(xi) ∝ e−β
(Aai(xi−x̂

β
i
)−Ra)2

2σ2∆ (11.58)
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and

µi→a(xi) = (p0(xi))
β
∏

b∈∂i\a

µ̂b→i(xi)

=
{
(p0(xi))

β
m∏
b=1

µ̂b→i(xi)
}
(µa→i(xi))

−1

= νi(xi)e
+ β

2σ2∆
(Aai(xi−x̂

(β)
i )−Ra)

2

. (11.59)

From (11.58)

νi(xi) ∝ (p0(xi))
β

m∏
a=1

µ̂a→i(xi)

= (p0(xi))
βe−

β

2σ2∆

∑m
a=1(Aai(xi−x̂

(β)
i )−Ra)

2

∝ (p0(xi))
βe−

β

2σ2∆
(xi−x̂

(β)
i −(ATR)i)

2

(11.60)

where to get the last line we expanded the squares in the sum and used

m∑
a=1

A2
ai(xi − x̂

(β)
i )2 −

m∑
a=1

2RaAai(xi − x̂(β)i ) +
m∑

a=1

R2
a

≈ (xi − x̂(β)i )2 − 2(ATR)i +

m∑
a=1

R2
a

= (xi − x̂(β)i − (ATR)i)
2 − (ATR)2i +

m∑
a=1

R2
a.

Note also that pre factors independent of xi have been dropped since they anyway

do not contribute to the normalized marginal

νi(xi) =
(p0(xi))

βe−
β

2σ2∆
(xi−x̂

(β)
i −(ATR)i)

2∫
dxi (p0(xi))βe

− β

2σ2∆
(xi−x̂

(β)
i −(ATR)i)2

. (11.61)

Note that one of the the AMP fixed point equations is x̂
(β)
i =

∫
dxiνi(xi)xi.

From (11.59)

νa(x) ∝ fa(x)
n∏

i=1

µi→a(xi)

= e−
β

2σ2 (ya−(Ax)a)
2

n∏
i=1

νi(xi)e
+ β

2σ2∆
(Aai(xi−x̂

(β)
i )−Ra)

2

and, normalizing, we rewrite this marginal as

νa(x) =
e−

β

2σ2 (ya−(Ax)a)
2 ∏n

i=1 ν
(a)
i (xi)∫

e−
β

2σ2 (ya−(Ax)a)2
∏n

i=1 ν
(a)
i (xi)dxi

(11.62)
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where we introduced the perturbed probability distribution

ν
(a)
i (xi) =

νi(xi)e
+ β

2σ2∆
(Aai(xi−x̂

(β)
i )−Ra)

2∫
dxiνi(xi)e

+ β

2σ2∆
(Aai(xi−x̂

(β)
i )−Ra)2

. (11.63)

Recalling that Aai scales as 1/
√
m we find that this probability distribution can

be expanded to leading order as

ν
(a)
i (xi) ≈ νi(xi)

{
1 +

βA2
ai

2σ2∆

(
1 +

βR2
a

σ2∆

)(
(xi − x̂(β)i )2 −Mi

)
− βAaiRa

σ2∆
(xi − x̂(β)i )

}
(11.64)

where Mi =
∫
dxiνi(xi)(xi − x̂(β)i )2 is the AMP-mean square error. This expan-

sion is consistent with the normalisation condition.

It remains to replace the AMP approximations for the marginals (11.61),

(11.62) in the Bethe free energy (11.11) and work out the algebra.

The contribution of factors of type î = 1, · · · , n is (since as remarked before

νî = νi)

n∑
î=1

∫
dxiνî(xi) ln

νî(xi)

fî(xi)
=

n∑
î=1

∫
dxiνi(xi) ln

νi(xi)

(p0(xi))β

= − β

2σ2∆

n∑
i=1

∫
dxiνi(xi)(xi − x̂(β)i − (ATR)i)

2

−
n∑

i=1

ln

{∫
dxi (p0(xi))

βe−
β

2σ2∆
(xi−x̂

(β)
i −(ATR)i)

2

}

= − β

2σ2∆

n∑
i=1

Mi −
β

σ2∆

n∑
i=1

(ATR)i)
2

−
n∑

i=1

ln

{∫
dxi (p0(xi))

βe−
β

2σ2∆
(xi−x̂

(β)
i −(ATR)i)

2

}
. (11.65)

The contribution of factors a = 1, · · · ,m is found from (11.62) and (11.63)

m∑
a=1

∫
dx νa(x) ln

νa(x)

fa(x)
=

m∑
a=1

∫
dx νa(x) ln

{ n∏
i=1

ν
(a)
i (xi)

}

−
m∑

a=1

ln

{∫
e−

β

2σ2 (ya−(Ax)a)
2

n∏
i=1

ν
(a)
i (xi)dxi

}
(11.66)

We analyse each term on the right hand side separately. Using (11.64) we find
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for the first term

m∑
a=1

n∑
i=1

∫
dxi νi(xi) ln ν

(a)
i (xi)

= m
n∑

i=1

∫
dxi νi(xi) ln νi(xi) +

m∑
a=1

n∑
i=1

β2A2
aiR

2
a

σ4∆2
Mi

= m
n∑

i=1

∫
dxi νi(xi) ln νi(xi) +

β2

σ4∆2
(
1

m

m∑
a=1

R2
a)(

n∑
i=1

Mi). (11.67)

To compute the second term we use the central limit theorem to argue that

(A(x − x̂))a is well approximated by a Gaussian distribution. From (11.64) we

find the mean

n∑
i=1

Aai

∫
dxi (xi − x̂(β)i )ν

(a)
i (xi) = −

βRa

σ2∆m

n∑
i=1

Mi

and the variance

n∑
i=1

A2
ai

∫
dxi (xi − x̂(β)i )2ν

(a)
i (xi) ≈

1

m

n∑
i=1

Mi.

Thus the integral in the last term of (11.66) becomes∫
e−

β

2σ2 (ya−(Ax)a)
2

n∏
i=1

ν
(a)
i (xi)dxi = (

2π

m

n∑
i=1

Mi)
−1/2

×
∫
dza e

−
(za+

βRa
σ2∆m

∑n
i=1 Mi)

2

2
m

∑n
i=1

Mi e−
β

2σ2 (ya−(Ax̂)a−za)
2

= (1 +
β

σ2m

n∑
i=1

Mi)
−1/2e

−
(ya−(Ax̂)a+

βRa
σ2∆m

∑n
i=1 Mi)

2

2(σ2
β

+ 1
m

∑n
i=1

Mi)

and the contribution to (11.66) is

+
1

2
ln(1 +

β

σ2m

n∑
i=1

Mi) +
m∑

a=1

β

2σ2

(ya − (Ax̂)a +
βRa

σ2∆m

∑n
i=1Mi)

2

1 + β
σ2m

∑n
i=1Mi

. (11.68)

Summarizing, the contribution (11.66) of factor nodes a = 1, · · · ,m to the Bethe

free energy is given by the addition of (11.67) and (11.68).

Finally we must consider the contribution of variable nodes to the Bethe free

energy (with our factor graph representation the nodes have degree di = m+ 1)

n∑
i=1

(1− di)
∫
dxiνi(xi) ln νi(xi) = −m

n∑
i=1

∫
dxiνi(xi) ln νi(xi) (11.69)

Note that this term conveniently cancels the first term in (11.67).

Collecting (11.65), (11.67), (11.68), (11.69) we find the free energy within the
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AMP approximations

FBethe =
1

2
ln(1 +

β

σ2m

n∑
i=1

Mi)−
β

2σ2∆

n∑
i=1

Mi −
β

σ2∆

n∑
i=1

(ATR)2i

+
β2

σ4∆2
(
1

m

m∑
a=1

R2
a)(

n∑
i=1

Mi) +
m∑

a=1

β

2σ2

(ya − (Ax̂)a +
βRa

σ2∆m

∑n
i=1Mi)

2

1 + β
σ2m

∑n
i=1Mi

−
n∑

i=1

ln

{∫
dxi (p0(xi))

βe−
β

2σ2∆
(xi−x̂

(β)
i −(ATR)i)

2

}
(11.70)

11.9 Notes

to do: precursors: Bethe-Peierls, Kikuchi, TAP paper, paper of Yedidia-Freeman-

Weiss, applications to coding, K-SAT, compressive sensing. Other aspects: Von-

tobel formula (counting object), Loop expansion (Bethe is first term of a system-

atic expansion), bound of Wainwrigth (ferro type systems), cluster expansion.

Problems

11.1 Bethe free energy in terms of messages. Using the sum product

equations, derive the expressions (11.14)-(11.17) for the Bethe free energy start-

ing from its expression (11.11) in terms of the marginals. Check that FBethe is

invariant under the transformations µ̂a→i → ẑa→i µ̂a→i and µi→b → ẑi→a µi→a

for any arbitrary numbers ẑa→i and zi→a.

11.2 Stationarity condition. Consider the k-regular Ising model and cod-

ing. Recover the fixed point form of the BP equations from the stationarity

condition for the Bethe free energies (11.36), (11.37) for the Ising model and

(11.44) for coding (note that the two cases are very similar).

11.3 Bethe free energy of LDGM codes. Consider an LDGM code with

regular left and right degrees on a BMS channel and derive the expression of the

Bethe free energy in terms of messages flowing on edges.

11.4 Bethe free energy of K-SAT. Complete the calculations leading to

the Bethe free energy of K-SAT, formula (11.46)-(11.49). Derive the BP equa-

tions at finite temperature from the stationarity condition and check that you

find back the zero temperature limit (9.15)-(9.19) for β → +∞.

11.5 Bethe free energy in the Curie-Weiss. Consider the Curie-Weiss

model of Chapter 4. Go through the method of Section 11.7 with the appropriate

simplifications to show that the Bethe free energy reduces to (for large n)

FCW (m) = −J
n

∑
1≤i<j≤n

mimj − h
n∑

i=1

mi − β−1
n∑

i=1

h2(
1 +mi

2
).

Show that for n → +∞ the stationary points necessarily have approximately

constant magnetization mi = m + O(1/n) where m satisfies the Curie-Weiss
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fixed point equation and that at the stationary points FCW (m)/n tends to the

potential function Φ(m) entering in the exact expression of the Curie-Weiss free

energy (4.11). Conclude that for the Curie-Weiss model

lim
n→+∞

− 1

βn
lnZ = lim

n→∞

1

n
min

m∈[−1,+1]n
FCW (m).

11.6 TAP free energy. In Section 11.7 we derived the TAP free energy

(11.56)starting from (11.11) involving the marginals. Derive this formula directly

from (11.18) using TAP approximations for the messages.



12 Potential Functionals and Replica
Symmetric Formulas

The main idea behind the density or state evolution analysis of message pass-

ing algorithms is to track their average behaviour. This allows to analyze their

performance and derive the algorithmic phase transition threshold. But we also

saw in Chapter 10 (for coding) that one can guess the static phase transition

threshold through a Maxwell equal area construction. There, the Maxwell con-

struction was formulated for the BEC on EXIT curves which are the analog of

van der Waals isotherms. However we did not provide any clear general principle

for deciding what are the correct variables for which the equal area construction

works. For the CW model the guess is quite trivial for symmetry reasons. In cod-

ing, for the BEC it is less trivial and even less so for general binary symmetric

channels.1

We will see in this chapter that by carrying the variational approach of the

previous chapter one step further we will be able to provide some clues to refor-

mulate the Maxwell construction in a different language which is less ambiguous

and more amenable to a correct generalisation. In particular, using the varia-

tional approach, we will provide clear recipes to find the static phase transition

threshold for coding on general BMS channels and compressive sensing. For the

satisfiability problem the situation is much more subtle and here we show that a

“naive” variational approach does not work. The correct variational approach is

based on an extension of our basic message passing procedures whose discussion

is postponed to Chapters 16 and 17.

We have seen that the sum-product equations are the stationarity conditions

for the Bethe free energy. Analogously, density or state evolution equations are

the stationarity conditions of an “averaged” form of the Bethe free energy, here

called the potential functional.2 Obviously, since the potential functionals are a

variational formulation of the density or state evolution equations, they contain

the information about the algorithmic thresholds. But more is true. In coding

and compressive sensing potential functionals give the exact average free energy

(or conditional entropy and mutual information) through a variational expres-

sion called the replica symmetric formula. Therefore they also allow to compute

1 In physics parlance determining the ”correct variables” for the description of a phase

transition is part of a more general and deep problem, called the determination of the
order parameter.

2 This is also called the ”replica symmetric potential functional.” The origin of this

terminology in spin glass theory is explained in the notes.
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the static phase transition thresholds. We already encountered an elementary

example of a variational expression for the exact free energy of the CW model.

As will be seen the replica symmetric formulas can lead to considerably more

complicated variational problems on functional spaces.

Until recently, in the present context, the replica symmetric formulas were

proved only in somewhat special cases such as the BEC channel or were sup-

ported by bounds. Recent proof techniques such as the interpolation methods

(Chapter 13) and spatial coupling (Chapter 14) have allowed to provide nice and

essentially complete proofs in the cases of coding and compressive sensing. For

K-SAT we show that the predictions of the replica symmetric free energy func-

tional are in fact wrong. Instead of being a curse this makes the subject even

more fascinating. The correct thresholds and free energies are given by pushing

the notions of Bethe and potential functionals ”one level up” (see Chapters 16,

17. That these predictions are correct for K-SAT and other similar constraint

satisfaction problems is still to a large extent an open mathematical problem.

We refrain from giving a completely general definition of the potential func-

tional and replica symmetric formula because this immediately leads to abstract

notations. Rather, we consider each paradigm separately in the next paragraphs.

Going through each of them allows to cover most essential cases.

12.1 Ising model on a random k-regular graph

The potential functional of the k-regular Ising model on a random graph is

obtained by averaging the Bethe free energy (11.37) where in the average we

consider all messages hi→j as i.i.d random variables distributed according to a

trial distribution x(·). More precisely, we fix a trial distribution and take k i.i.d

random variables h1, · · · , hk ∼ x(·).3 The potential functional is defined as

fRS[x(·)] =−
k

2
β−1 ln coshβJ − β−1E

[
ln

{
eβh

k∏
r=1

(1 + tanhβJ tanhβhr)

+ e−βh
k∏

r=1

(1− tanhβJ tanhβhr)

}]
+
k

2
β−1E

[
ln

{
1 + tanhβJ tanhβh1 tanhβh2

}]
. (12.1)

where the expectation is with respect to h1, · · · , hk. Note that we consider a ”free

energy” per spin and the factor k/2 in the last term accounts for the number

of edges kn/2 in (11.37). We remark that only the local geometry of the graph

matters in this expression and since the degree is regular there is no expectation

over the graph ensemble. For a model over graphs with random degrees (e.g.,

3 These random variables should not be confused with h the constant external magnetic

field.
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a Erdoes-Rényi ensemble) the prefactors k/2 in the first and third terms would

be replaced by an average k̄/2 and the expectation would also carry over the

distribution of k.

According to the replica symmetric formula the exact average free energy is

given by (here E is over the graph ensemble)

− lim
n→+∞

1

βn
E[lnZ] = inf

x(·)
fRS[x(·)] (12.2)

The proof of this formula for the k-regular model is the subject of a guided

exercise.

Since we consider the model with constant magnetic field h, constant coupling

J and on a graph with regular degree k, it turns out that the infimum is attained

for trial distributions of the form x(h) = δ(h − u) where u ∈ R. The potential

functional (12.1) then becomes a potential function of a real trial parameter u

Ψ(u) =− k

2
β−1 ln coshβJ − β−1 ln

{
eβh(1 + tanhβJ tanhβu)k

+ e−βh(1− tanhβJ tanhβu)k
}]

+
k

2
β−1 ln

{
1 + tanhβJ(tanhβu)2

}
. (12.3)

and (12.2) becomes

− lim
n→+∞

1

βn
E[lnZ] = min

u∈R
Ψ(u). (12.4)

In Sections 4.6, 4.7 we found the very same solution in a heuristic way by first

recursively solving for the magnetization on a tree and then accessing the free

energy by an integration argument based on the formula

− 1

βn

∂

∂h
E[lnZ] =

1

n

n∑
i=1

E[⟨si⟩] = E[⟨so⟩] (12.5)

where o is any randomly chosen node.

The variational problem (12.3) can be analysed by elementary real analysis.

The minimum u∗ of Ψ(u) is attained among the solutions of the stationarity

condition

u = h+ β−1(k − 1) atanh(tanhβJ tanhβu) (12.6)

and the magnetization is found from (12.5) to be

⟨so⟩ = tanh
(
βh+ k atanh(tanhβu∗ tanhβJ)

)
(12.7)

At this point the reader should not be surprised that (12.6), (12.7) are the ”non-

recursive” versions of the solution on a tree (4.39), (4.41). Just because stable

(resp. unstable) fixed points of a recursive solution of (12.6) correspond to local

minima (resp. local maxima) of the potential function (12.3), it is obvious that
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the replica symmetric formula (12.4) leads to the phase diagram already found

for the model on a tree in section 4.6. We recall the main findings. For h = 0, if

βJ < k − 1 (high temperature phase) the trivial fixed point u = 0 is the unique

minimum of Ψ(u), whereas if βJ > k− 1 (low temperature phase) u = 0 is local

maximum (an unstable fixed point) and there are two degenerate minima. On

the other hand for h ̸= 0 there always is a unique global minimum attained for

u∞ = limt→+∞ the iterative solution of the fixed point equation initialized with

u0 = h. For h = 0 there is a continuous second order phase transition as β crosses

the critical point (k−1)J−1. In the low temperature phase β > (k−1)J−1 there

is a first order phase transition as h varies from positive to negative values with

a jump in the magnetisation.

12.2 Replica symmetric formula and MAP threshold in coding

We first introduce the potential functional and state the replica symmetric for-

mula for the conditional Shannon entropy for the regular Gallager (dv, dc) en-

semble over a general BMS channel. In the next section we specialize to the case

of the BEC where the functional simply reduces to a function of a real variable

(just as for the k-regular Ising model).

Recall the notation c(·) for the distribution of half-loglikehod ratios h(y) =
1
2 ln

p(y|1)
p(y|−1) . We have c(h)dh = p(y|1)dy where p(y|1) is the probability that the

channel outputs symbol y when the input bit is s = (−1)x = 1. Recall also that

a symmetric channel satisfies c(−h) = e−hc(h).

Replica symmetric functionals for BMS channels

We first define the potential functional. The main idea is to “pretend” that the

set of messages l̂a→i in the Bethe free energy (11.44) are i.i.d random variables

distributed according to a trial distribution x(·), and that the conjugate mes-

sages l̂a→i are dependent random variables defined through the BP equation (see

(6.10))

l̂a→i = atanh
{ ∏
j∈∂a\i

tanh lj→a

}
Then, one averages (11.44) which yields a functional of x(·). Here is the precise

prescription. Take a fixed “trial” probability distribution x(·) over R. Pick dc
i.i.d copies of the random variable l ∼ x(·), and call them lk, k = 1, . . . dc. Define

the random variable

l̂ = atanh
{ dc∏
k=1

tanh lj
}

(12.8)

Pick dv i.i.d copies l̂ℓ, ℓ = 1, . . . dv. Their distribution is induced by (12.8) and

only depends on x(·). The potential functional (also called replica symmetric
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functional) is by definition

fRS[x(.); c(.)] =E
[
ln

{
eh

dv∏
ℓ=1

(1 + tanh l̂ℓ) + e−h
dv∏
ℓ=1

(1− tanh l̂ℓ)

}]

+
dv
dc

E
[
ln

1

2

{
1 +

dc∏
k=1

tanh lk

}]
− dvE

[
ln

{
1 + tanh l1 tanh l̂1

}]
(12.9)

where the expectation is taken with respect to h, lk, l̂ℓ. For an irregular LDPC

ensemble the degrees (dv, dc) are random: the prefactors dv

dc
in the second term

and dv in the third term are replaced by d̄v

d̄c
and d̄v (with d̄v, d̄c the average

degrees) and the expectation also carries over the distributions of the degrees.

To see intuitively that this is the correct generalization one can take the Bethe

expression (11.44) and apply Wald’s theorem to compute the average sums.

We also define the replica symmetric entropy functional as

hRS[x(.); c(.)] = −fRS[x(.); c(.)] + E[h] (12.10)

Of course, this definition is patterned after the relation (3.24) between condi-

tional entropy and free energy in coding.

Replica symmetric formula and MAP threshold

Let Z the partition function (3.11) for coding (recall that β = 1 in this context).

The replica symmetric formula states that

− lim
n→+∞

1

n
E[lnZ] = inf

x∈S
fRS[x(.); c(.)] (12.11)

where the infimum is taken over the space S of symmetric channel distributions,

i.e. those satisfying x(−h) = e−hx(h). We stress that (as stated here) this formula

is only valid only for symmetric channels. We will go through the proof of (12.11)

in Chapters 13 and 14 when we introduced powerful techniques known as the

“interpolation method” and “spatial coupling”.

For us at present the most important consequence of the replica symmetric

formula is the determination of the MAP threshold. In Chapter 10 we defined

the MAP threshold as the largest ϵ such that lim supn→∞ E[H(X | Y )]/n = 0

(see definition 10.4). Recall also the general relationship (3.24)

1

n
E[H(X | Y (ϵ))] = − 1

n
E[lnZ] + E[h]. (12.12)

Equation (12.11) has the following consequences. One can replace lim sup by

lim in the definition of the MAP threshold, but much more importantly we get

explicit formulas for the conditional entropy

lim
n→+∞

1

n
E[H(X | Y )] = sup

x∈S
hRS[x(·); c(·)] (12.13)
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and the MAP threshold

ϵMAP = sup{ϵ ∈ [0, 1] : sup
x∈S

hRS[x(·); c(·)]=0}. (12.14)

In practice, to calculate the conditional entropy and the MAP threshold one

still has to solve the variational problem consisting in maximizing the replica

symmetric entropy functional. The stationary point condition yields nothing else

than the density evolution fixed point equation (see Eq. (6.26)-(6.27))

x = c⊗ (x⊞(dc−1))⊗(dv−1). (12.15)

The derivation is deferred to Section 12.4, but this result should not come as

big surprise since the stationary points of the Bethe free energy are given by the

BP equations and density evolution tracks the BP algorithm. Once stationary

points, i.e. fixed points of (12.15), have been found one selects the one that yields

the largest hRS[x(·)] and determines ϵMAP. Since in practice fixed points are found

by iterative methods, it is fortunate that we only need to find stable fixed points.

Indeed the maximum of hRS[x(·)] is necessarily a stable fixed point.

But that is not all. We already know that (12.15) allows to determine the

BP threshold. Recall x = ∆0 is always a trivial fixed point of (12.15), and the

BP threshold is the smallest noise for which a non-trivial fixed point is reached

under iterations initialized with x0(·) = c(·) or ∆∞. Therefore this algorithmic

information is also contained in the replica symmetric entropy functional: the BP

threshold is the smallest noise value such that hRS[x(·)] develops a non trivial

stationary point.

To summarize, the replica symmetric entropy functional contains all the infor-

mation we want about the algorithmic and static phase transition thresholds. In

particular it allows to deduce the density evolution equation. To determine the

BP threshold we consider the iterative solution initializing with ∆0. To evalu-

ate the MAP threshold we find all (stable) fixed points of density evolution and

choose the one which yields the largest entropy functional.

12.3 Explicit application to the BEC

Potential function

Recall that a bit transmitted through the BEC is either perfectly transmitted

with probability ϵ or erased with probability 1 − ϵ, i.e. c(h) = ϵ∆0(h) + (1 −
ϵ)∆∞(h), and as a consequence the BP messages take values in {0,∞}. This
suggests that it is reasonable define the potential functional for distributions of

the form

x(l) = x∆0(l) + (1− x)∆∞(l) (12.16)
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where the real trial parameter x ∈ [0, 1] is interpreted as the probability of

an erasure message emanating from variable nodes. In particular the potential

functional becomes a function of a real parameter.

Now we compute each expectations in (12.9). First note that l̂ in (12.8) is

distributed as

x̂(l) = x̂∆0(l) + (1− x̂) ∆∞(l), x̂ = 1− (1− x)dc−1. (12.17)

One easily finds the “check node” contribution (second expectation in (12.10))

E[ln
1

2
(1 +

dc∏
k=1

tan lk)] = E[ln(1 +
dc∏
k=1

tan lk)]− ln 2 = (1− x)r ln 2− ln 2

(12.18)

and “edge” contribution (third expectation in (12.10))

E[ln(1 + tan l1 tan l̂1)] = (1− x)(1− x̂) ln 2

The ”variable node” contribution corresponding to the first expectation in (12.10)

is more involved. First (for the BEC) one should include the term E[h] in (12.10)

directly in this contribution in order to avoid working with infinite quantities.

Conditioning on the channel outputs h = +∞ and h = 0 and on the number

e = 0, · · · , dv of likelihood variables l̂k = 0 one finds

E[ln(
dv∏
ℓ=1

(1 + tanh l̂k) + e−2h
dv∏
ℓ=1

(1− tanh l̂k))]

= (1− ϵ)
dv∑
e=0

(
dv
e

)
x̂e(1− x̂)dv−e ln 2dv−e + ϵ

dv−1∑
e=0

(
dv
e

)
x̂e(1− x̂)dv−e ln 2dv−e

+ ϵ

(
dv
dv

)
x̂dv (1− x̂)dv−dv ln 2

=

dv∑
e=0

(
dv
e

)
x̂e(1− x̂)dv−e(dv − e) ln 2 + ϵx̂dv ln 2

= (1− x̂)
dv∑
e=0

x̂e
d

dy
ydv−e |y=1−x̂ ln 2 + ϵx̂dv ln 2

= (1− x̂) d
dy

(x̂+ y)dv |y=1−x̂ ln 2 + ϵx̂dv ln 2

= dv(1− x̂) ln 2 + ϵx̂dv ln 2

Putting all three contributions together and using (12.17) one finds the potential

or replica symmetric entropy function for the BEC as a function of the erasure

probability x,

hRS(x; ϵ)

ln 2
= (

dv
dc
− l)(1− x)dc + dv(1− x)dc−1 + ϵ(1− (1− x)dc−1)dv − dv

dc
(12.19)
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— plot of potential goes here —

Figure 12.1 This plot is generic only for regular ensembles with l ≥ 3. Irregular
ensembles can have a richer behavior and the corresponding discussion is more
complicated. The case l = 2 is somewhat special because ϵBP = ϵMAP.

Replica symmetric formula: conditional entropy and MAP threshold

According to (12.13) and (12.14) the conditional entropy is given by

lim
n→+∞

1

n
E[H(X|Y (ϵ))] = max

0≤x≤1
hRS(x; ϵ) (12.20)

and the MAP threshold can be calculated from

ϵMAP = sup{ϵ : max
0≤x≤1

hRS(x; ϵ) = 0}. (12.21)

It is immediate to check that the stationary points are given by the usual density

evolution fixed point equation x = ϵ(1− (1− x)dc−1)dv−1.

The replica symmetric formula contains all the information about the BP and

MAP thresholds, so it is very useful to have an explicit idea of the shape of

this function and its evolution as a function of the channel noise. Figure ??

shows hRS as a function of x, for various values of ϵ. To avoid any confusion

let us stress that there is no reason why hRS(x; ϵ) should be non-negative. It

is only max0≤x≤1 hRS(x) that really is a ”physical” entropy and therefore must

be non-negative. For all ϵ there is a trivial maximum at x = 0, which is also

the trivial stable fixed point of density evolution. For ϵ < ϵBP this minimum is

unique, and hence global. At ϵ = ϵBP the function develops a flat inflexion point

and, a second local maximum as well as a local minimum branch off. The local

maximum is a stable non-trivial fixed point of density evolution, xst(ϵ), and the

local minimum is an unstable fixed point xun(ϵ). As one increases ϵ further the

local maximum at xst(ϵ) increases until it touches the horizontal axis for ϵMAP. At

precisely this threshold value there are two degenerate global maxima at x = 0

and x = xst(ϵMAP), and

hRS(0; ϵMAP) = hRS(xst(ϵMAP); ϵMAP) = 0 (12.22)

Finally, for ϵ > ϵMAP it is xst(ϵ) that becomes the (unique) global maximum and

we have decoding errors since the entropy is strictly positive.
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To summarize, the potential function contains all the information about the

thresholds. The BP threshold is found by searching values of ϵ where the function

develops flat inflexion points, and the MAP threshold is found by looking at

values of ϵ where there exist two degenerate maxima at the same height.

MAP and BP EXIT functions

It is interesting to cast the replica symmetric formula (12.20) in an equivalent

form in which the notion of EXIT curve introduced in Chapter 10 reappears in

an automatic and natural way. Consider the stable non-trivial stable fixed point

xst(ϵ) of density evolution. For ϵ > ϵMAP this is also the absolute maximum of

hRS(x; ϵ) so

d

dϵ
max
0≤x≤1

hRS(x; ϵ) =
∂

∂ϵ
hRS(xst; ϵ) +

∂

∂x
hRS(xst; ϵ)

dxst

dϵ

=
∂

∂ϵ
hRS(xst; ϵ)

= (1− (1− xst(ϵ))
dc−1)dv

The second equality is valid because xst(ϵ) is a stationnary point of hRS(x; ϵ)

and dxst

dϵ is finite for ϵ > ϵMAP (note this is in fact true for ϵ > ϵBP and the

right derivative diverges at ϵBP). The third equality immediately follows from

the explicit formula (12.19). We conclude that the replica symmetric formula

implies

d

dϵ
lim

n→+∞

1

n
E[H(X | Y (ϵ))] =

{
0, ϵ < ϵMAP

(1− (1− xst(ϵ))
dc−1)dv , ϵ > ϵMAP

(12.23)

Recalling the expressions of the MAP and BP EXIT curves introduced in Chapter

10 we see that (12.23) is equivalent to

gMAP(ϵ) = gBP(ϵ) for ϵ < ϵBP and ϵ > ϵMAP (12.24)

For ϵBP < ϵ < ϵMAP the MAP EXIT curve vanishes while the BP EXIT curve is

strictly positive.4 Note this is consistent with the general inequality in Lemma

10.8.

The reader should go back to the exact solution of the Curie-Weiss model in

Chapter 4 and notice the intimate structural analogies with the present situation.

The Curie-Weiss free energy is given by a variational problem min−1≤m≤1 f(m)

whose solutions determine both the phase transition (”MAP”) threshold h = 0

and the spinodal (”BP”) points ±hsp. Finally the derivative of the free energy

yields the magnetization (a discontinuous curve at h = 0 for βJ > 1). This is

the analog of (12.23).

4 For dv ≥ 3 the BP EXIT curve has a jump at ϵBP where it also has a vertical slope. For
dv = 2 further analysis of xst(ϵ) shows that ϵBP = ϵMAP, the two curves coincide for all ϵ,

and are continuous.
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Back to the Maxwell Construction

In Chapter 10 we introduced the notion of EXIT curve and area under this curve.

We also explained how one can show for the BEC that the area threshold obtained

by the Maxwell equal area construction is equal to the MAP threshold. This

approach is not entirely satisfactory because there is no obvious guiding principle

to determine the right variables and curve on which the Maxwell construction

should be applied. Starting with the potential function this can be done in a quite

natural and automatic way as we now show for the BEC. The present method

is well suited and elementary whenever the potential functional is a function of

a real variable. This is the situation also for compressive sensing where we will

have the occasion to apply it.

Recall, the set of all pairs (ϵ, x) satisfying the DE equation can be parametrized

as (ϵ(x), x), 0 ≤ x ≤ 1 where ϵ(x) = x/(1− (1− x)dc−1)dv−1). For each x ∈]0, 1]
there is a unique ϵ(x) and we have limx→0 ϵ(x) = +∞, limx→1 ϵ(x) = 1. As x

increases from 0 to 1 the curve (ϵ(x), x) starts at (+∞, 0) and first traces the

branch of the unstable non-trivial fixed point until the turning point (ϵBP, xBP)

and then traces the branch of the stable non-trivial fixed point until (1, 1). We

now compute the entropy change along this curve when we trace it up to a given

value of x, ∫ x

0

dhRS(x; ϵ(x)) = hRS(x; ϵ(x))− lim
x→0

hRS(x; ϵ(x))

= hRS(x; ϵ(x)). (12.25)

Since, at DE fixed points, hRS(x; ϵ(x)) is stationary, we have

dhRS(x; ϵ(x)) =
∂

∂x
hRS(x; ϵ(x))dx+

∂

∂ϵ
hRS(x; ϵ(x)))dϵ(x)

=
∂

∂ϵ
hRS(x; ϵ(x)))dϵ(x)

= (1− (1− x)dc−1)dvdϵ(x),

and replacing in (12.25) we obtain

hRS(x; ϵ(x)) =

∫ x

0

∂

∂ϵ
hRS(x; ϵ(x)))dϵ(x)

=

∫ x

0

(1− (1− x)dc−1)dvdϵ(x) (12.26)

We recognise that (12.26) is nothing but the ”trial entropy” of Definition 10.1,

i.e., the area below the EXIT curve (ϵ(x); gBP(x)), gBP(x) = (1− (1− x)dc−1)dv

(see (10.8) and definition (10.1)).

Therefore from the potential function we get all the notions related to the

Maxwell equal area construction. Firstly, the trial entropy is nothing else than

hRS(x; ϵ(x)) = A(x). Secondly, the EXIT curve is given in parametric form by

(ϵ(x), ∂
∂ϵhRS(x; ϵ)). The area threshold ϵA = ϵ(xA) is found by setting A(xA) =
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hRS(xA; ϵ(xA)) = 0 or equivalently

hRS(xA; ϵ(xA))− lim
x→0

hRS(x; ϵ(x)) = 0. (12.27)

Solving for xA and ϵ(xA) = ϵA is equivalent to solving the two equations

∂

∂x
hRS(xA; ϵA) = 0, hRS(xA; ϵA) = hRS(0; ϵA). (12.28)

Equation (12.28) constitutes the statement of the Maxwell construction in terms

of the potential function: ϵA is the noise level at which the potential function

has two maxima at the same height. Depending on the context and how it is

introduced this threshold is called ”area threshold” or ”potential threshold”.5

Last but not least, the replica symmetric formula (12.20) implies that the area

or potential threshold is equal to the MAP threshold. This is easily seen by

comparing (12.22) and (12.28).

12.4 Replica symmetric upper bound from suboptimality of belief
propagation

In the analysis of density evolution for general binary memoryless channels we

introduced the entropy functional

H[x] =

∫
dh x(h) ln(1 + e−2h). (12.29)

Recall the interpretation: this is the (single letter) Shannon entropy H(Y | X) of

a binary symmetric channel whose log-likelihood distribution is x(h). It turns out

that the replica symmetric functional can be expressed entirely in terms of the

entropy functional. This gives a very convenient formalism to deal with general

channels.

We first note two identities. Let x1, · · · , xk be symmetric distributions of k

random variables H1, · · · ,Hk. The distribution of
∑k

i=1Hi is given by the usual

convolution operation (6.24) at variable nodes, and thus

H(⊗k
i=1xi) =

∫ k∏
i=1

dhixi(hi) ln(1 + e−2
∑k

i=1 hi). (12.30)

On the other hand the distribution of
∏k

i=1 tanhHi is given by the check node

convolution operation (6.25),

H(⊞k
i=1xi) = −

∫ k∏
i=1

dhixi(hi) ln(1 +

k∏
i=1

tanhhi). (12.31)

5 For general channels both thresholds can be defined but showing their mathematical
equivalence is not easy and has been done for the restricted case of regular codes with high

enough degrees.
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Replica symmetric functionnal in terms of the entropy functional

First consider the second term in (??). All log-likelihood variables in this term

have trial distribution x. Thus identity (12.31) implies

dv
dc

E
[
ln

1

2

{
1 +

dc∏
k=1

tanhHk

}]
= −dv

dc
H(x⊞dc). (12.32)

Similarly for the third term in (??) using also (12.8) we have

dvE
[
ln
{
1 + tanhH1 tanh Ĥ1

}]
= dvE

[
ln
{
1 + tanhH1

dc−1∏
k=1

tanhHk

}]
= dvH(x⊞ x⊞(dc−1)) (12.33)

To express the first term in (??) we first transform it into

ln
{
eh

dv∏
ℓ=1

(1 + tanh Ĥℓ) + e−h
dv∏
ℓ=1

(1− tanh Ĥℓ)
}

= h+ ln
{ dv∏
ℓ=1

(1 + tanh Ĥℓ)
}
+ ln

{
1 + e−2h

dv∏
ℓ=1

1− tanh Ĥℓ

1 + tanh Ĥℓ

}

= h+

dv∑
ℓ=1

ln(1 + tanh Ĥℓ) + ln
{
1 + e−2(h+

∑dv
ℓ=1 Ĥℓ

}
Then, using (12.8) together with both identities (12.31) and (12.31) we get

E
[
ln
{
eh

dv∏
ℓ=1

(1 + tanh Ĥℓ) + e−h
dv∏
ℓ=1

(1− tanh Ĥℓ)
}]

= E[h]− dvH(x⊞(dc−1)) +H(c⊗ (x⊞(dc−1))⊗dv ) (12.34)

Finally, collecting (12.32), (12.33), (12.34) and replacing in the definition of

the replica symmetric entropy (12.10) we obtain the final expression,

hRS[x(·)] = dvH(x⊞(dc−1))−H(c⊗ (x⊞(dc−1))⊗dv )

+
dv
dc
H(x⊞dc)− dvH(x⊞ x⊞(dc−1)) (12.35)

The first two terms come the contributions of the variable nodes, while the

third and fourth one come from teh contributions of check nodes and edges. Of

course the fourth term is equal to −dvH(x⊞(dc)). However written as in (12.35)

the formula generalizes immediately to general irregular LDPC ensembles (see

exercises). Figure 12.2 shows the typical cross section of this functional for x(·)
given by a family of BAWGNC parametrized by their entropy. The channel is a

BSC and the LDPC ensemble a regular Gallager (dv = 3, dc = 6) code.

We leave it as an exercise for the reader to check that the expression (12.19)

for the BEC is recovered by replacing c = ϵ)∆0+ϵ∆∞ and x = x∆0+(1−x)∆∞.
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Figure 12.2 Potential functional for the LDPC(dv = 3, dc = 6) ensemble over a binary
symmetric channel (BSC), with entropy h. The values of h for these curves are, from
the top to bottom, 0.40, 0.416, 0.44, 0.469, 0.48. The other input x(·) to the potential
functional is the LLR distribution for the binary AWGN channel (BAWGNC) with
entropy h̃. The choice of BAWGNC distribution for x is arbitrary.

12.5 Compressive Sensing

Write RS free energy (can be derived by integrating out state evolution). Illus-

trate thresholds it predicts. Discuss that RS is exact. Do it for Lasso or for known

prior case ?

12.6 Replica symmetric free energy and entropy for K-SAT

In Chapter 11 we gave the expression of the Bethe free energy for K-SAT at

finite temperature. As noted there, from this expression, as long as there exist

at least one solution, taking the limit β → +∞ one also gets a Bethe formula for

the entropy of the uniform measure over solutions. There is a natural potential

functional and replica symmetric formula derived from the Bethe expression. But,

contrary to coding and compressive sensing, it is not very difficult to see from the

corresponding formula for the entropy, that the replica symmetric expressions

cannot be exact for K-sat. This is not a curiosity of the model. In fact most

constraint satisfaction models suffer from this problem, and a better theory,

namely the cavity theory, is needed, and is developped in Chapters 16 and 17. In

the universe of factor graph models it is coding and compressive sensing that are

”special” whereas the K-sat model is believed to display the generic behavior!

The construction of the potential functional proceeds like in the case of cod-

ing. One takes as a starting point the Bethe expression (11.46) and treats all

messages hi→a as independent random variables distributed according to a trial

distribution, while the messages ĥa→i have an induced distribution found from

the message passing equation (9.19) (generalized to non-zero temperature),

ĥa→i = −
1

2
ln

{
1− (1− e−β)

∏
j∈∂a\i

1

2
(1− tanhβhj→a)

}
(12.36)



12.6 Replica symmetric free energy and entropy for K-SAT 279

In the coding case we limited ourselves to regular Gallager (dv, dc) ensembles.

One difference here is that while the check nodes have regular degree K, the

variable node degrees are (asymtotically) Poisson distributed with average degree

αK.

Fix a trial distribution x(h) for a r.v h ∈ R. Pick K iid copies of the random

variable h ∼ x(·). Call them h1, . . . , hK . Define the induced random variable

ĥ = −1

2
ln

{
1− (1− e−β)

K−1∏
k=1

1

2
(1− tanhβhk)

}
. (12.37)

Pick two Poisson distributed integers p and q with average αK/2. Pick p copies

ĥ+1 , . . . , ĥ
+
p of ĥ and q copies ĥ−1 , . . . , ĥ

−
p of ĥ. Let

fRS(x(·);α) =− β−1E
[
ln

{ p∏
ℓ=1

(1− tanhβĥ+ℓ )

q∏
ℓ=1

(1 + tanhβĥ−ℓ ) (12.38)

+

p∏
ℓ=1

(1 + tanhβĥ+ℓ )

q∏
ℓ=1

(1− tanhβĥ−ℓ )

}]

− β−1E
[
ln

{
1− (1− e−β)

K∏
k=1

1

2
(1− tanhβhk)

}]
(12.39)

+ β−1E
[
ln

{
1 + tanhβh1 tanhβĥ1

}]
(12.40)

where the expectation is over all random variables p, q, h, ĥ (the probability dis-

tribution of ĥ is itself dependent on x).

The replica symmetric prescription says that the free energy would be equal

to

fRS(β, α) ≡ sup
x(·)

fRS(x(·);α). (12.41)

A remark is in order here. This formula (12.41) for the free energy involves

a supremum although one would have naively expected an infimum just as in

coding and compressed sensing. There is no obvious way to explain that this is

the ”correct” prescription. The old ”replica trick” directly leads to the supremum

for problems like K-SAT and the SK model, while it leads to the infimum for

Bayesian inference problems such as coding and compressed sensing. Bayesian

inference problems are special in the sense that there are special identities that

follow from Bayes rule as we explained for compressive sensing in Chapter 3.

Coding for BMS channels is even more special than compressive sensing because

the extra gauge symmetry that is implied by channel symmetry.

Recalling the general relation (2.18) between free energy and entropy, the

replica symmetric entropy can then be obtained by sRS(β, α) = ∂fRS/∂β
−1. The

zero temperature replica symmetric entropy, i.e. a prediction for the log number

of solutions, can also be found directly from limβ→+∞(−βfRS(β, α)).

The stationnary points of (12.41) yield a fixed point integral equation for x(.).
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This can be split in two integral equations linking x(·) and x̂(·), where x̂(·) is the
induced distribution of ĥ (see (12.37))

x(h) =
∑+∞

p,q=0
(αK/2)p+q

p!q! e−αK
∫ {∏p

ℓ=1 dĥ
+
ℓ x̂(ĥ

+
ℓ )
}{∏q

ℓ=1 dĥ
−
ℓ x̂(ĥ

−
ℓ )
}

×δ
(
h− (

∑p
ℓ=1 ĥ

+
ℓ −

∑q
ℓ=1 ĥ

−
ℓ )
)
,

x̂(ĥ) =
∫ {∏K−1

k=1 dĥkx(hk)
}
δ
(
ĥ+ 1

2 ln
{
1− (1− e−β

)
×
∏K−1

k=1
1
2 (1− tanhβhk)

}
).

These equations can be solved numerically, e.g. by the population dynamics

method. This allows to find the maximizer of the replica symmetric functional

and hence obtain a prediction for the free energy and entropy.

The computation of the entropy shows that the replica symmetric prediction

cannot hold in all regions of the (α, β) plane. Indeed at sufficiently low tem-

peratures and large constraint densities the replica symmetric entropy becomes

negative, whereas the true entropy must always remain non-negative. Figure 12.3

shows sRS(β = +∞, α) for K = 3. This function decreases as the clause density

increases, vanishes at αRS ≈ 4.677, and is negative for higher densities. Thus

the present replica symmetric analysis certainly breaks down for zero tempera-

ture and α > αRS. Could it be that it is correct (at zero temperature) for all

α < αRS? In other words could it be that the satisfiability threshold equals αRS?

The answer is no. In problem 12.6 the reader is guided through the proof of an

upper bound αs ≤ 4.666 for K = 3 which is slightly lower than αRS. According

to the cavity method of Chapter 16 the replica symmetric formula is exact in

a region α < αc(β) with αc(β) called the condensation threshold. At αc(β) the

free energy and entropy are not analytic and for α > αc(β) one has to resort to

even more complicated formulas, and moreover as we will see a very interesting

”structural” change happens to the Gibbs measure which is said to be ”con-

densed”. One has αc(β = +∞) < αs for all K, so for small 0 < α < αc(+∞) the

zero-temperature replica symmetric entropy correctly counts the log-number of

solutions, but does not do so in the range αc(β = +∞) < α < αs. For K = 3,

for example, the cavity method predicts αc(β = +∞) ≈ 3.86 and αs ≈ 4.266.

12.7 Notes

A few words about the concept of order parameter ?

Problems

12.1 Replica symmetric entropy for the BEC. Check that (12.19) di-

rectly follows from the expression (12.35) for general channels.

12.2 Replica symmetric entropy for general channels. Consider an

LDPC ensemble with general variable node degree distribution L(x) =
∑

k Lkx
k

and check node degree distribution R(x) =
∑

k Rkx
k. The degree distributions
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from the edge perspective are λ(x) =
∑

k λkx
k and ρ(x) =

∑
k ρkx

k. Generalize

the replica symmetric expression (12.35) to irregular codes.

12.3 Replica symmetric expression for an LDGM code. Consider an

LDGM code ensemble and give the replica symmetric expression for the entropy

on a general channel and in particular on the BEC.

12.4 RS analysis for K-SAT. Derive the density evolution equations for K-

SAT. Use population dynamics (as seen in homeworks of Chapter ??) to compute

the RS prediction for αsat-unsat.

12.5 Crude upper bound on the SAT-UNSAT threshold. Upper bounds

for the SAT-UNSAT threshold, we call it αs, are usually derived by counting

arguments. This exercise develops the simplest such argument.

An assignment is a tuple x = (x1, . . . , xn) where xi = 0, 1 of n variables. The

total number of possible clauses with k variables is equal to 2k
(
n
k

)
. A random

formula F is constructed by picking, with replacement, uniformly at random, m

clauses. Thus there are (2k
(
n
k

)
)m possible formulas.

We set m = αn and think of n and m as tending to ∞ with α fixed. This is

the regime displaying a SAT-UNSAT threshold.

It is useful to keep in mind that P[A] = E[1(A)] where 1(A) is the indicator

function of event A. In what follows probabilities and expectations are with

respect to the random formulas F .

Let S(F ) be the set of all assignments satisfying F and let |S(F )| be its

cardinality. Since F is a random formula, |S(F )| is an integer valued random

variable.

a) Show the Markov inequality P[F satisfiable] ≤ E[|S(F )|].

b) Fix an assignement x. Show that P[x satisfiesF ] = (1− 2−k)m. Then deduce

that

E[|S(F )|] = 2n(1− 2−k)m.

c) Deduce the upper bound

αs <
ln 2

| ln(1− 2−k)|
.

For k = 3 this yields αs < 5.191.

12.6 Bound by counting a restricted set of assignments. This is a

follow-up of the previous exercise. You will study a more subtle counting argu-

ment which leads to an important improvement by Kirousis, Kranakis, Krizanc

and Stamatiou, Approximating the Unsatisfiability Threshold of Random For-

mulas, in Random Struct and Algorithms (1998). This type of method can be

further refined and has led to better bounds.

We define the set Sm(F ) of maximal satisfying assignments as follows. An

assignment x ∈ Sm(F ) iff:

• x satisfies F ,
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• for all i such that xi = 0 (in x), the single flip xi → 1 yields an assignment -

call it xi - that violates F .

a) Show that if F is satisfiable then Sm(F ) is not empty. Hint: proceed by

contradiction.

b) Show as in the first exercise the Markov inequality P[F satisfiable] ≤ E[|Sm(F )|]

c) Show that

E[|Sm(F )|] = (1− 2−k)m
∑
x

P[∩i:xi=0 (x
i violatesF ) | x satisfiesF ].

d) Fix x. The events Ei ≡ (xi violatesF ) are negatively correlated, i.e

P[∩i:xi=0Ei | x satisfiesF ] ≤
∏

i:xi=0

P[Ei | x satisfiesF ]

For the full proof which uses a correlation inequality (of FKG type) we refer to

the reference given above. Here is a rough intuition for the inequality. First note

that if xi = 0 and xi violates F , there must be some set Si of clauses (in F ) that

are satisfied only by this variable xi = 0 (this set might contain only one clause).

This restricts the possible formulas contributing to the event Ei. Second note

that sets Si, Sj corresponding to different such variables xi = 0, xj = 0 must be

disjoint. This ”repulsion” between the sets Si and Sj puts even more restrictions

on the possible formulas, compared to a hypothetical situation where the events

(and thus the sets Si and Sj) would have been independent.

e) Now show that

P[Ei | x satisfiesF ] = 1−
(
1−

(
n−1
k−1

)
(2k − 1)

(
n
k

))m

.

Hint: note that in the event Ei there must be at least one clause containing

xi = 0 and containing other variables that do not satisfy it.

f) Deduce from the above results that limn→0 P[F satisfiable] = 0 as long as α

satisfies

(1− 2−k)α(2− e−
αk

2k−1 ) < 1.

The improvement compared with the first exercise resides in the factor e
− αk

2k−1 .

A numerical evaluation for k = 3 yields the bound αs < 4.667.
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— figure —

Figure 12.3 The replica symmetric prediction for the entropy (12.41) at K = 3. This
curve predicts a SAT-UNSAT threshold at α ≈ 4.677 which is not consistent with
known rigorous upper bounds.
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14 Spatial Coupling and Nucleation
Phenomenon

So far we have seen that a variety of problems can be phrased in a natural way in

terms of marginalizing a highly-factorized function. Message-passing algorithms

are then the logical choice to accomplish this marginalization and we have seen

how such algorithms perform in the thermodynamic limit.

Perhaps more surprisingly, we saw that the same quantities which were im-

portant for the analysis of the suboptimal message-passing algorithm reappeared

when we looked at the seemingly more fundamental question of determining

static thresholds, like the MAP threshold or the SAT/UNSAT threshold. The

Maxwell construction is a graphical representation of this phenomenon.

We will now tie these two threads together. We will discuss a generic construc-

tion, called spatial coupling, which can be applied to a wide range of graphical

models. The idea is to take many copies of a graphical model, to place them

next to each other on a line and then to start connecting these models by “ex-

changing edges” in such a way that the local structure of the graphical model

remains unchanged but that globally we create a larger graphical model which

forms a one-dimensional chain. If in addition we impose suitable conditions at

the boundaries of the model, this larger graphical model behaves very well un-

der message-passing. Roughly speaking, the performance of the large spatially-

coupled model under message-passing (in terms of the resulting threshold) is as

good as if we had done optimal processing on the original graphical model.

For the most part we will only discuss the phenomenon but we will not give

proofs. We will see how this phenomenon has again a nice physical interpretation.

In fact – it is what is called the nucleation phenomenon in physics. Nucleation

explains amongst other things how crystals grow, starting with a seed or nucleus.

We will discuss two important consequences of the nucleation phenomenon.

First, whenever we are in control of the graphical structure and the size of

the graph is not very crucial, it is natural to construct the graph according

to the above recipe. This results in graphs which are well suited for message-

passing processing and give very good performance. E.g., for the coding problem

this construction makes it possible to design codes which, under BP decoding,

are not only provably capacity-achieving for a particular channel, but are in

fact universally so, i.e., they are capacity-achieving for the whole class of BMS

channels. A similar construction is possible for the compressive sensing problem.

There is a second, equally important application of the idea, namely to use
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spatial coupling as a proof technique. Consider e.g. the case of the K-SAT prob-

lem. Also in this case we can use spatial coupling. This means we can construct

spatially-coupled K-SAT formulas, and it is easier to find satisfiable solutions

for such formulas than for the uncoupled ones. But what is the use of this? In

coding, we were in charge of picking the code, and so we can pick coupled ones.

The same thing applies for compressive sensing. We do not have the same degree

of freedom for the constraint satisfaction problem where the formula is given

to us. The idea is the following. If we are able to analyze the performance of a

message-passing algorithm on coupled formulas then we can use the so-called in-

terpolation method to show that this algorithmic threshold is also a lower bound

on the SAT/UNSAT threshold of the uncoupled ensemble. So in this case we use

spatial coupling only as a thought experiment. Indeed, the same method can be

used in the context of coding to prove that the MAP threshold of the uncoupled

formula is at least as large as the area threshold. Together with the upper bound

on the MAP threshold which we derived in Chapter 10 this shows that the MAP

threshold of the uncoupled ensemble is equal to the area threshold.

In the remainder of the chapter we go over our three running examples. In

each case we describe the construction, the performance of the coupled system,

as well as the consequences for our problem at hand.

14.1 Coding

There are many possible ways of constructing coupled graphical models from

uncoupled ones. The “saturation phenomenon” is fairly robust with respect to

the exact way of how we construct coupled models. So the difference lies mostly

in how convenient the construction is either from a practical perspective or for

the purpose of proofs. We present below two generic ways to achieve the spatial

coupling. We start with the “protograph” construction. It has a very good per-

formance and the additional structure is well suited for implementations. Our

second construction is a “random” model. This model is well suited for proofs.

Indeed, in the sequel we exclusively use the random model when it comes to

showing plots and to formulating theorems.

Protograph Construction

To start, consider a protograph of a standard (3, 6)-regular ensemble (see (?, ?)

for the definition of protographs). It is shown in Figure 14.1. There are two

variable nodes and there is one check node. LetM denote the number of variable

nodes at each position. For our example, M = 100 means that we have 50 copies

of the protograph so that we have 100 variable nodes at each position. For all

future discussions we will consider the regime where M tends to infinity.

Next, consider a collection of (2L+1) such protographs as shown in Figure 14.2.

These protographs are non-interacting and so each component behaves just like
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Figure 14.1 Protograph of a standard (3, 6)-regular ensemble.

-L 0 L

Figure 14.2 A chain of (2L+ 1) protographs of the standard (3, 6)-regular ensembles
for L = 9. These protographs do not interact.

a standard (3, 6)-regular component. In particular, the belief-propagation (BP)

threshold of each protograph is just the standard threshold, call it ϵBP(dv =

3, dc = 6). Slightly more generally: start with an (dv, dc = kdv)-regular ensemble

where dv is odd so that ⌊l/2⌋ = (dv − 1)/2 ∈ N.
We will now “coupled” these copies. To achieve this coupling, connect each

protograph to ⌊l/2⌋ protographs “to the left” and to ⌊l/2⌋ protographs “to the

right.” This is shown in Figure 14.3 for the two cases (dv = 3, dc = 6) and

(dv = 7, dc = 14).

Note that ⌊l/2⌋ extra check nodes are added on each side to connect the

“overhanging” edges at the boundary. This reduces the rate of this ensemble

from 1− dv

dc
= k−1

k to

R(dv, dc = kdv, L) =
(2L+ 1)− (2(L+ ⌊l/2⌋) + 1)/k

2L+ 1

=
k − 1

k
− 2⌊l/2⌋
k(2L+ 1)

,

Note that this rate loss decreases with the length of the chain. Therefore, in

practice we want to pick the length not too small. Of course, this increases the

blocklength and so there is a natural trade-off between the block length and the

rateloss due to the boundary.

In the above construction we had to assume that dv was odd and also the

“width” of the connection was linked directly to the degree dv. In this case

the construction leads to the very symmetric ensemble. It is not very hard to
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-L · · · -4 -3 -2 -1 0 1 2 3 4 · · · L

-L · · · -4 -3 -2 -1 0 1 2 3 4 · · · L

Figure 14.3 Two coupled chains of protographs with L = 9 and (dv = 3, dc = 6) (top)
and L = 7 and (dv = 7, dc = 14) (bottom), respectively.

extend this construction to cases where dv is even and so that “width” of the

connection is no longer directly linked to dv. But instead of following this path,

let us directly go to another extreme and introduce an ensemble which includes

much more randomness.

Random Construction

For the purpose of analysis, the following random ensemble is much betters

suited. Let us assume that dc ≥ dv, so that the ensemble has a non-trivial design

rate.

We assume that the variable nodes are at positions [−L,L], L ∈ N. At each

position there are M variable nodes, M ∈ N. Conceptually we think of the check

nodes to be located at all integer positions from [−∞,∞]. Only some of these

positions actually interact with the variable nodes. At each position there are
dv

dc
M check nodes. It remains to describe how the connections are chosen.

Rather than assuming that a variable at position i has exactly one connection

to a check node at position [i− ⌊l/2⌋, . . . , i+ ⌊l/2⌋], we assume that each of the

dv connections of a variable node at position i is uniformly and independently

chosen from the range [i, . . . , i + w − 1], where w is a “smoothing” parameter.

In the same way, we assume that each of the dc connections of a check node at

position i is independently chosen from the range [i−w+1, . . . , i]. We no longer

require that dv is odd.

More precisely, the ensemble is defined as follows. Consider a variable node at

position i. The variable node has dv outgoing edges. A type t is a w-tuple of non-
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negative integers, t = (t0, t1, . . . , tw−1), so that
∑w−1

j=0 tj = dv. The operational

meaning of t is that the variable node has tj edges which connect to a check node

at position i + j. There are
(
dv+w−1

w−1

)
types. Assume that for each variable we

order its edges in an arbitrary but fixed order. A constellation c is an dv-tuple,

c = (c1, . . . , cdv ) with elements in [0, w− 1]. Its operational significance is that if

a variable node at position i has constellation c then its k-th edge is connected

to a check node at position i + ck. Let τ(c) denote the type of a constellation.

Since we want the position of each edge to be chosen independently we impose a

uniform distribution on the set of all constellations. This imposes the following

distribution on the set of all types. We assign the probability

p(t) =
|{c : τ(c) = t}|

wdv
.

PickM so thatMp(t) is a natural number for all types t. For each position i pick

Mp(t) variables which have their edges assigned according to type t. Further,

use a random permutation for each variable, uniformly chosen from the set of all

permutations on dv letters, to map a type to a constellation.

Under this assignment, and ignoring boundary effects, for each check position

i, the number of edges that come from variables at position i− j, j ∈ [0, w− 1],

is M dv

w . In other words, it is exactly a fraction 1
w of the total number Mdv of

sockets at position i. At the check nodes, distribute these edges according to a

permutation chosen uniformly at random from the set of all permutations on

Mdv letters, to theM dv

dc
check nodes at this position. It is then not very difficult

to see that, under this distribution, for each check node each edge is roughly

independently chosen to be connected to one of its nearest w “left” neighbors.

Here, “roughly independent” means that the corresponding probability deviates

at most by a term of order 1/M from the desired distribution. As discussed

beforehand, we will always consider the limit in which M first tends to infinity

and then the number of iterations tends to infinity. Therefore, for any fixed

number of rounds of DE the probability model is exactly the independent model

described above.

lemma 14.1 (Design Rate) The design rate of the ensemble (dv, dc, L, w), with

w ≤ 2L, is given by

R(dv, dc, L, w) = (1− dv
dc

)− dv
dc

w + 1− 2
∑w

i=0

(
i
w

)dc

2L+ 1
.

Proof Let V be the number of variable nodes and C be the number of check

nodes that are connected to at least one of these variable nodes. Recall that we

define the design rate as 1− C/V .

There are V = M(2L+ 1) variables in the graph. The check nodes that have

potential connections to variable nodes in the range [−L,L] are indexed from −L
to L+w−1. Consider theM dv

dc
check nodes at position −L. Each of the dc edges

of each such check node is chosen independently from the range [−L−w+1,−L].
The probability that such a check node has at least one connection in the range
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[−L,L] is equal to 1−
(
w−1
w

)dc
. Therefore, the expected number of check nodes

at position −L that are connected to the code is equal to M dv

dc
(1−

(
w−1
w

)dc
). In

a similar manner, the expected number of check nodes at position −L + i, i =

0, . . . , w−1, that are connected to the code is equal to M dv

dc
(1−

(
w−i−1

w

)dc
). All

check nodes at positions −L+w, . . . , L−1 are connected. Further, by symmetry,

check nodes in the range L, . . . , L+w−1 have an identical contribution as check

nodes in the range −L, . . . ,−L+w− 1. Summing up all these contributions, we

see that the number of check nodes which are connected is equal to

C =M
dv
dc

[2L− w + 2
w∑
i=0

(1−
( i
w

)dc
)].

Discussion: In the above lemma we have defined the design rate as the normal-

ized difference of the number of variable nodes and the number of check nodes

that are involved in the ensemble. This leads to a relatively simple expression

which is suitable for our purposes. But in this ensemble there is a non-zero prob-

ability that there are two or more degree-one check nodes attached to the same

variable node. In this case, some of these degree-one check nodes are redundant

and do not impose constraints. This effect only happens for variable nodes close

to the boundary. Since we consider the case where L tends to infinity, this slight

difference between the “design rate” and the “true rate” does not play a role.

We therefore opt for this simple definition. The design rate is a lower bound on

the true rate.

Density Evolution

The protograph construction has a slightly better performance if we look at

codes of finite length and also, due to the extra structure, it might be easier to

implement. On the other hand, the random ensemble is easier to deal with when

it comes to proofs. Since asymptotically they behave essentially the same, we

concentrate in the sequel on the random case.

The (dv, dc, L, w) ensemble is just an LDPC ensemble with some additional

structure. It’s asymptotic performance can hence again be assessed via den-

sity evolution. Therefore, as a first step let us write down the density evolution

equations. The only difference compared to the DE equations of the uncoupled

ensemble is that now we have a potentially different erasure probability for every

position. The state is therefore no longer a scalar quantity but a vector of the

length of the chain.

definition 14.2 (Density Evolution of (dv, dc, L, w) Ensemble) Let xi, i ∈ Z,
denote the average erasure probability which is emitted by variable nodes at

position i. For i ̸∈ [−L,L] we set xi = 0. For i ∈ [−L,L] the FP condition



14.1 Coding 291

implied by DE is

xi = ϵ
(
1− 1

w

w−1∑
j=0

(
1− 1

w

w−1∑
k=0

xi+j−k

)dc−1
)dv−1

. (14.1)

If we define

yi =
(
1− 1

w

w−1∑
k=0

xi−k

)dc−1

, (14.2)

then (14.1) can be rewritten as

xi = ϵ
(
1− 1

w

w−1∑
j=0

yi+j

)dv−1

.

EXIT Curves

As for uncoupled ensembles we can draw EXIT curves for the coupled case. Recall

that in the uncoupled case, the EXIT curve is a plot of the channel parameter

ϵ as a function of the EXIT value (1− (1− x)r−1)l, see e.g., Figure 10.4. In the

uncoupled case we had a simple analytical formula for this curve. For the coupled

case, no such formula exists, but one can compute the curves numerically.

Figure 14.4 shows the EXIT curves for the (dv = 3, dc = 6, L) for L =

1, 2, 4, 8, 16, 32, 64, and 128. Note that these EXIT curves show a dramatically
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Figure 14.4 EBP EXIT curves of the ensemble (dv = 3, dc = 6, L) for
L = 1, 2, 4, 8, 16, 32, 64, and 128. The BP/MAP thresholds are
ϵBP/MAP(3, 6, 1) = 0.714309/0.820987, ϵBP/MAP(3, 6, 2) = 0.587842/0.668951,
ϵBP/MAP(3, 6, 4) = 0.512034/0.574158, ϵBP/MAP(3, 6, 8) = 0.488757/0.527014,
ϵBP/MAP(3, 6, 16) = 0.488151/0.505833, ϵBP/MAP(3, 6, 32) = 0.488151/0.496366,
ϵBP/MAP(3, 6, 64) = 0.488151/0.492001, ϵBP/MAP(3, 6, 128) = 0.488151/0.489924. The
light/dark gray areas mark the interior of the BP/MAP EXIT function of the
underlying (3, 6)-regular ensemble, respectively.

different behavior compared to the EBP EXIT curve of the underlying ensemble.

These curves appear to be “to the right” of the threshold ϵMAP(3, 6) ≈ 0.48815.
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For small values of L one might be led to believe that this is true since the de-

sign rate of such an ensemble is considerably smaller than 1 − dv/dc. But even

for large values of L, where the rate of the ensemble is close to 1 − dv/dc, this
dramatic increase in the threshold is still true. Empirically we see that, for L

increasing, the EBP EXIT curve approaches the MAP EXIT curve of the under-

lying (dv = 3, dc = 6)-regular ensemble. In particular, for ϵ ≈ ϵMAP(dv, dc) the

EBP EXIT curve drops essentially vertically until it hits zero.

Decoding Wave

“The” key to understanding why spatially coupled ensembles perform so well is

to study their FPs under density evolution. Recall that for uncoupled ensembles

the FPs are scalars. For the coupled case the state of the system is no longer a

scalar but a vector, where the length of the vector is equal to the length of the

chain. Due to this fact, there are some very interesting FPs which appear.

Assume we are operating much above the threshold. Let us assume that we

decode until we are stuck and let us plot the final erasure probability at each

section along the chain. Then it is reasonably to expect that this erasure proba-

bility is equal to the erasure probability which we would observe for an uncoupled

ensemble. The only exception are positions very close to the boundary where the

behavior is a little bit better due to the extra information we have there. The

top picture in Figure 14.6 shows this situation together with the position of the

FP on the EXIT curve. Since the FP is symmetric with respect to the middle of

the chain, only one half is shown. Imagine that we now slowly lower the erasure

probability of the channel. Due to the improved conditions at the boundary, the

“effective” erasure probability at the boundary will at some point be below the

BP threshold of the uncoupled ensemble and the BP decoder will be able to

decode the bits at the boundary. But once these bits are decoded this will lower

the “effective” erasure probability for bits a little bit further into the chain. This

effect propagates like a wave and the whole chain will get decoded. The middle

and the bottom picture in Figure 14.6 show the wave in various stages.

The perhaps the most surprising aspect is that the BP threshold for the cou-

pled chain is exactly the area threshold of the uncoupled one.

¡¡¡¡¡¡¡ .mine Figure 14.6 shows the FP for various parameters of the channel to-

gether with the position of the FP on the EXIT curve. Since the FP is symmetric

with respect to the middle of the chain, only one half is shown.

Main Statement

theorem 14.3 (BP Threshold of the (dv, dc, L, w) Ensemble) Consider trans-

mission over the BEC(ϵ) using random elements from the ensemble (dv, dc, L, w).

Let ϵBP(dv, dc, L, w) denote the BP threshold and let R(dv, dc, L, w) denote the

design rate of this ensemble.
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Figure 14.5 FPs for various parameters of the channel together with the position of
the FP on the EXIT curve.

Figure 14.6 FPs for various parameters of the channel together with the position of
the FP on the EXIT curve.

Then, in the limit as M tends to infinity, and for w sufficiently large

ϵBP(dv, dc, L, w) ≤ ϵMAP(dv, dc, L, w) ≤ ϵMAP(dv, dc)+
w − 1

2L(1−(1−xMAP(dv, dc))dc−1)dv
,

(14.3)

ϵBP(dv, dc, L, w) ≥
(
ϵMAP(dv, dc)−w− 1

8

8dvdc +
4dcd

2
v

(1−4w− 1
8 )dc

(1−2−
1
dc )2

)
×
(
1− 4w−1/8

)dcdv
.

(14.4)
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In the limit as M , L and w (in that order) tend to infinity,

lim
w→∞

lim
L→∞

R(dv, dc, L, w) = 1− dv
dc
, (14.5)

lim
w→∞

lim
L→∞

ϵBP(dv, dc, L, w) = lim
w→∞

lim
L→∞

ϵMAP(dv, dc, L, w)

= ϵMAP(dv, dc). (14.6)

Roughly speaking, the above theorems states that the BP threshold of the

coupled chain is equal to its MAP threshold and also to the MAP threshold of the

uncoupled chain. The statements in the theorem are considerably weaker than

what can be observed empirically. In particular, the convergence with respect to

the coupling width is conjectured to be exponential in w.

A very similar statement can be shown to hold for transmission over general

channels. In particular, one can show that these ensembles are good universally

for the whole class of BMS channels.

14.2 Compressive Sensing

The idea of spatial coupling can also be used in compressive sensing to attain

optimal performance by message passing. In a nutshell, the idea is to construct

appropriate sensing matrices that correspond to a “spatially coupled” factor

graph and then to apply an AMP type algorithm. The performance of the al-

gorithm is then analyzed through a state evolution recursion tailored to the

spatially coupled graph. This turns out to be a one-dimensional recursion which

displays similar phenomena than those described for the BEC.

In Chapter 8 our starting point was the Lasso estimator which is a reason-

able starting point to develop a universal algorithm that doe not assume a prior

knowledge of the signal distribution in the class Fϵ. Recall that the state evolu-

tion equation in Chapter ?? has at most one fixed point. Therefore, intuitively,

one does not expect that any improvement in performance can be obtained by

spatial coupling. This has indeed been corroborated by numerical simulations.

We will therefore turn our attention to a setting where the prior distribution of

the signal is known.

AMP when the prior is known

We assume that the signal distribution is from the class Fϵ and that it is known.

In other words p0(x) = (1 − ϵ)δ0(x) + ϵϕ0(x) for a known ϕ0(x) (for example a

Gaussian distribution). As explained in Chapter 3, in this setting the optimal

estimator is the MMSE estimator (3.35). In Chapter 5 we went through the be-

lief propagation equations in Example 16. This approach can be systematically

developed in order to recursively compute the BP-estimate. Furthermore, fol-

lowing the same route as in Chapter 8, these message-passing equations can be
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simplified in order to arrive at an AMP algorithm that is very similar to (8.37).

By skimming through the previous chapters one can almost guess the form of

the new algorithm.

In (8.37) the update of the AMP-estimate uses the soft thresholding function

η(y, λ) found by solving the scalar Lasso problem. The reader should not be too

surprised that now the AMP updates involve a thresholding function given by the

MMSE estimator of the scalar case. Consider a scalar measurement y = x+ νz

of “signal” x affected by Gaussian noise with variance ν2 (so Z ∼ N(0, 1)) the

thresholding function is

η0(y, ν) = E[X|X + νZ = y] =

∫
dxx p0(x)e

− (y−x)2

2ν2∫
dx p0(x)e

− (y−x)2

2ν2

.

We stress that η0(y, ν) is not universal and depends on the prior. Here ν plays

the role of a threshold level analogous to λ in the Lasso case. It will be adjusted

at each AMP iteration. The mean square error for this optimal estimator (of the

scalar problem) is the MMSE function1

mmse(ν−2) = E
[
(X − E[X|X + νZ])2

]
=

∫
dx p0(x)

∫
dz

e−
z2

2

√
2π

(x− η0(x+ νz, ν))2.

The AMP updates are the same than in Chapter 8 except η is replaced by η0,

x̂
(t+1)
i = η0

(
x
(t)
i +

m∑
a=1

Aair
(t)
a , ν(t)

)
, (14.7)

r(t)a = ya −
n∑

j=1

Aaj x̂
(t−1)
j + b(t)rt−1

a . (14.8)

If you go back to the derivation of the Onsager term in Chapter 8 you will see

that it can be traced back to a derivative of the soft thresholding function. You

can guess that now

b(t) =
1

δn

n∑
i=1

η′0
(
x
(t−1)
i +

m∑
a=1

Aair
(t−1)
a , ν(t)

)
. (14.9)

Similarly recall that in Chapter ?? we expressed the threshold level ν(t) thanks

to the MSE through (8.49). Here one arrives at the same conclusion, namely

(ν(t))2 = σ2 +
1

δ
(τ (t))2, (14.10)

where τ (t)2 is the average (normalized) MSE of the AMP algorithm (τ (t))2 =

limn→+∞
1
nE∥x̂

(t) − x0∥2. We can track its evolution thanks to the recursion

(same as (??) with correct η0-function)

(τ (t+1))2 = mmse((ν(t))−2). (14.11)

1 By convention the argument of the MMSE function is a signal-to-noise-ratio, here ν−2.
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In hindsight one can develop an interpretation for this equation: at time t + 1

the total quadratic error (τ (t+1))2 for the AMP estimate is given by the MMSE

of a scalar signal with effective noise variance σ2 + 1
δ (τ

(t))2 at time t.

Let us summarize. Equations (14.11) and (14.10) give the evolution of the

MSE and the threshold level. These quantities can be precomputed. Equations

(14.8) and (14.9) define the AMP algorithm, and allow to compute the estimates

for the signal.

Construction of the measurement matrix

Let us first explain the general idea. In the standard case considered so far, the

measurement matrices have iid entries Aai ∼ N (0, 1√
m
) so that ”their factor

graph” is a complete bipartite graph with m checks and n variables. The ratio

δ = m/n is the sampling rate. Inspired by the construction of spatially coupled

codes one may try to use matrices associated to a spatial chain of L complete

bipartite graphs coupled across a window of size w. This turns out to be a

successful idea! The sampling rate is still equal to δ in the bulk of the chain.

At the boundary one has to add extra check nodes or equivalently one has to

oversample. Indeed, in order to create a seed that gets the nucleation process

started one needs a good estimate of the first few components of the signal. The

increase in sampling rate is negligible in the thermodynamic limit.

In practice, because the AMP algorithm updates purely local quantities (the

BP messages flowing along edges have been eliminated), one can forget about the

factor graph and specify directly the sensing matrix. You can convince yourself

that the sensing matrix described here has a factor graph that is a chain of

coupled complete bipartite graphs. There are many possible constructions and

ways to optimize the finite length performance. But these issues will not concern

us here, and we discus a similar construction which is similar to the one presented

in the coding case.

The signal has n components in total and we make m measurements. The

measurement matrix has n columns and m rows. Think of n given and m to

be determined later. Partition the columns in L groups2 c ∈ {1, . . . , L} with N
columns each, so N = n/L. Consider L + w − 1 groups of rows r ∈ {−(w −
2), . . . , 0, 1, . . . , L}, each with M = δN rows. The total number of measurements

ism = (w−1)M+ML = δn(1+(w−1)/L). The contribution of the oversampling

rate to the total rate m/n = δ(1 + (w − 1)/L) vanishes for large L.

Now consider an (L+ w − 1)× L matrix of variances Jrc. A simple choice is

Jr,c =

{
1

2w−1 if c ∈ {r − w + 1, . . . , r + w − 1}
0 otherwise

Here we use a simple square-like and symmetric shape function for Jr,c. One can

generalize this to Jr,c = ρJ (ρ|r − c|) with ρ = (2w − 1)−1 and a shape function

2 One can visualize the groups as positions along the chain.
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J (z) that is positive, supported on [−1,+1] and
∫ +1

−1
dz J (z) = 1. Let us also

note that taking larger variances for the seeding part of the matrix may lead to

better performance. In the sequel all equations are valid for general choices of

Jr,c.

To specify the matrix elements of Aai, we introduce the notation R(a) and

C(i) for the groups (r and c) to which row a and column i belong. A simple

choice is to take iid entries

Aai ∼ (0,
1

M
JR(a),C(i))

We notice that by construction we have the normalization
∑

iA
2
ai ≈ 1, as in

the standard (uncoupled) case. This matrix has a band structure with a band of

height and width wM ×wN . However the correct regime in which the spatially

coupled model is used is N >> L so effectively the matrix is ”full”.

Spatially coupled AMP

The starting point - the BP equations - are exactly the same except they are

applied to a bigger factor graph. The derivation of the coupled AMP algorithm

then proceeds in the usual way by retaining only important terms in the regime

N → +∞ and L fixed.

It turns out that the resulting equations have a few extra complications.

Namely, due to coupling, the sensing matrix elements get ”renormalized” and the

threshold level as well as the Onsager term get ”averaged”. The AMP equations

now read

x̂
(t+1)
i = η0

(
x
(t)
i +

m∑
a=1

Q
(t)
R(a),C(i)Aair

(t)
a , ν

(t)
C(i)

)
(14.12)

r(t)a = ya −
n∑

j=1

Aaj x̂
(t−1)
j + b

(t)
R(a)r

t−1
a (14.13)

where

b
(t)
R(a) =

1

δ

L∑
c=1

JR(a),cQ
t−1
R(a),c

{
1

N

∑
i s.tC(i)=c

η′0
(
x
(t)
i +

m∑
b=1

Q
(t)
R(b),C(i)Abir

(t)
b , ν

(t)
C(i)

)}

The threshold levels ν
(t)
C(i) and the weights QR(a),C(i) depend only on the local

MSE (τ
(t)
c )2 = limN→+∞

1
N

∑
i s.tC(i)=c E∥x̂

(t)
i − x0,i∥22. These quantities can

all be pre-computed from state evolution. The threshold level is given by (a

generalization of (14.10))

(ν(t)c )−2 =
∑
r

Jr,c
(
σ2 +

1

δ

∑
c

Jr,c(τ
(t)
c )2

)−1
, (14.14)

This equation says that the threshold for estimates of the signal components in

group c is given by an average of the signal to noise ratios for measurements in
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the groups r ∈ {c−w+ 1, . . . , c+w− 1}, and the later are themselves given by

an average of the local MSE in the groups c ∈ {r − w + 1, . . . , r + w − 1}. The
sensing matrix gets renormalized by weights

Qr,c =

(
σ2 + 1

δ

∑
c Jr,c(τ

(t)
c )2

)−1∑
r Jr,c

(
σ2 + 1

δ

∑
c Jr,c(τ

(t)
c )2

)−1 .

Finally, the local MSE evolves as

(τ (t+1)
c )2 = mmse((ν(t)c )−2), c = 1, . . . , L (14.15)

Equations (14.14)-(14.15) are the one dimensional state evolution recursion and

can be used to derived the performance of AMP on the spatially coupled model.

The reader should ponder on this recursion and realize that its structure is

perfectly analogous to the DE recursion in coding for the BEC.

Analysis of Performance and Phase Diagram

The discussion in this paragraph is valid for a fairly wide class of functions ϕ0(x),

but a good exercise for the reader is to verify the claims for a Gaussian ϕ0(x).

This can be done analytically for the uncoupled case and numerically in the

coupled case. Notice that in this case η0(y, s) can be explicitly be computed.

Consider the recursion (14.11) and look at the corresponding fixed point equa-

tion. Let

δ̃(p0) ≡ sup
ν
{ν−2mmse(ν−2)} > ϵ

Here the equality is definition. The inequality is a fact, which follows by remark-

ing limν→0 ν
−2mmse(ν−2) = ϵ. For a sampling rate δ > δ̃(p0) there exists only

one fixed point solution (τgood)
2 = O(σ2). This corresponds to correct recon-

struction in the small noise limit σ → 0. Now, decrease the sampling rate in the

range ϵ < δ < δ̃(p0). One finds two or more stable fixed points (as well as unsta-

ble ones) for all σ2 > 0. Besides the ”good” fixed point satisfies (τgood)
2 = O(σ2)

there is a ”bad” one, i.e. (τbad)
2 = Θ(1) as σ → 0. Under the (natural) initial

condition (τ0)2 = +∞ one always tends to (τbad)
2. This means that the noise

sensitivity limσ→0MSE/σ2 diverges, and exact reconstruction is not possible

even for very small noise. In this context δ̃(p0) is the algorithmic threshold of

AMP. The analogous quantity in our coding model is ϵBP and it the CW model

it is the spinodal point.

This threshold is lower than the Lasso (or l1) threshold derived in Chapter ??.

This is not too surprising since the later concerns the worst case distribution for

p0 ∈ Fϵ. It is instructive to compute the phase diagram and plot the optimal,

Lasso and AMP phase transition lines in the (ϵ, δ) plane.

Let us now turn our attention to the coupled model. The performance is an-

alyzed through the one dimensional recursion (14.14)-(14.15) which gives the

evolution of the MSE profile τ
(t)
c , as a function of time t and position along the
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chain c = 1, . . . , L. For δ > δ̃(p0) the local MSE tends to (τc,good)
2 = O(σ2)

uniformly along the chain. The advantage brought by spatial coupling appears

for a sampling rate in the range ϵ < δ < δ̃(p0). For L → +∞ and fixed w ≥ 2

there is a δ̃(p0, w) < δ̃(p0) such that for δ > δ̃(p0, w) the local MSE per position

is bounded by O(σ2), and in particular the noise sensitivity remains finite. Be-

cause of the oversampling of the first few signal components, the MSE falls down

to a level O(σ2) for these components, and then an estimation wave propagates

along the chain. Eventually the local MSE converges to the good fixed point for

all positions τgood,c = O(σ2). Furthermore one observes that δ̃(p0, w) → ϵ as

w → +∞. In other words in the regime N >> L >> w >> 1 the dynamical

AMP threshold saturates towards the optimal phase transition threshold. Figure

?? illustrates the phase diagram and the phase transition lines in teh (ϵ, δ) plane

for various values of L and w.

14.3 K-SAT

For the random K-SAT problem we discussed several algorithms. The best one

is BP-guided decimation. We described this algorithm and its empirical perfor-

mance in Chapter 9.3. If we apply spatial coupling to this algorithm we see no

boost in performance. This does not mean that spatial coupling does not help for

this problem. It just means that BP-guided decimation is not the right setting for

the nucleation phenomenon. The “right” setting is in fact a more sophisticated

algorithm called survey propagation.

Rather than pursuing this avenue, let us go to a simpler algorithm, namely the

UCP algorithm which we discussed in Chapter 9. We will see that spatially cou-

pled formulas have a significantly higher threshold under UCP than uncoupled

ones. Combined with the interpolation method this gives good lower bounds on

the SAT/UNSAT threshold of uncoupled systems.

Construction

As for the case of coding, there are various ways of constructing coupled K-SAT

formulas. E.g., Figure 14.7 shows the equivalent of a protograph ensemble for

the case K = 3 where each clause at position i has exactly one connection to a

variable at position i, i+ 1, and i+ 2.

For the purpose of analysis it is again more convenient to consider a random

ensemble. As before, let w be a window size. Then, for each clause at position i

and for each of its K connections we independently and uniformly pick a variable

at a position in the range [i, i + w − 1] and connect it to this variable with a

uniformly chosen sign. This is the ensemble which we consider in the sequel.
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0 L− w

0 L− w L− 1

Figure 14.7 A “protograph”-like coupled K-SAT ensembles or K = 3.

Performance under the UCP Algorithm

Let us now focus on the UC algorithm for the coupled formulas. As for the un-

coupled case, the UC algorithm consists of two main steps: free and forced. The

operation of the algorithm at a forced step is clear: remove all the unit-clauses

until no further unit-clause exists. However, at a free step, depending on how

we might want to use the chain structure of the formula, we can have different

schedules for choosing a free variable. For a coupled formula, the schedule within

which we are choosing a variable in a free step is important

Consider for instance the following naive schedule – at a free step, pick a

variable uniformly at random from all the remaining variables and fix it by

flipping a coin. Computer experiments indicate that this naive schedule has no

threshold gain compared to the un-coupled ensemble. This is not surprising since

this schedule does not exploit the spatial (chain) structure of the formula. Hence,

in order for the UC algorithm to have a threshold improvement over the coupled

ensemble, we need to come up with schedules that exploit the additional spatial

structure of the formula. We proceed by illustrating one such successful schedule.

In the very beginning of the algorithm, all the check nodes have degree K and

there are no unit clauses. Hence, we are free to fix the variables in the first few

steps of the algorithm. Let us fix the variables from the left-most position (i.e.,

the boundary). If we do this then we are creating in effect a seed at the boundary

of the chain. Continuing this action at the free steps, we will eventually create

unit clauses and at these forced steps a natural choice is just to clear all the

unit clauses. However, when we are confronted with a free step, we will again

try to help this seed to grow inside the chain, i.e., we always fix variables from

the left-most possible position. Consequently, the schedule that we apply is as

follows.

• At a free step, pick a variable randomly from the left-most position at which

variables exists and fix it permanently by flipping a fair coin.

• At a forced step, remove unit clauses as long as they exist.

Computer experiments show that this schedule indeed exhibits a threshold

improvement over the un-coupled ensemble. E.g., for the coupled 3-SAT problem,

experiments suggest that the threshold of the UC algorithm is around 3.67. This
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is a significant improvement compared to the threshold of UC for the un-coupled

ensemble which is 8
3 .

To prove that indeed this schedule leads to this threshold we use again the

Wormald method. This means, we write down a set of differential equations which

describe the expected progress of the algorithm. Not surprisingly, the number of

differential equations we need scales linearly in the chain length.

Phases, Types, and Rounds

For the coupled ensemble, the analysis of the evolution of UC is much more in-

volved than the un-coupled ensemble. This is because of the fact that the schedule

we have used prefers the left-most variable position in a free step. Hence, the

number of variables in different positions will evolve differently. As an example,

one can easily see that during the algorithm, the first position that all its vari-

ables are set is the left-most position (i.e., position 0). After the evacuation of

position 0, position 1 becomes the left-most position of the graph and hence, the

second position that becomes empty of variables is position 1. Continuing in this

manner, the last position that is evacuated is position L + w − 2. With these

considerations, we consider L+w−1 phases for this algorithm (see Figure 14.8).

At phase p ∈ {0, 1, · · · , L+w − 2}, all the variables at positions prior to p have

been set permanently and as a result, at a free step we will pick a variable from

position p.

This statistical asymmetry in the number of variables at each position also

affects the the behavior of the number of check nodes in each position. As a

result, we consider types for the check nodes. For instance, consider a degree two

check node. It is easy to see that the probability that this degree two check node

is hit (removed or shortened) is greatly dependent on the position of variables

that it is connected to. This means that, dependent on the variable positions

to which they are connected, we have different types of degree two check nodes.

Clearly, the same statement holds for clauses of degree three, four, etc.

Let us now formally define the ingredients needed for the analysis. The no-

tation we use here is slightly hard to swallow immediately. Thus, for the sake

of maximum clarity, we try to uncover the details as smoothly as possible. We

consider rounds for this algorithm. Each round consists of one free step followed

by the forced steps that follow it. More precisely, at the beginning of each round

we perform a free step and then we clear out all the unit-clauses as long as they

exist (forced steps). We let time t be the number of rounds passed so far. This

time variable will be called round time. The relation between t and the natural

time (the total number of permanent fixes) is not linear. We also let Li(t) be the

number of literals left in variable position i ∈ {0, 1, · · · , L+ w − 2}.
We now define the check types. Consider a coupled K-SAT formula to begin

with. For such a formula there are L sets of check nodes placed at positions

{0, 1, · · · , L}. Let us consider a specific position i ∈ {0, 1, · · · , L} and look at the

check nodes at position i. Each of these check nodes can potentially be connected
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Figure 14.8 A schematic representation of how the literals at each of the positions
vary in time. The horizontal axis corresponds to time t which is the number of free
steps. Here we have L = 11 and w = 3. This plot corresponds to an implementation of
the UC algorithm on a random coupled instance. The blue numbers below the plot
are the phases of the algorithm. In the beginning of the algorithm, we are in phase 0.
This phase lasts until all the literals in the first position are peeled off and as a result
ℓ0(t) reaches 0. We then go immediately to phase 1 and this phase lasts till ℓ1(t)
reaches 0 and so on. We have in total L+ w − 1 = 13 phases.

to any set of K variables resting in variable positions {i, i + 1, · · · , i + w − 1}.
Some thought shows that there are various types of check nodes depending on

the variable positions that they are connected to. For example, there is a type of

check nodes for which all of the K edges go only into a single variable position

j ∈ {i, i + 1, · · · , i + w − 1} or there is a type for with some of its edges go

to position i and the rest go to position i + 1 and so on. Also, as we proceed

through the UC algorithm, some of these checks are shortened to create new

types of checks with degrees less than K. We now explain a natural way to

encode these various types.

By C(t, i, τ) we mean the number of check nodes at check position i ∈ {0, 1, · · · , L}
that have type τ at round tme t. The type τ = (τ0, · · · , τw−1) is a w-tuple and

indicates that relative to position i, how many edges the check has in (variable)

positions i, i+1, · · · , i+w−1. The best way to explain τ is through an example.

Let us assume w = 4 and consider the set of check nodes at check position 20

that are only connected to variable positions 20, 22, 23 in the following way. For

each of these check nodes there are exactly two edges going to position 20, and

1 edge going to position 22 and 1 edge going to position 23 (thus each of these

checks have degree 4). Figure 14.9 illustrates a generic check node of this set.

We denote the number of these checks at time t by C(t, 20, (1, 0, 2, 1)). In
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Figure 14.9 A schematic representation of checks which contribute to
C(t, 20, (1, 0, 2, 1)). All the check nodes that contribute to C(t, i, τ), were initially (at
time 0) degree K check nodes resting at check position i. However, the algorithm has
evolved in a way that these check nodes have been deformed (possibly shortened or
remained unchanged) to have a specific type τ .

other words, the type is computed as follows: the check position number that

the check rests in is 20. This check is connected to a variable at position 20, and

2 variables at position 22, and a variable at position 23. So, relative to the check

position 20, we see the edge-tuple (1, 0, 2, 1). Let us now repeat and generalize:

By C(t, i, τ) we mean the number of check nodes, at time t, which rest in position

i, and τ is a w-tuple that indicates relative to variable position i, the number

of edges that go to positions i, i+ 1, · · · , i+ w − 1, respectively. One can easily

see that by summing up elements of the w-tuple τ = (τ0, · · · , τw−1), we find the

degree of the corresponding check type. We denote the degree of a type τ by

deg(τ). It is also easy to see that there are
(
d+w−2
d−1

)
different types of degree d

for d ∈ {2, 3, · · · ,K}. We are now ready to write the differential equations. Our

approach is as follows. Assume the phase of the algorithm is p and we are in a

round t. At a free step, we fix a variable at position p (free step). This will create

a number of forced steps in each of the positions p, p+1, · · · , L+w− 1. We first

compute the average of these forced fixes in each variable position as a function

of the number of degree two check nodes. Using these averages, we then update

the average number of check and variable nodes at each position. We proceed by

explaining a key property for the analysis.

The Differential Equations

Now, having the vector β we can find how the number of variables and checks

evolve. For all i ≥ 0,

∆Li(t) = Li(t+ 1)− Li(t) = −2βi(t). (14.16)

To see how the check types evolve, we note that for a given check type there are

two kinds of flows to be considered. A negative flow going out and a positive

flow coming in from the checks of higher degrees. In this regard, for a type

τ = (τ0, · · · , τw−1) with deg(τ) < K let ∂τ be the set of types of degree deg(τ)+1
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such that by removing one edge from them we reach to the type τ . The set ∂τ

consists of w types which we denote by τd, d ∈ {0, 1, · · · , w − 1}, such that

τd = τ + (0, · · · ,
d
1, · · · , 0), (14.17)

where + denotes vector addition in the field of reals. Thus, if deg(τ) < K, we

obtain

∆C(t, i, τ) = −2
w−1∑
d=0

βi+d(t)
τdc(t, i, τ)

Li+d(t)
+

w−1∑
d=0

(1 + τd)βi+d(t)
C(t, i, τd)

Li+d(t)
. (14.18)

The right-hand side of (14.18) has two parts. The first part corresponds to the

flow that is going out of C(t, i, τ) and has negative sign. The right part is the

incoming flow from the check nodes of higher degrees. In the case where deg(τ) =

K, we only have an outgoing flow since no check node with higher degrees exist.

Hence, for the case deg(τ) = K we can write

∆C(t, i, τ) = −2
w−1∑
d=0

βi+d(t)
τdc(t, i, τ)

Li+d(t)
. (14.19)

We now write the initial conditions for the variables and check types. Firstly,

note that Li(0) = 2N . In the beginning of the algorithm, all checks are of degree

K, thus for types τ such that deg(τ) < K, we have C(0, i, τ) = 0. For deg(τ) = K

we have

C(0, i, τ) = αN

(
K

τ0,τ1,··· ,τw−1

)
wK

. (14.20)

In order to write the differential equations, we re-scale the (round) time by N ,

i.e.

t← t

N
, (14.21)

and also normalize all our other numbers by N , i.e.,

c(t, ·, ·) = C(Nt, ·, ·)
N

and ℓi(t) =
Li(Nt)

N
. (14.22)

We then obtain for i ∈ {0, 1, · · · , L+ w − 2},

dℓi(t)

dt
= −2βi(t). (14.23)

For i ∈ {0, 1, · · · , L− 1} and deg(τ) < K we have

dc(t, i, τ)

dt
= −2

w−1∑
d=0

βi+d(t)
τdc(t, i, τ)

ℓi+d(t)
+

w−1∑
d=0

(1 + τd)βi+d(t)
c(t, i, τd)

ℓi+d(t)
, (14.24)

and otherwise if deg(τ) = K we have

dc(t, i, τ)

dt
= −2

w−1∑
d=0

βi+d(t)
τdc(t, i, τ)

ℓi+d(t)
. (14.25)
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K 3 4 5

αUC(K) 2.66 4.50 7.58

αUC,L=50,w=3(K) 3.67 7.81 15.76

Table 14.1 First line: The thresholds for UCP on the uncoupled ensemble. Second line:
UCP threshold for a coupled chain with w = 3, L = 50.

The vector β̄ is also found as follows. For p being the current phase, we have

β(t) = (β0(t), · · · , βL+w−2(t))
T = (I −A)−1ep, (14.26)

where A = [Ai,j ](L+w−1)(L+w−1) has the form

Ai,j =
1

ℓj(t)


∑i

k=i−w+1 2c(t, k, πi−k,i−k) i = j,∑i
k=j−w+1 c(t, k, πi−k,j−k) 0 <| i− j |< w,

0 otherwise

(14.27)

Finally, the initial conditions are given by:

ℓi(0) = 2, for 0 ≤ i ≤ L+ w − 2

c(0, i, τ) =

{
α
( K
τ0,τ1,··· ,τw−1

)
wK if deg(τ)= K and 0 ≤ i ≤ L− 1,

0 otherwise
(14.28)

Numerical Implementation

We have implemented the above set of differential equations in C. We define

the threshold αUC,L,w(K) as the highest density for which the spectral norm

(largest eigenvalue) of the matrix A is strictly less than one throughout the whole

algorithm. A practical point to notice here is that, for the sake of implementation,

we assume a phase p finishes when its corresponding variable ℓp(t) goes below

a (very) small threshold ϵ > 0. In our implementations, we have typically taken

ϵ = 10−5. However, it can be made arbitrarily small as long as the computational

resources allow.

Table 14.1 shows the value of αUC,L,w(K) with L = 50 and w = 3 for different

choices of K. As we observe from Table 14.1, for the UC algorithm with the

specific schedule mentioned above, there is a significant threshold improvement

over the un-coupled ensemble.

For L = 50, w = 3,K = 3 and several values of α, we have plotted in Fig-

ure 14.10 the evolution of largest eigenvalue of A as a function of round time t.

In order to characterize analytically the ultimate threshold for the UC algo-

rithm when L and w grow large, we proceed by further analyzing the set of

differential equations.
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Figure 14.10 The largest eigenvalue of the matrix A, plotted versus the round time t
(the number of rounds divided by the total number of variables NL). The plots
correspond to an actual implementation of the UC algorithm for the 3-SAT coupled
ensemble with L = 50 and w = 3. As we observe, for α < 3.67, there is a gap between
the largest eigenvalue of A and the value 1 throughout the UC algorithm. By
increasing α this gap shrinks to 0. For α = 3.66 (the right-most plot) this gap is
around 0.006.



15 Spatial Coupling as a proof
technique

Spatial coupling has another use besides engineering constructions for perfor-

mant coding or compressed sensing designs. It can be used as a proof technique

for deriving rigorous results on the phase diagrams of our problems. It is the goal

of this chapter to expose the main principles of this idea.
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Message passing algorithms have been very successful in providing efficient al-

gorithms in the realm of coding and compressive sensing. In the Bethe and

associated replica symmetric variational formulas for the free energy enable us

to calculate phase transition thresholds for these models. Finally, the Maxwell

construction and spatial coupling technique tie together the algorithmic and

variational approaches, and in particular the dynamical and phase transition

thresholds. On the other hand these methods are not as successful for generic

constraint satisfaction problems such as K-SAT. For example, plain belief prop-

agation does not allow to find solutions of a K-SAT formula and had to be

supplemented by a decimation process. Belief propagation guided decimation

finds solutions up to some constraint density, but it is not clear if this limitation

corresponds to some sort of fundamental dynamic threshold similar to the belief

propagation threshold. Also, for the moment, we are not able to find the SAT-

UNSAT threshold by a Maxwell construction or spatial coupling technique. At

the same time we also saw that the replica symmetric entropy functional does

not count correctly the number of solutions.

We already pointed out what could potentially go wrong in generic models with

the plain Bethe and the subsequent replica symmetric approach. We argued in

Sect ??, that if a Gibbs measure satisfies a “decoupling principle” then its (true)

marginals satisfy the sum-product equations. This motivates the introduction

of the Bethe free energy without any reference to a tree, since its stationnary

points satisfy the sum-product equations. Furthermore this also suggests that

the replica symmetric free energy should be exact. For sparse graphical models

typical instances have no short loops so the decoupling principle translates to

the absence of long range point-to-point correlations. For such models it is the

absence of long range point-to-point correlations that is at the heart of the

success of the replica symmetric approach. These arguments suggest that the

failure of the replica symmetric formula for the free energy, e.g. in K-SAT when

the constraint density increases, is related to the appearance of long range point-

to-point correlations.

The subject of long range correlations is a very subtle one which we will be

able to clarify only once we have developped the cavity method. For the moment

we just mention that besides point-to-point correlations there is another type of

long range correlation - called point-to-set correlation - which may exist even if
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the replica symmetric free energy remains exact. Point-to-set correlations are not

visible in the static properties such as the free energy, which remains analytic

even in their presence, but they are responsible for a slowdown of the dynamics

of algorithms.

In statistical mechanics of low dimensional Ising type models on regular grids

there is a well developped mathematical theory of long range correlations and

of their relation to the coexistence of extremal states (or measures). The Gibbs

measure then has to be described by a convex superposition of these extremal

states. Although it is very much of a challenge to develop some similar rigorous

theory in the context of spin glass or constraint satisfaction models, analogous

heuristic concepts form a conceptual framework at the basis of the cavity method.

The cavity method boldly pushes the idea of convex decomposition of the Gibbs

distribution to its limit in the sense that we will postualte a convex superposi-

tion with an arbitrary number (possibly exponentially large in n) of extremal

states. Once this is accepted and extremal states identified, the theory, although

technically challenging, more or less flows. Indeed it turns out this convex su-

perposition defines a new factor graph model which can again be analyzed by

the sum-product equations and Bethe free energy functional. That we can again

revert to these techniques ”one level up” is one of the fascinating aspects of the

subject.

The approach taken in this chapter is not algorithmic. However, besides allow-

ing us to understand the phase diagram of K-SAT, the cavity method suggests

new efficient message passing algorithms discussed in Chapter ??.

16.1 Coexistence of states

For concreteness we illustrate the notions of extremal or pure states and their

coexistence in the framework of the best understood case, the Ising model in-

troduced in Sect. 2.1. This is a very brief and informal overview of the subject

which will suffice for our purposes.

Let us quickly summarize a few features that will be needed from the phase

diagram of the model for dimensions greater or equal to two where phase transi-

tions are present. The reader can refer back to Sect. 4.9 for more specific details.

Consider the model on a cubic subset of a regular grid Λ ⊂ Zd, d ≥ 2 with

Hamiltonian

HΛ(s) = −J
∑

(i,j)∈E

sisj − h
∑
i∈V

si (16.1)

where J > 0, h ∈ R, E the set of edges in Λ, V the set of vertices in Λ. For

convenience we center the cube Λ at the origin o = (0, · · · , 0) ∈ Zd, and consider
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the local magnetization

⟨si⟩Λ(β, h) =
1

ZΛ

∑
s

sie
−βHΛ(s) (16.2)

at any fixed vertex i ∈ Λ ⊂ Zd. By fixed vertex we mean that its coordinates

are fixed independent of the Λ, for example this vertex could be the origin itself

i = o. We consider the thermodynamic limit of the local magnetization along

any sequence of cubes centered at the origin Λ ↑ Zd, and call this limit m(β, h).

It can be shown that this limit is independent of the chosen vertex as long as

its coordinates are fixed. For any (β, h) not on the coexistence line, i.e. such

that β < βc or h ̸= 0, the limit m(β, h) is an an analytic function. But on the

coexistence line, i.e. (β > βc, h = 0), the thermodynamic limit is discontinuous

limh→0± m(β, h) = m±(β) (with m+(β) ̸= m−(β)). In particular, for β < βc
the limit h → 0± is unique and by the spin flip symmetry of the Hamiltonian

m(β, 0) = 0.

This can be generalized to any Gibbs average ⟨sX⟩Λ(β, h) where sX =
∏

i∈X si
for any fixed and bounded subset X ⊂ Λ (more generally one can consider any

function of s with local support). Away from the coexistence line, β < βc or

h ̸= 0, limΛ→Zd⟨sX⟩Λ(β, h) is analytic and in particular

lim
h→0±

lim
Λ→Zd

⟨sX⟩Λ(β, h) ≡ ⟨sX⟩ (16.3)

is unique. On the coexistence line the limit is in general not unique (for the Ising

model due to spin flip symmetry both limits will be identical if X contains an

even number of vertices)

lim
h→0±

lim
Λ→Zd

⟨sX⟩Λ(β, h) ≡ ⟨sX⟩± (16.4)

The set of all limits (16.3) and (16.4) when X runs over all bounded subsets of

Zd esssentially defines infinite volume Gibbs states or measures for the zero field

Ising Hamiltonian (in other words (16.1) with h = 0). Away from the coexistence

line we obtain a “high temperature state” ⟨−⟩ with zero magnetization, and on

the coexistence line we have constructed two “low temperature states” ⟨−⟩+ and

⟨−⟩− with magnetizations m±(β). From the two states on the coexistence line

one can form an infinite family of mixed Gibbs states by convex superpositions,

⟨−⟩w = w⟨−⟩+ + (1− w)⟨−⟩−, 0 ≤ w ≤ 1 (16.5)

One can prove that the low temperature states ⟨−⟩±, as well as the high

temperature state ⟨−⟩, are extremal or pure in the sense that they cannot be

written as non-trivial convex superpositions (a convex superposition is non-trivial

if the weights in the linear combination are not equal to zero or one). One can

also prove that an extremal or pure state satisfies the clustering property. This

property states that there is no long range correlation in the sense that for any

two bounded distjoint sets X and Y ,

⟨sxsY ⟩extr − ⟨sX⟩extr⟨sY ⟩extr → 0, dist(X,Y )→ +∞ (16.6)
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where ⟨−⟩extr stands for any extremal state (away from the critical point the

decay is exponential in the distance between X and Y and becomes algebraic at

the tip of the coexistence line). On the other hand a mixed state cannot satisfy

the clustering property and displays point-to-point long range correlations. This

is easy to see. Indeed using (16.5) and (16.6) one finds

⟨sxsY ⟩w − ⟨sX⟩w⟨sY ⟩w → w(1− w)(⟨sX⟩+ − ⟨sX⟩−)(⟨sY ⟩+ − ⟨sY ⟩−) (16.7)

as dist(X,Y ) → +∞. The prototypical case is X = i and Y = j with |i − j| →
+∞, where one finds ⟨sisj⟩w − ⟨si⟩w⟨sj⟩w → 4w(1−w)m+(β)

2. In a non trivial

mixed state we necessarily have “point-to-point” long range corelations.

It is noteworthy that when one can show or argue that long range point to point

correlations are present then necessarily there must exist more than one extremal

state. One can then ask among all possible non-trivial convex superposition is

there one which is more natural than others? This is not a very well defined

question and depends on the problem at hand. For example for the Ising model if

we want to describe an infinite volume state which is invariant under translations

and a spin flip transformation then it is natural to choose the convex combination

with weights w = 1− w = 1/2.

Even when one knows that more than one extremal state exists, one should not

have any prejudice on their number. First of all there is in general more than one

way to construct an extremal state. For the zero field Ising model for example

we described above two low temperature states by using an external symmetry

breaking infinitesimal magnetic field which then tends to 0±. But one can con-

struct the same states by letting h = 0 and breaking the symmetry thanks to

boundary conditions by fixing the spin assignement on the boundary of Λ to

all pluses or all minuses. It turns out that this yields the same states as above

⟨−⟩±. But clearly one can imagine other boundary conditions or infinitesimal

inhomogeneous magnetic fields. For the two-dimensional Ising model it is proven

that the picture described above is complete. Away from the coexistence line the

infinite volume Gibbs state is unique while on the coexistence line (excluding

the critical point) there are only two extremal states. Any other infinite vol-

ume Gibbs state is a convex combination of these two extremal states. But the

situation is richer in higher dimensions d ≥ 3 where other extremal states cor-

responding to interfaces between a positive and negative magnetization regions

can be constructed.

16.2 Convex superposition ansatz for models on sparse graphs

We now turn to generic spin glass models on sparse graphs keeping in mind our

main application which will be the K-SAT problem. Our discussion applies to a
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Gibbs distribution of the form (11.1)

µ (x) =
1

Z

∏
a

fa (x∂a) (16.8)

where the underlying factor graph is sparse and locally tree like. The measure is

random in the sense that it belongs to an ensemble (e.g. the usual K-SAT en-

semble) but for teh moment we consider a fixed instance. We pointed out in the

introduction to this chapter that a failurem of the replica symmetric formula sug-

gests the presence of long range point-to-point corelations are present in typical

instances. This is the case forK-SAT above a certain constraint density as shown

in Sect. 12.6. Our experience with low dimensional statistical mechanics models

on regular grids, such as the Ising model, then suggests that many “extremal” or

“pure” “states” must coexist. Unlike the Ising model we do have a good math-

ematical theory of such notions for generic spin glass or constraint satisfaction

models. Nevertheless we will assume some sort of analogous notions exist and in

particular we will assume that in “extremal states” (those that cannot be written

as a non trivial convex superposition) the point-to-point correlations decay “fast

enough”. Let ⟨−⟩α, α = 1, . . . ,N be the set of all “extremal states”. Because

it is not clear how to select one such state we attempt to capture the infinite

system Gibbs measure when none of them is selected in particular. One must

then represent (16.8) as a convex superposition

µ(·) =
N∑

α=1

wα⟨−⟩α. (16.9)

We now have to discuss two issues. How can we concretely represent or approx-

imate ⟨−⟩α? What are the natural weights wα that we should take?

We pointed out that on a sparse graph when point-to-point correlations de-

cay the sum-product equations are satisfied by the (true) marginals of (16.8).

Therefore each “extremal state” ⟨−⟩α has marginals that satisfy the sum-product

equations. We will therefore identify these states with messages {µα
i→a, µ

α
a→i},

α = 1, . . . ,N that are solutions of
µα
i→a(xi) =

∏
b∈∂i\a µ̂α

b→i(xi)∑
xi

∏
b∈∂i\a µ̂α

b→i(xi)

µ̂α
a→i(xi) =

∑
∼xi

fa(x∂a)
∏

j∈∂a\i µ
α
j→a(xi)∑

x∂a
fa(x∂a)

∏
j∈∂a\i µ

α
j→a(xi)

(16.10)

Here we enforce the normalization in the sum-product equations in order not to

overcount messages that are equivalent up to a normalization factor. Moreover

we expect that such states should be stable with respect to small perturbations

so we only consider solutions that correspond to local minima of the Bethe free

energy functional (11.18). The Bethe free energy of the state ⟨−⟩α is the value

of the functional at such a minimum of state ⟨−⟩α

Fα ≡ FBethe

[
µα, µ̂α

]
. (16.11)
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States which have marginals satisfying the sum-product equations and which are

minima of the bethe free energy functional play the role of extremal states and

will be henceforth called Bethe extremal states.

Let us now turn to the choice of the weights wα. Consider first the K-SAT

problem at zero temperature. Then µ(x) is nothing else than the uniform measure

over solutions assuming we are in a SAT phase where solutions exist. Clearly in

that case we should take wα = Ωα/
∑N

α=1 Ωα, Ωα the number of solutions in

the zero temperature limit of the state ⟨−⟩α. The natural finite temperature

generalization of this weight is

wα =
e−βFα∑N
α=1 e

−βFα

(16.12)

This can be checked heuristically from the thermodynamic relation Fα = Uα −
β−1Sα where Uα is the internal energy of the state and Sα its entropy. In a SAT

phase the ground state energy vanishes so limβ→+∞ βFα = − limβ→+∞ Sα =

− lnΩα and (16.12) reduces to wα = Ωα/
∑N

α=1 Ωα.

To sumarize we arrive at the following ansatz for the convex representation of

(16.8)

µ(·) =
∑N

α=1 e
−βFα⟨−⟩α∑N

α=1 e
−βFα

(16.13)

The sum over α is over extremal Bethe states. In practice these are identified

with messages {µα
i→a, µ

α
a→i}, α = 1, . . . ,N satisfying sum-product equations and

which are local minima of the Bethe functional.

The most informative quantity which we will compute and allows to determine

the phase diagram and various thresholds is the number of extremal Bethe states

that effectively contribute to the sums over α in the numerator and denominator

of (16.13). In the next section we set up the necessary formalism to determine

the number of relevant extremal Bethe states.

16.3 Counting states: level-one model and complexity

In generic constraint satisfaction problems or spin glass models it is expected

that at low temperatures there exist numerous extremal states corresponding to

minima of the Bethe free energy functional. It is useful to have in mind as a

mental picture to think about the Bethe functional as an ”energy landscape”

in the space of messages {µa→i, µi→a} ∈ R4|E|, depicted on figure 16.1. The

energy landscape contains many critical points (minima, maxima, saddles) that

are solutions of the sum-product equations, but at low temperatures essentially

only the low lying minima are those that contribute to the convex superposition.

The low lying minima are the relevant Bethe extremal states that we must count.
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— figure —

Figure 16.1 Cartoon of the effective energy landscape: a low temperature Bethe free
energy functional in a phase with many solutions to the sum-product equations

As we will see the number of relevant extremal Bethe states can be exponen-

tially large. In such situations their exponential growth rate can be computed

using a thermodynamic formalism. We introduce a partition function

Z1(x) =
∑
α

e−βxFα . (16.14)

of an auxiliary system whose microscopic degrees of freedoms are extremal Bethe

states α ≡ (µα, µ̂α) and energy function (or Hamiltonian) is Fα = FBethe[µ
α, µ̂α].

Here x is a real parameter whose use will soon become clear. For x = 1 (16.14) is

precisely the denominator of (16.13), so x = 1 is the natural value we should use

if we want to determine the number of extremal states that effectively contribute

to the Gibbs measure. But as we will see this choice for x breaks down when

there is a transition from an exponentially large number of extremal states to a

finite number of them. We will refer to the auxiliary model introduced here as

the level-one model.

In principle the sum in (16.14) should carry over extremal states or minima

of the energy landscape. However this constraint is difficult to implement in

practice and we will sum over all critical points of the energy landscape, i.e. all

solutions of the sum-product equations. At low temperatures we do not expect

that this makes a significant difference because in effect only minima effectively

contribute. We will refer to the auxiliary model introduced here as the level-one

model.

We now discuss how the level-one model allows in principle to count extremal

Bethe states. For now, we assume that we are in a regime where the number of

extremal Bethe states are exponentially numerous as a function of the system

size. The number of minima of the free energy landscape with free energies in

the infinitesimal interval [f − df, f ] is equal to enΣ(f). The growth rate Σ(f) is

called the complexity, and can be interpreted as a ”Boltzman entropy” for the
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level-one model. As n→ +∞ we approximate the sum as an integral

Z1(x) ≈
∫
df en(Σ(f)−βxf). (16.15)

and the free energy of the level one auxiliary model βxf1(x) = − limn→+∞ lnZ1(x)

becomes

βxf1(x) = min
f

(βxf − Σ(f)) (16.16)

This is the usual thermodynamic relation stating that the free energy of the level-

one model is the Legendre transform of the entropy where the free energy f is

traded for the ”temperature” x. Assuming that Σ(f) is concave there is a unique

minimum f∗(x) solving βx = ∂Σ(f)/∂f and we find Σ(f∗(x)) = βx(f∗(x) −
xf1(x)). There is also a more direct way to compute the later function of x,

namely using the relation Σ(x) = ∂f1(x)/∂x
−1. Now, setting x = 1 we find that

there are enΣ(x=1) extremal Bethe states contributing to the convex superposition

(16.13) with free energies f∗(x = 1)) obtained from the equations,

Σ(x = 1) =
∂f1(x)

∂x−1

∣∣∣∣
x=1

, f∗(x = 1) = β−1Σ(f∗(x = 1)) + f1(x = 1).

(16.17)

These formulas break down when the extremal Bethe states are not expo-

nentially numerous. In practice, when this is the case, one finds Σ(x = 1) < 0

which is not an acceptable solution. In a such a regime the correct prescription

is to enforce the condition that the complexity should vanish by taking the value

0 < x∗ < 1 closest to x = 1 such that

Σ(x∗) =
∂f1(x)

∂x−1

∣∣∣∣
x=x∗

= 0, f∗(x∗) = f1(x∗). (16.18)

In this situation there are a finite number of extremal Bethe states contributing

to (16.13)) with free energies f1(x∗).

Typical predictions for the complexity

Before embarking in the substantially technical development of the cavity method

in the next sections this is a good point to illustrate the typical predictions of

this formalism for concrete models. We take here for concreteness the example

of K-SAT for K ≥ 4 which is has the most generic behaviour and discuss the

complexity as function of the constraint density α.

We will see that the calculation of the complexity shows the existence of two

thresholds for the constraint density: the dynamical threshold αd(K) and the

condensation threshold αc(K) (see figure 16.2 for K = 4). For α < αd(K) we

find a zero complexity Σ(x = 1) = 0. In this regime there a single extremal

Bethe state and the free energy is equal to the replica symmetric prediction.

At αd(K) the complexity jumps to a finite positive value, remains positive in
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— figure —

Figure 16.2 The complexity of 4-SAT as a function of the constraint density α.

an interval αd(K) < α < αc(K), vanishes at αc(K) and then becomes negative

Σ(x = 1) < 0. As we will see the free energy is still given by the replica symmet-

ric formula all the way up to αc(K) and thus remains analytic. The dynamical

threshold αd(K) does not correspond to a static phase transition but rather

it affects the dynamical properties of the model (e.g. the mixing time of sam-

pling algorithms such as MCMC) due to the proliferation of extremal states. At

αc(K) there is a non-analyticity of the free energy and replica symmetric formula

breaks down. This is a static phase transition called condensation transition be-

cause the number of extremal Bethe states that contribute to the Gibbs measure

changes from exponentially many to a finite number. We will also discover that

for αd(K) < α < αc(K) the convex superposition has marginals that still satisfy

the sum-product equations. At the same there are no long range point-to-point

correlations in this regime (and also for α < αd(K) since there is only one state).

Above αc(K) there are long range point-to-point correlations and the marginals

of the Gibbs measure do not satisfy the sum-product equations.

16.4 Level-one model as a factor graph model

In order to make technical progress we have to compute the free energy f1(x)

of the level-one model. From there on, one can deduce the complexity and the

various thresholds, as well as the total free energy and internal free energies of

extremal states. At first solving the level one model may seem quite challeng-

ing. Indeed in the partition function (16.14) the microscopic degrees of freedom

{µα
i→a, µ̂

α
a→i} as well as the weights Fα are already complicated objects. More-

over we must take into account the the sum-product constraints (16.10)) in the

sum over microscopic degrees of freedom. The key point allowing such calcu-

lations possible here is that the level-one model is in effect just another factor

graph model. Once this is recognized we can essentially revert to all our usual

sum-product and Bethe formalism.
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Figure 16.3 On the left, an exemple of an original graph Γ. On the right its
corresponding graph Γ1 for the level-one model.

We first rewrite (16.14) more explicitly as

Z1(x) =
∑
µ,µ̂

e−xFBethe (µ,µ̂)
1sp(µ, µ̂) (16.19)

where the ”indicator function” ∆sp(µ, µ̂) selects solutions of the sum product

equations (16.10). Note that in these equations we normalized the messages so

as not to overcount equivalent solutions. We explicitly represent this indicator

function as

1sp(µ, µ̂) =

{ n∏
i=1

∏
a∈∂i

∆i→a

}{ m∏
a=1

∏
i∈∂a

∆̂a→i

}
(16.20)

with 
∆i→a = 1

(
µi→a(·) =

∏
b∈∂i\a µ̂b→i(·)∑

xi

∏
b∈∂i\a µ̂b→i(xi)

)
∆̂a→i = 1

(
µ̂a→i(·) =

∑
∼xi

fa(·,x∂aı)
∏

j∈∂a\i µj→a(xj)∑
x∂a

fa(x∂a)
∏

j∈∂a\i µj→a(xi)

) (16.21)

Recall that the Bethe free energy (11.18) has three contributions from variable

nodes, function nodes and edges. Thus each term in the sum (16.19) is{ n∏
i=1

e−xFi

∏
a∈∂i

∆i→a

}{ m∏
a=1

e−xFa

∏
i∈∂a

∆̂a→i

}{ ∏
edgesia

e+xFia

}
(16.22)

This last expression, when normalized by Z1(x), is the explicit form of the Gibbs

weight of the level-one model.

If Γ = (V,C,E) is the original factor graph, then the level-one model has the

factor graph Γ1 = (V1, C1, E1) depicted on Fig. 16.3. A variable node i ∈ V of

the original graph becomes a function node i ∈ C1 in the new graph, with factor

ψi = e−xFi

∏
a∈∂i

∆i→a. (16.23)

A function node a ∈ C in the original graph becomes a function node a ∈ C1 in

the new graph, with factor

ψa = e−xFa

∏
i∈∂a

∆̂a→i. (16.24)

An edge (a, i) ∈ E in the original graph becomes a variable node (a, i) ∈ V1 in
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Figure 16.4 We use the letter m for messages outgoing from a ”level-one variable
node“ and m̂ for messgaes outgoing from a ”level-one factor node“.

the new graph. There is also an extra function node attached to each variable

node of the new graph, or equivalently attached to each edge of the old graph.

The corresponding factor is

ψai = e+xFai . (16.25)

With these definitions the Gibbs weight of the level-one model has the structure

of a factor graph model (with three sort of factors),

µ1(µ, µ̂) =
1

Z1(x)

∏
i∈V

ψi

∏
a∈C

ψa

∏
ai∈E

ψai. (16.26)

16.5 Message passing solution of the level-one model

Level-one sum-product equations

Our first task is to compute the marginals of (16.26). These are distributions over

{µi→a, µ̂i→a}; so they are distributions of distributions. If the level-one factor

graph was a tree (this would be the case if the original factor graph was a tree)

the sum-product equations would give the exact marginals. This is not the case

but can still be fruitful (e.g. for K-SAT) to use the sum-product equations, much

as this was a successful idea in coding and compressive sensing.

The sum product equations for (16.26) involve four kind of messages shown

on figure 16.4. Messages flowing from a ”level one function node“ to a ”level-one

variable node“ satisfy

m̂a→ai ∝
∑

∼(µi→a,µ̂a→i)

ψa

∏
aj∈∂a\ai

maj→a

=
∑

∼(µi→a,µ̂a→i)

∆̂a→ie
−xFa

∏
aj∈∂a\ai

maj→a

and

m̂i→ai ∝
∑

∼(µi→a,µ̂a→i)

ψi

∏
bi∈∂i\ai

m̂bi→i

=
∑

∼(µi→a,µ̂a→i)

∆i→ae
−xFi

∏
bi∈∂i\ai

m̂bi→i
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Messages from a ”level-one variable node“ to a ”level-one function node“ satisfy

mai→i = exFaim̂a→ai, mai→a = exFaim̂i→ai.

Notice that mai→i is independent of µ̂a→i and mai→a is independent of µi→a.

This allows to simplify the four message passing equations. To achieve this sim-

plification define two distributions (of distributions)

Qi→a(µi→a)mai→a, Q̂a→i(µ̂a→i) = mai→i (16.27)

which flow on the edges of the original factor graph Γ = (V,C,E). It is easy to

see that the four message passing equations above reduce toQ̂a→i(µ̂a→i) ∝
∑

µ ∆̂a→ie
−x(Fa−Fai)

∏
j∈∂a\iQj→a(µj→a)

Qi→a(µi→a) ∝
∑

µ̂ ∆i→ae
−x(Fi−Fai)

∏
b∈∂i\a Q̂b→i(µ̂b→i).

(16.28)

In this form the level-one sum-product equations are often called cavity equations

and the distributions (16.27) they connect cavity messages. Note that cavity

equations (16.28) do not make any reference to the level-one graph Γ1 and we

can revert to the original one.

The x dependent exponentials in (16.28) are sometimes called reweighting

factors. Their explicit expressions (obtained from (11.18)) will be useful later

on,

e−(Fi−Fai) =
∑
xi

∏
b∈∂i\a

µ̂b→i(xi), e−(Fa−Fai) =
∑
x∂a

fa(x∂a)
∏

∂j∈a\i

µj→a(xi)

(16.29)

Note that these are in fact the normalization factors in (16.10).

Level-one Bethe free energy

The Bethe free energy functional of the level-one model is a functional of the

cavity messages (16.27). We could derive it as in Chapter 11 by first deriving

the exact free energy f1(x) on a tree, and then take this expression as a defition

for general graph instances. Alternatively we could write down a functional of

the cavity messages such that its stationary points satisfy the cavity equations

(16.28). But we can also guess the fomula. It is basically given by the usual

definition, but with the extra feature that it must contain the degrees of freedom

(µ, µ̂) must be correctly weighted. This is enough information to guess (and check

a posteriori) that the Bethe free energy functional is

FBethe(Q, Q̂) =
∑
i∈V

Fi +
∑
a∈C

Fa −
∑
ai∈E

Fai (16.30)
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where

Fi({Q̂b→i}b∈∂i) = −
1

x
ln

{∑
µ̂

e−xFi

∏
b∈∂i

Q̂b→i

}
, (16.31)

Fa({Qj→a}j∈∂a) = −
1

x
ln

{∑
µ

e−xFa

∏
j∈∂a

Qj→a

}
, (16.32)

Fai(Qi→a, Q̂a→i) = −
1

x
ln

{∑
µ,µ̂

e−xFaiQi→aQ̂a→i

}
. (16.33)

We will see when we apply the formalism toK-SAT that an ”averaged“ form of

this expression yields the so called ”one-step replica symmetry broken“ formula

for the free energy. This allows to calculate the free energy in regimes where the

replica symmetric formula fails.

Complexity functional

We saw in Sect. 16.3 that the complexity is given by Σ(x) = ∂f1(x)/∂x
−1.

Within the Bethe formalism we have ΣBethe =
∂

∂x−1FBethe. One finds

ΣBethe(Q, Q̂) =
∑
i∈V

Σi +
∑
a∈C

Σa −
∑
ai∈E

Σai (16.34)

where

Σi({Q̂b→i}b∈∂i) = −xFi + x

∑
µ̂ Fie

−xFi
∏

b∈∂i Q̂b→i∑
µ̂ e

−xFi
∏

b∈∂i Q̂b→i

, (16.35)

Σa({Qj→a}j∈∂a) = −xFa + x

∑
µ Fae

−xFa
∏

j∈∂aQj→a∑
µ e

−xFa
∏

j∈∂aQj→a
, (16.36)

Σai(Qi→a, Q̂a→i) = −xFai + x

∑
µ,µ̂ Faie

−xFaiQi→aQ̂a→i∑
µ,µ̂ e

−xFaiQi→aQ̂a→i

. (16.37)

Comparing (16.31)-(16.33) and (16.35)-(16.37) we see that

FBethe = ⟨FBethe⟩cav − x−1ΣBethe. (16.38)

A bit of thought shows that the bracket ⟨−⟩cav is the Gibbs average of the

level-one model calculated from the cavity messages. Relationship (16.38) was

expected on thermodynamic grounds but it is reassuring that it can be derived

explicitly in the present framework.

In the application to K-SAT we use an ”averaged“ form of the complexity

functional to calculate the dynamical and condensation thresholds.
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16.6 Simplifications for x = 1

We argued in Sect. 16.3 as long as the complexity is non-negative we should set

x = 1 in the level-one model. It is fortunate that in this case a large portion

of the formalism above can be simplified by eliminating entirely the need for

reweighting factors. This makes the computation of the average complexity and

thresholds much simpler both theoretically and numerically.

Free energy for x = 1

Let us first discuss the level-one Bethe free energy. Replacing (??)-(??) in (16.31)-

(16.33) we find

FBethe(Q, Q̂)
∣∣
x=1

= FBethe(µ
av, µ̂av) (16.39)

where the right hand side is the usual Bethe free energy expressed in terms of

average messages,

µav

i→a(xi) =
∑
µi→a

µi→a(xi)Qi→a(µi→a), µ̂av

a→i(xi) =
∑
µ̂a→i

µ̂a→i(xi)Q̂a→i(µ̂a→i).

(16.40)

It turn out the average messages satisfy the usual sum-product equations,{
µav
i→a(xi) =

∏
b∈∂i\a µ̂

av

b→i(xi),

µ̂av
i→a(xi) =

∑
x∂a

fa(x∂a)
∏

j∈∂a\i µ
av
j→a(xj).

(16.41)

To prove (16.41) we notice that (16.39) and (16.40) imply (δRG is an infinitesimal

variation of G with respect to R)

δQi→aFBethe

∣∣
x=1

= (δµav
i→a

FBethe)µi→a(xi)

δQ̂i→a
FBethe

∣∣
x=1

= (δµ̂av
i→a

FBethe)µ̂i→a(xi),

therefore if (Q, Q̂) is a stationary point of FBethe|x=1 then (µav, µ̂av) is a station-

ary point of FBethe. Thus the cavity equations for (Q, Q̂) imply the sum-product

equations for (µav, µ̂av). This conclusion can also be reached by a direct calcula-

tion starting from the cavity equations for x = 1 .

Equations (16.39) and (16.41) are quite remarquable. They suggest that as

long as the choice x = 1 is valid the average free energy is given by the replica

symmetric formula. In K-SAT for example we will see that this is the case for

α < αd where Σ(x = 1) = 0 and also for αd < α < αc where Σ(x = 1) > 0. In

particular there is no static phase transition in the whole regime where x = 1, i.e

for α < αc, and to access the free energy we do not have to solve the full cavity

equations. Of course to determine αd and αc we must compute the complexity

but for this quantity also we will shotly see that the cavity equations can be

simplified.
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Conceptually µav
i→a and µ̂av

i→a are very natural messages to consider. Suppose

for the sake of the argument that Q(µi→a) and Q̂(µ̂i→a) are the true marginals

of the level-one model. Then the average messages are the Gibbs averages of

the dynamical variables of the level-one model, much like the magnetization is

the Gibbs average of the spin variable. In other words if we sample among the

set of solutions of the sum-product equations (16.10) according to the weight

e−FBethe/Z1(x = 1) these are the expected messages that we get. From these

expected messages one can derive marginals of the convex superposition (16.13).

It is quite remarkable that the average messages satisfy the usual sum product

equations. But one must bear in mind that they do not describe extremal Bethe

states but their convex superposition. To summarize, one must bear in mind that

even when belief propagation correctly computes marginals of a measure µ(x)

(e.g. (??)) this does not ncessarily mean that we are able to access the marginals

of pure states. This is the case only when there is a single pure state. This has

an important algorithmic consequence for example for finding solutions of K-

SAT. For α < αd there is a single extremal Bethe state and belief propagation

marginals give us useful information for finding solutions (e.g. when decimation

is used). However for αd < α < αc the belief propagation marginals do not

correctly represent the marginals of the extremal states and cannot be used to

find solutions. We come back to these matters in Chapter ??.

Complexity for x = 1

We now turn to the Bethe complexity for x = 1. According to (16.38) and (16.39)

ΣBethe

∣∣
x=1

= ⟨FBethe⟩cav
∣∣
x=1
− FBethe(µ

av, µ̂av) (16.42)

The second term is computed by solving usual sum-product equations instead

of the complete cavity equations, but the first term in the present form still

requires to compute complicated averages ⟨Fi⟩cav, ⟨Fa⟩cav, ⟨Fai⟩cav read off from

(16.35)-(16.37).

Let us start with ⟨Fi⟩cav. Replacing (??) in this average and setting x = 1 we

find

⟨Fi⟩cav
∣∣
x=1

=

∑
µ̂ ln

{∑
xi

∏
b∈∂i µ̂b→i(xi)

}∑
xi

∏
b∈∂i µ̂b→i(xi)Q̂b→i∑

µ̂

∑
xi

∏
b∈∂i µ̂b→i(xi)Q̂b→i

=

∑
µ̂ ln

{∑
xi

∏
b∈∂i µ̂b→i(xi)

}∑
xi

∏
b∈∂i µ̂b→i(xi)Q̂b→i∑

xi

∏
b∈∂i µ̂

av

b→i(xi)

=
∑
µ̂

ln

{∑
xi

∏
b∈∂i

µ̂b→i(xi)

}∑
xi

νav

i (xi)
∏
b∈∂i

R̂b→i(µ̂b→i|xi) (16.43)

where in the last line the weighting factor over messages is expressed thanks to
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the average marginal

νav

i (xi) =

∏
b∈∂i µ̂

av

b→i(xi)∑
xi

∏
b∈∂i µ̂

av

b→i(xi)
(16.44)

and the conditional distribution over messages

R̂b→i(µ̂b→i|xi) =
µ̂b→i(xi)Q̂b→i

µ̂av

b→i(xi)
(16.45)

Now we turn to ⟨Fa⟩cav. Replacing (??) in this average and setting x = 1 we

find

⟨Fa⟩cav
∣∣
x=1

=

∑
µ ln

{∑
x∂a

∏
i∈∂a µi→a(xi)

}∑
x∂a

fa(x∂a)
∏

i∈∂a µi→a(xi)Qi→a∑
µ

∑
x∂a

fa(x∂a)
∏

i∈∂a µi→a(xi)Q̂i→a

=

∑
µ ln

{∑
x∂a

fa(x∂a)
∏

i∈∂a µi→a(xi)

}∑
x∂a

fa(x∂a)
∏

i∈∂a µi→a(xi)Qi→a∑
x∂a

fa(x∂a)
∏

i∈∂a µ
av
i→a(xi)

=
∑
µ

ln

{∑
x∂a

fa(x∂a)
∏
i∈∂a

µi→a(xi)

}∑
x∂a

νav

a (x∂a)
∏
i∈∂a

Ri→a(µi→a|xi)

(16.46)

where the weighting factor over messages is again expressed thanks to an average

marginal

νav

a (x∂a) =
fa(x∂a)

∏
i∈∂a µ

av
i→a(xi)∑

x∂a
fa(x∂a)

∏
i∈∂a µ

av
i→a(xi)

(16.47)

and the conditional distribution

Ri→a(µi→a|xi) =
µi→a(xi)Qi→a

µav
i→a(xi)

(16.48)

Similarly for the last term ⟨Fai⟩cav using (??) we find for x = 1

⟨Fai⟩cav
∣∣
x=1

=

∑
µ,µ̂ ln

{∑
xi
µ̂a→i(xi)µi→a(xi)

}∑
xi
µ̂a→i(xi)Q̂a→iµi→a(xi)Qi→a∑

µ,µ̂

∑
xi
µ̂a→i(xi)Q̂a→iµi→a(xi)Qi→a

=

∑
µ,µ̂ ln

{∑
xi
µ̂a→i(xi)µi→a(xi)

}∑
xi
µ̂a→i(xi)Q̂a→iµi→a(xi)Qi→a∑

xi
µ̂av
a→i(xi)µ

av
i→a(xi)

=
∑
µ,µ̂

ln

{∑
xi

µ̂a→i(xi)µi→a(xi)

}∑
xi

νav

ai(xi)R̂a→i(µ̂a→i|xi)Ri→a(µi→a|xi)

(16.49)

where

νav

ai(xi) =
µ̂av
a→i(xi)µ

av
i→a(xi)∑

xi
µ̂av
a→i(xi)µ

av
i→a(xi)

(16.50)
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So far we have shown that ⟨FBethe⟩cav
∣∣
x=1

can be entirely expressed in terms of

the average messages µ̂av
a→i, µ

av
i→a and the conditional distributions R̂a→i(µ̂a→i|xi),

Ri→a(µi→a|xi). We have already seen that the average messages satisfy the usual

sum-product equations. We will now show that the conditional distributions sat-

isfy similar equations that are only slightly more complicated. Multiplying the

cavity equations (16.28) by µa→i(xi) and µ̂a→i(xi), and using the expressions of

the reweighting factor (16.29) we get for x = 1

µi→a(xi)Qi→a(µi→a) ∝
∑
µ̂

∆i→a

∏
b∈∂i\a

µ̂b→i(xi)Q̂b→i(µ̂b→i)

µ̂a→i(xi)Q̂a→i(µ̂a→i) ∝
∑
∼xi

fa(x∂a)
∑
µ

∆̂a→i

∏
j∈∂a\i

µj→a(xj)Qj→a(µj→a)

Dividing each member of these equalities by µav
i→a(xi), µ

av
a→i(xi) and using the

sum-product equations (16.41) one finds a closed set of equations linking the

conditional distributions,Ri→a(µi→a|xi) ∝
∑

µ̂ ∆i→a

∏
b∈∂i\a R̂b→i(µ̂b→i|xi)

R̂a→i(µ̂a→i|xi) ∝
∑

∼xi
πa,i(x∂a\i|xi)

∑
µ ∆̂a→i

∏
j∈∂a\iRj→a(µj→a|xj)

(16.51)

where

πa,i(x∂a\i|xi) =
fa(x∂a)

∏
j∈∂a\i µ

av
j→a(xj)∑

∼xi
fa(x∂a)

∏
j∈∂a\i µ

av
j→a(xj)

(16.52)

These equations are quite similar to standard sum-product equations and are

much easier to solve than the original cavity equations.

Let us summarize the main result of these lengthy calculations. To calculate

the complexity one must solve two sets of ”sum-product“ equations, the usual

ones (16.41) and (16.51). Then one obtains the total free energy from the usual

Bethe formula (see (16.39)) and the ”internal energy“ from (16.43), (16.46),

(16.49). Finally the complexity equals to the difference (16.42) of the total free

and internal free energies.

16.7 Application of the cavity equations to K-SAT

We apply the general theory to K-SAT using the notations and parametrizations

of Sect. 9.4. Recall Jia = +1 (resp. −1) labels full (resp. dashed) edges and

si = (−1)xi = Jia (resp. si = (−1)xi = −Jia) does not satisfy a (resp. satisfies

a).

Messages µi→a and µ̂a→i are parametrized by fields hi→a, ĥa→i (see (9.14))

so in the cavity theory all sums over messages become integrals over fields. To

ease the notations we will use a short hand notation for integrals over fields,
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∫
dhQ(h) · · · →

∫
Q(h) · · · and

∫
dĥQ̂(ĥ) · · · →

∫
Q̂(ĥ) · · · , when no confusion is

possible. Using (9.20) the constraints (16.21) become

∆i→a → δi→a = δ
(
hi→a −

∑
b∈∂i\a

JiaJibĥb→i

)
∆̂a→i → δ̂a→i = δ

(
ĥa→i −

1

2
ln
{
1−

∏
j∈∂a\i

1− tanhj→a

2

})
.

Also, the weighting factors (16.29) become

zi→a =
∏

b∈∂i\a

(1− JiaJib tanh ĥb→i)

+
∏

b∈∂i\a

(1 + JiaJib tanh ĥb→i)

za→i =2−
∏

j∈∂a\i

1

2
(1− tanhj→a)

With these formulas the cavity equations (16.28) reduce to{
Qi→a(hi→a) =

∫ {∏
b∈∂i\a Q̂b→i(ĥb→i)

}
(zi→a)

x δi→a

Q̂a→i(ĥa→i) =
∫ {∏

j∈∂a\i Q̂j→a(hj→a)
}
(za→i)

x δ̂a→i

(16.53)

From (16.31)-(16.33) and (11.47)-(11.49) we get the expression of the level-one

Bethe free energy for general x, FBethe(x) =
∑

i Fi(x)+
∑

a Fa(x)−
∑

ai Fai(x),

Fi(x) =− x−1 ln

{∫ {∏
a∈∂i

Q̂a→i(ĥa→i)

}(∏
a∈∂i

(1 + Jia tanh ĥa→i)

×
∏
b∈∂i

(1− Jia tanh ĥa→i)

)x}
(16.54)

Fa(x) =− x−1 ln

{∫ {∏
j∈∂a

Qj→a(hj→a)

}(
2−

∏
j∈∂a

1− tanhj→a

2

)x}
(16.55)

Fai(x) =− x−1 ln

{∫ {
Q̂a→i(ĥa→i)Qi→a(hi→a)

}(
1 + tanha→i tanhi→a

)x}
(16.56)

Similar formulas can be obtained for the complexity from ΣBethe = ∂FBethe/∂x
−1.

In principle from the set of equations (16.53) and (16.54)-(16.56) one can deduce

all predictions of the cavity theory for K-SAT. In the next section we deduce the

one step replica broken (1RSB) formula for the average free energy; a formula

that contrary to the replica symmetric one is believed to yield the correct free

energy in all regimes.

In practice most important information about the phase diagram (e.g. the

location of the thresholds) can be accessed from the complexity for x = 1.

We now derive the formulas for this case. We introduce ”average fields“ to

parametrize average messages µ̂av
a→i, µ

av
i→a , similarly to (9.14), namely hav =
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1
2 ln(µ

av(−J)/µav(J)) (dropping edge subscripts and hats). Then because of

(16.41) the average fields satisfy the usual belief propagation equations (this

follows by the calculation shown in Sect. 9.4),{
havi→a =

∑
b∈∂i\a JiaJibĥ

av
b→i,

ĥava→i =
1
2 ln
{
1−

∏
j∈∂a\i

1
2 (1− tanhhavj→a)

}
.

(16.57)

The other set of sum-product equations (16.51) links the conditional distributions

(recall si = (−1)xi){
Ri→a(hi→a|si) =

∫ {∏
b∈∂i\a R̂b→i(ĥb→i|si)

}
δi→a

R̂a→i(ĥa→i|si) =
∑

∼si
πa,i(s∂a\i|si)

∫ {∏
j∈∂a\iRj→a(hj→a|sj)

}
δ̂a→i

(16.58)

where for K-SAT

πa,i(s∂a\i|si) = recalculate this expression (16.59)

The internal free energy is derived from (16.43), (16.46), (16.49). We find the

following three contributions

⟨Fi⟩cav
∣∣
x=1

=
∑
si

νav

i (si)

∫ ∏
a∈∂i

R̂a→i(ĥa→i|si) ln
{∏

a∈∂i

(1 + Jia tanh ĥa→i)

(16.60)

+
∏
a∈∂i

(1− Jia tanh ĥa→i)

}
⟨Fa⟩cav

∣∣
x=1

=
∑
s∂a

νav

a (s∂a)

∫ ∏
i∈∂a

Ri→a(hi→a|si) ln
{
2−

∏
j∈∂a

1

2
(1− tanhj→a)

}
(16.61)

⟨Fai⟩cav
∣∣
x=1

=
∑
si

νav

ai(si)

∫
R̂a→i(ĥa→i|si)Ri→a(hi→a|xi)

× ln

{
1 + tanh ĥa→i tanhi→a

}
(16.62)

where

νav

i (si) =
1

2

(
1 + si tanh(

∑
b∂i

Jibĥ
av
b→i

)
νav

a (s∂a) = recalculate this

νav

ai(si) =
1

2
(1 + si tanh(ĥ

av
a→i + havi→a))

Finally the complexity for x = 1 is obtained by subtracting the internal free en-

ergy (given by (16.60)-(16.62)) from FBethe(h
av, ĥ

av
) (given by (11.47)-(11.49)).
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16.8 1RSB analysis for K-SAT

The cavity equations in Sect. 16.7 concern fixed instances. Here we analyze their

consequences for random instances from the ensemble F(n,m,K). This leads to

predictions called for historical reasons one step replica symmetry broken (1RSB)

predictions or formulas (information on the seemingly strange terminology which

comes from spin glass theory is found in the notes). It is important to keep in

mind that there are two levels of randomness involved. We pick a factor graph

at random so the messages Qi→a(·) and Q̂a→i(·) are random (as in usual mes-

sage passing in part II), and these random messages are themselves probability

distributions over random variables hi→a and ĥa→i.

General 1RSB solution

To compute the ensemble average of the free energy one should in principle solve

(16.53) for each (typical) graph and then average (16.54)-(16.56) over all graphs.

Here we assume that in the large system size limit it is correct to treat the

solutions of (16.53) as iid random variables Q(·) and Q̂(·).
Let p and q be two Poisson(αK/2) random variables. These represent the

degree distributions at the variable nodes from the edge as well as the node

perspective. Then Q(·) and Q̂(·) satisfy

Q(h)
distr
=

1

N

∫ p∏
ℓ=1

Q̂+
ℓ (ĥ

+
ℓ )

q∏
ℓ=1

Q̂−
ℓ (ĥ

−
ℓ )

( p∏
ℓ=1

(1− tanh ĥ+ℓ )

q∏
ℓ=1

(1 + tanh ĥ−ℓ )

+

p∏
ℓ=1

(1 + tanh ĥ+ℓ )

q∏
ℓ=1

(1− tanh ĥ−ℓ )

)x

δ
(
h− (

p∑
ℓ=1

h+ℓ −
q∑

ℓ=1

h−ℓ )
)

(16.63)

Q̂(ĥ)
distr
=

1

N̂

∫ K−1∏
k=1

Qk(hk)

(
2−

K−1∏
k=1

1

2
(1− tanhhk)

)x

× δ
(
ĥ− 1

2
ln{1−

K−1∏
k=1

1

2
(1− tanhhk)}

)
(16.64)

Here the symbol
distr
= means that the probability distributions of the right and

left hand side are equal. More precisely let Q(·), Q̂(·) denote the distribution

of the r.v’s Q(·) and Q̂(·). Then in (16.63)-(16.64) the random variables are iid

with Q±
ℓ ∼ Q(·) and Q̂ℓ ∼ Q̂(·), which imposes selfconsistent conditions on the

distributions Q(·) and Q̂(·).
Similarly, from the assumption of independence of messages, the free energy
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of a the level-one model is given by the random variable

f1(x;Q(.), Q̂(.), p, q)

= x−1 ln

{∫ p∏
ℓ=1

Q̂+
ℓ (ĥ

+
ℓ )

q∏
ℓ=1

Q̂−
ℓ (ĥ

−
ℓ )

( p∏
ℓ=1

(1− tanh ĥ+ℓ )

q∏
ℓ=1

(1 + tanh ĥ−ℓ )

+

p∏
ℓ=1

(1 + tanh ĥ+ℓ )

q∏
ℓ=1

(1− tanh ĥ−k )

)x}

+ x−1 ln

{∫ K∏
k=1

Qk(hk)

(
1−

K∏
k=1

1− tanhhk
2

)x}
− x−1 ln

{∫
Q(h)Q̂(ĥ)

(
1 + tanhh tanh ĥ

)x}
(16.65)

We are ready to formulate the precise 1RSB formula for the free energy. This

is done in a manner analogous to the replica symmetric formulas in Chapter 12.

Fix a trial distribution Q(·) of a random variable Q(·). Take K − 1 iid copies

Qk(.) ∼ Q(·), k = 1, · · · ,K−1, define the random variable Q̂(.) through (16.64),

and call Q̂(·) the distribution induced by this same equation. Define the 1RSB

free energy functional

f1RSB(x;Q(.)) = E[f1(x;Q(.), Q̂(.), p, q)] (16.66)

where the expectation is with respect to Q, p, q. The 1RSB formula states that

the free energy ofK-SAT at finite temperature is given by the variational formula

− lim
n→+∞

1

βn
E[lnZ] = max

x∈[0,1]
sup
Q
f1RSB(x;Q(.)) (16.67)

We shall not prove it here but similarly to the replica symmetric variational

problems the stationnarity condition for Q(·) yields equation (16.63). For the

maximum over x we must distinguish two cases. When it is attained at x = 1

the 1RSB formula (16.67) reduces to the replica symmetric solution (this was

shown for instances in the preceding section and is briefly shown again below

for the average free energy). This is the case for α < αc(β). As α increases past

αc(β) the maximum is attained for some 0 < x∗(α) < 1 and the stationarity

condition is nothing else than the condition that the complexity vanishes.

Equ. (16.67) is conjectured to be exact. Thanks to an extension of the inter-

polation method developped in Chapter 13 it has ben proven that the 1RSB

formula is a lower bound to the free energy.

theorem 16.1 For any trial distribution Q(.) and any 0 < x < 1, the thermo-

dynamic limit of the free energy of SAT exists, and moreover is lower bounded

by the 1RSB formula

− lim
n→+∞

1

βn
E[lnZ] ≥ max

x∈[0,1]
sup
Q
f1RSB(x;Q(.))



16.8 1RSB analysis for K-SAT 329

Reduction of the free energy to the replica symmetric solution for x = 1

We first demonstrate that for x = 1 the 1RSB formula (16.67) for the free

energy reduces to the replica symmetric result found in Sect. 12.6. Let us define

the random variables hrmav and ĥrmav through

tanhhav =

∫
Q(h) tanhh, tanh ĥav =

∫
Q̂(ĥ) tanh ĥ (16.68)

The distribution of hav is induced by Q(·) ∼ Q(·), and equation (16.64) defines

the random variable Q̂(·) ∼ Q̂(·) which induces a distribution for ĥav. In fact,

for x = 1, from (16.64) we can deduce the explicit relation between the random

variables hav and ĥav. Multiplying (16.64) by tanh ĥ and integrating both sides

over ĥ leads after a few lines of algebra (for x = 1) to the ”density evolution“

relation (see exercises)

ĥav
distr
=

1

2
ln
{
1−

K−1∏
k=1

1

2
(1− tanhhavk )

}
(16.69)

This result should not appear as a surprise in view of the general formulas (16.57)

(derived for instances). Now, putting x = 1 in (16.65) it is immediate to see that

the random variable f1(x;Q(.), Q̂(.), p, q) reduces to

f1(x = 1;hav, ĥ
av
, p, q) = ln

{ p∏
ℓ=1

(1− tanh ĥ+,av
ℓ )

q∏
ℓ=1

(1 + tanh ĥ−,av
ℓ )

+

p∏
ℓ=1

(1 + tanh ĥ+,av
ℓ )

q∏
ℓ=1

(1− tanh ĥ−,av
ℓ )

}

+ ln

{
1−

K∏
k=1

1

2
(1− tanhhavk )

}
+ ln

{
1 + tanhhav tanh ĥav

}
(16.70)

If we call x(·) the trial distribution of hav that is induced by Q(·) ∼ Q(·) the

1RSB free energy function (16.66) reduces to

fRS(x(·)) = E[f1(x = 1;hav, ĥ
av
, p, q)] (16.71)

where the expectation is over x(·) and the Poisson(αK/2) integers p and q. We

recognize here the replica symmetric free energy functional, namely (12.40). The

replica symmetric free energy is obtained by maximizing the functional over x(·);
and not surpisingly the stationarity condition is the second ”density evolution“

equation

hav
distr
=

p∑
ℓ=1

ĥ+,av
ℓ −

q∑
ℓ=1

ĥ−,av
ℓ (16.72)

Finally we note that Theorem 16.1 implies the replica symmetric lower bound

(valid for all α)

− lim
n→+∞

1

βn
E[lnZ] ≥ max

x∈[0,1]
sup
Q
f1RSB(x;Q(.)) ≥ sup

x(·)
fRS(x(·)) (16.73)
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which we proved in Chapter 13.

1RSB complexity function for x = 1

For specific instances we saw that the complexity at x = 1 is found by subtracting

the internal free energy contributions (16.60)-(16.62) from the Bethe free energy

(11.47)-(11.49). To compute the 1RSB complexity of random formulas we need

the averaged version these equations. For random formulas the average Bethe

free energy is already given by the replica symmetric free energy, i.e (16.71)

maximized over the trial distribution x(·). So we just have to discuss the average

of the internal free energy contributions (16.60)-(16.62).

We start with the averaged form of (16.58). These become relations between

distributions
R(h|s, hav) = 1

N
∫ ∏p

ℓ=1 R̂
+
ℓ (ĥℓ|s, ĥ

+,av
ℓ )

∏q
ℓ=1 R̂

−
ℓ (ĥℓ|s, ĥ

−,av
ℓ )

×δ
(
h− (

∑p
ℓ=1 h

+
ℓ −

∑q
ℓ=1 h

−
ℓ

)
)

R̂(ĥ|s, ĥav) = 1
N̂

∑
∼s π(s1, · · · , sK−1|s)

∫ ∏K−1
k=1 Rk(hk|s, havk )

×δ̂
(
ĥ− 1

2 ln{1−
∏K−1

k=1
1
2 (1− tanhhk)}

) (16.74)

where

π(s1, · · · , sK−1|s) = recalculatethisexpression

The only level of randomness in this equation is in the average fields which are

solutions of the distributional equations (16.69) and (16.72). To better under-

stand (16.74) it is instructive to rederive these equations directly from the general

1RSB fixed point equations (16.63)-(16.64) for K-SAT. First define

Q̄(h|hav) = EQ(·|hav)[Q(h)], ˆ̄Q(ĥ|ĥav) = EQ̂(·|ĥav)[Q̂(ĥ)]

where the conditional expectations mean that we ”integrate“ over Q and Q̂ such

that (16.68) holds. One should now bear in mind that the only randomness

in Q̄(h|hav) and ˆ̄Q(ĥ|ĥav) is in hav and ĥav (the ”overbar“ is here to remind

us that, given the average fields, these distributions are not random, contrary

to Q, Q̂). These distributions satisfy exactly the same equations (16.63)-(16.64).

This follows immediately by taking the conditional expectation of these equations

and using the fact they are multilinear in Q’s and Q̂’s. Now define

R(h|s, hav) ≡ (1 + s tanhh)Q̄(h|hav)
1 + s tanhhav

, R̂(ĥ|s) ≡ (1 + s tanh ĥ) ˆ̄Q(ĥ|ĥav)
1 + s tanh ĥav

The reader will note these relations are nothing else than an averaged version of

(16.48), (16.45). It follows that

Q̄(h|hav) =
∑
s=±1

1

2
(1 + s tanhhav)R(h|s, hav),
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and similarly for ˆ̄Q(ĥ|ĥav). Replacing these representations of Q̄ and ˆ̄Q in (16.63)-

(16.64) (more precisely in the conditional expectation of these equations) we

obtain (16.74).

At this point it is quite easy to see that the expected version of internal free

energy contributions (16.60)-(16.62) becomes (conditional on the average fields)

Fint(h
av, ĥ

av
) =

∑
s=±1

νav(s)

∫ p∏
ℓ=1

R̂+
ℓ (ĥ

+
ℓ |s, h

+,av
ℓ )

q∏
ℓ=1

R̂−
ℓ (ĥ

−
ℓ |s, h

−,av
ℓ )

× ln

{ p∏
ℓ=1

(1− tanh ĥ+ℓ )

q∏
ℓ=1

(1 + tanh ĥ−ℓ ) +

p∏
ℓ=1

(1 + tanh ĥ+ℓ )

q∏
ℓ=1

(1− tanh ĥ−ℓ )

}

+
∑

s1,··· ,sK

νav(s1, · · · , sK)

∫ K∏
k=1

Rk(hk|s, hav) ln
{
2−

K∏
k=1

1

2
(1− tanhhk)

}
−
∑
s

νav(s)

∫
R̂(ĥ|s, ĥav)R(h|s, hav) ln

{
1 + tanh ĥ tanhh

}
(16.75)

where

νav(s) =
1

2

(
1 + s tanh(

p∑
ℓ=1

ĥ+,av
ℓ −

q∑
ℓ=1

ĥ−,av
ℓ )

)
νav(s1, · · · , sK) = recalculate this

νav(s) =
1

2
(1 + s tanh(ĥav + hav))

Let us summarize. To find the complexity one first solves (16.69) and (16.72)

in order to find the distributions x(·), x̂(·) of the average fields and obtain fRS,

Equ. (16.71). For each typical instance of the average fields one solves (16.74) to

find the distributions R(·| ± 1, hav), R̂(·| ± 1, ĥav) and obtain (16.75). Then one

computes the average internal free energy (the expecetation is with respect to

x(·) and Poisson integers p, q)

fint = E[Fint(h
av, ĥ

av
)] (16.76)

The complexity is finally given by

Σ1RSB(α) = fRS − fint (16.77)

16.9 Phase diagram of K-SAT at finite temperature

Figure 16.5 shows the 1RSB phase diagram in the (α, β−1) plane (i.e. constraint

density and temperature) plane. The 1RSB analysis predicts the existence of two

thresholds αd(β) and αc(β), called the dynamical and condensation thresholds,

at which the nature of the convex decomposition (16.13) changes drastically. A

few values of the thresholds are given in Table 16.1 for β → +∞ and compared

to the SAT-UNSAT threshold for a few values of K. Note that the case K = 3
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αd αc α

Figure 16.5 The 1RSB analysis predicts two thresholds αd(β) and αc(β). On the left
of the dynamical threshold there is only one extremal Gibbs state depicted by a large
ball. Between the dynamical and the condensation threholds the Gibbs distribution is
described by a convex superposition of an exponential number of extremal Bethe
states depicted by numerous balls. On the right of the condensation threshold there
are only finitely many extremal Bethe states that dominate the convex superposition.
The size of the balls represents their internal free energy.

stands out because αd = αc. It is only for K ≥ 4 that the behavior is generic.

We briefly indicate how the thresholds are found and discuss their significance.

The easiest way to access the thresholds is to compute the complexity for

x = 1 by using a population dynamics method (see exercises). We first remark

that equations (16.74) always have (for all α) a trivial solution R(h| ± 1, hav) =

δ(h − hav), R̂(ĥ| ± 1, ĥav) = δ(ĥ − ĥav). Replacing this trivial solution in the

1RSB expression of the complexity for x = 1 one finds a cancellation between

the free and internal energy contributions leading to a zero complexity. The

dynamical threshold is defined as the constraint density where a non trivial

solution appears for α > αd(β). Therefore for α < αd(β) the complexity vanishes

Σ1RSB(α) = 0, the replica symmetric free energy is correct, and one expects that

there is a unique Bethe extremal state. For α > αd(β) one has to select the

non-trivial solution of (16.74) which maximizes the 1RSB free energy functional.

One finds a complexity Σ1RSB(α) which jumps to a strictly positive value at

αd(β), and decreases monotonically until it becomes negative past a threshold

αc(β). A negative value for the complexity is not consistent and this means

that for α > αc(β) it is not correct to set x = 1. For αd(β) < α < αc(β)

the value x = 1 is correct since it maximizes the 1RSB free energy. Indeed

recall since Σ1RSB(α) > 0 the maximum is attained at the right boundary of

the interval [0, 1]. In this intermediate regime of densities the theory predicts

an exponentially large, namely exp(nΣ(α)), number of extremal Bethe states α

that equally dominate convex decomposition of the Gibbs distribution (16.13).

The 1RSB formula for the free energy Fα of the dominant extremal Bethe states

is given by (16.76) (the ”internal energy“ of the level-one model). The total free

energy is still given by the replica symmetric formula which is analytic. There

is no static phase transition in the whole range 0 < α < αc. For α > αc(β) the

complexity one cannot set x = 1 and has to resort to the general 1RSB solution.

Equations (16.63)-(16.64) are solved by a population dynamics technique and
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K αd αc αs

3 3.86 3.86 4.267

4 9.38 9.55 9.93

Table 16.1 Dynamical and condensation thresholds of K-SAT in the zero temperature
limit. Note that for 3-SAT the dynamical and condensation thresholds are the same. We
also indicate for comparison the SAT-UNSAT threshold computed in the next chapter

the average free energy and complexity of the level one model are computed

for all 0 < x < 1. The correct value x∗(α) is the one that maximizes the free

energy, i.e.such that such that Σ(x∗(α)) = 0. The complexity vanishes and the

number of Bethe extremal states dominating the convex decomposition of the

Gibbs measure is expected to be finite (or subexponential). The finiteness of the

dominant extremal Bethe states implies that the free energies are equal to the

1RSB free energy (16.67) (equivalently Σ(x∗(α)) = 0 means that the entropy of

the level-one model vanishes).

For densities below the dynamical threshold there is a unique Bethe extremal

state and therefore belief propagation correctly computes the marginals of the

Gibbs distribution. For intermediate densities between the dynamical and con-

densation thresholds there are exponentially many extremal Bethe states. But as

we saw in this regime x = 1 and the cavity equations reduce to the belief prop-

agation equations. Therefore the belief propagation equations still yield correct

marginals. This is quite remarkable. The convex superposition (16.13) is not an

extremal Bethe state but its marginals still satisfy the sum-product equations.

For this reason the convex superposition is sometimes said to be a Bethe state

albeit a notationan extremal one. We already pointed out that the dynamical

threshold does not correspond to a static phase transition. Rather it is believed

to have some algorithmic significance. For example a Markov Chain Monte Carlo

algorithm will not be able to correctly sample the Gibbs measure. The conden-

sation threshold is a static phase transition threshold where the free energy has

a non-anlyticity. Sum-product equations do not correctly compute the marginals

of the Gibbs distribution.

16.10 Long range correlations

In section ?? we indicated that in Ising models there is an intimate connection

between the decay of correlations and the extremality of the Gibbs measure. This

is also true for constarint satisfaction models defined on random graph ensembles.

However the correct correlation functions have to be used. In the present context

two type of correlation functions have been discovered. Point-to-set correlations
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K αd αd,80,3 αc αc,80,3 αs αs,80,3

3 3.86 3.86 3.86 3.86 4.267 4.268

4 9.38 9.55 9.55 9.56 9.93 10.06

Table 16.2 Thresholds of individual and coupled K-SAT model for L = 80 and w = 3.
Note that for 3-SAT the dynamical and condensation thresholds are the same. The
condensation and SAT-UNSAT thresholds correspond to non analyticities of the entropy
and ground state energy and remain unchanged (for L → +∞). Already for w = 3 the
dynamical threshold saturates very close to αc and αs.

defined as

C(i, B) =
∑
x∂B

ν(x∂B(ν(xi|x∂B)− ν(xi))2

where B is the set {xj |{dist(xi, xj) ≥ d}. Within the cavity method one can

compute limd→+∞ limn→+∞ C(i, B and finds that the limit vanishes α < αd,

while it remains strictly positive for α > αd. Moreover for all α < αc and all

randomly chosen bounded set of variables

E[(ν(xi1 , . . . xik)− ν(xi1) . . . ν(xik))2] = O(
1

n
)

This is similar to the decoupling property we discussed for the CW model. At

αc this decoupling property breaks down.

16.11 Thresholds of spatially coupled K-SAT

It is interesting to consider the spatially coupled version of the K-SAT model.

The same cavity theory can be applied and the RSB equations solved with the ap-

propriate boundary conditions. this allows to determine the dynamical and con-

densation thresholds of the spatially coupled model (see table ??). The numeri-

cal observations suggest that the condensation threshold remains invariant in the

limit of an infinite chain. This is consistent with its interpretation as a singularity

of the entropy. In fact one can prove by the interpolation method that the en-

tropy of the infinite coupled chain and underlying uncoupled model are the same,

and therefore αc is the same for both models, namely limL→+∞ αc(w,L) = αc.

On the other hand it is observed that the dynamical threshold saturates towards

the condensation threshold in the limit of an infinite chain and a large coupling

range, namely limw→+∞ limL→+∞ αd(w,L) = αc. These results are conssistent

with the interpretation of the dynamical threshold as an algorithmic barrier and

the condensation threshold as a static phase transition threshold.
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16.12 Notes

Problems

16.1 Population dynamics for x = 1.

16.2 Population dynamics for the generagl 1RSB solution.



17 Survey Propagation Guided
Decimation Algorithm

In this Chapter we turn to one of the most fascinating aspects of the K-SAT

problem. Namely we want to devise good algorithms that are able to find with

positive probability solutions of random formulas up to - or at least very close

to - the satisfiability threshold αs(K). In particular we also want to concretely

compute αs(K).

Belief propagation guided decimation algorithms find solutions of random K-

SAT formulas for low constraint densities. However, as experimentally observed

in Chapter 9, such algorithms fail slightly below the dynamical (zero tempera-

ture) threshold αd. The cavity method gives some intuition for the reasons of

this failure. When αd < α < αc the marginals computed from belief propaga-

tion form an average over all marginals of extremal Bethe states and cannot be

used to reliably fix variables that we decimate. For α > αc the situation is even

worse because long range point-to-point correlations appear and belief propaga-

tion does not even yield a correct average of marginals. Ideally, in order to find

solutions of a random formula for α > αd one would like to sample directly from

Bethe extremal measures. While it is not really clear how this can be achieved,

one may hope to use the informaton contained in the cavity method marginals of

the level-one model - the surveys - to achieve something similar. In this chapter

we start from this insight to derive an algorithm, that goes under the name of

survey propagation guided algorithm, which successfully finds solutions above the

dynamical threshold. The algorithm is again a decimation algorithm but now the

decisions on the value that a variable should take are based on the surveys. It

should be stressed that this algorithm does not represent a correct sampling of

the uniform measure over K-SAT solutions and it is believed that it somehow

finds ”special” solutions. The problem of sampling from the uniform measure

over solutions of a random formula is not addressed here.

In order to use the cavity method marginals of the level-one model to find

solutions then one should apply the formalism of Chapter 16 at zero temperature.

However this is not quite enough. One difficulty is that we weighted the extremal

Bethe states by their free energy, which at zero temperature and in the satisfiable

phase reduces to their entropy (in the satisfiable phase their internal energy

vanishes since all constraints are satisfied). So when the temperature vanishes,

in the satisfiable phase the extremal Bethe states are weighted by their entropy.

One sometimes refers to this limit as the entropic cavity method. The entropic
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cavity method correctly captures the uniform distribution over solutions and

correctly predicts the dynamical and condensation thresholds, but it leaves out

all states that dont have maximal entropy as well as solutions within them. If the

goal is to construct an algorithm which finds some solution the entropic method

may not be the best one. Even more so, close to the satisfiability threshold where

the number of entropically dominant states diminishes. This leads us to consider

a variant of the cavity method, sometimes called energetic cavity method, where

extremal states are weighted by their internal energy instead of their free energy.

At zero temperature and in the satisfiable phase the internal energy vanishes and

the corresponding level-one model equally counts all states, not only those with

maximal entropy. This allows to define an energetic complexity function - the log

of the total number of extremal states - and identify αs(K) as the density where

this complexity becomes negative.

In the next section 17.1 we formulate the energetic cavity method. This leads

to the a new set of message passing equations, the survey propagation equations,

derived in ??. This formalism is applied to given instances of K-SAT formulas

in section 17.3 and to random formulas in section 17.4 where we also compute

the energetic complexity and satisfiability threshold. In the last section 17.5

we come back to specific K-SAT instances and discuss the survey propagation

guided decimation algorithm. As we willl see this algorithm works for constraint

densities that come rather close to the satisfiability threshold.

17.1 Energetic cavity method

Recall the Hamiltonian formulation of the K-SAT problem in Chapter ??. So-

lutions of a given K-SAT formula are the minimizers of a cost function (3.53).

In this section we wish to keep the formalism quite general so we consider cost

functions (or Hamiltonians) of the form

H(x) =
m∑

a=1

Ea(x∂a) (17.1)

where Ea(x∂a) is the energy cost of an assignment {xi, i ∈ ∂a} of the variables

attached to function node a. We will assume that minEa(x∂a) = 0 for all a =

1, · · · ,m. We seek zero energy minimisers, in other words assignments x which

simultaneously satisfy Ea(x∂a) = 0 for all a = 1, · · · ,m.

Here we develop the energetic cavity method by directly tackling this min-

imisation problem. As will become clear later on the energetic cavity method

can be viewed as a suitable zero temperature limit of the general cavity method

developed in Chapter 16.
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Min-sum formalism

Just as the finite temperature cavity method is based on the sum-product equa-

tions, the starting point of the energetic cavity method are the min-sum equations

which we already encountered several times. These are a set of message passing

equations relating “energy costs”
Ei→a(xi) =

∑
b∈∂i\a Êb→i(xi)− Ci→a

Êa→i(xi) = min∼xi

{
Ea(x∂a) +

∑
j∈∂a\iEj→a(xj)

}
− Ĉa→i

(17.2)

Here we adjust the “normalization constants” Ci→a, Ĉa→i so that minEi→a(xi) =

min Êa→i(xi) = 0. Min-sum equations are the stationary point conditions of a

Bethe energy functional,

EBethe[{Ei→a(·), Êa→i(·)}] =
∑
i

Ei +
∑
a

Ea −
∑
ai

Eai (17.3)

with contributions from variable and function nodes, and edges,

Ei = min
xi

{
∑
b∈∂i

Êb→i(xi)} (17.4)

Ea = min
x∂a

{Ea(x∂a) +
∑
i∈∂a

Ei→a(xi)} (17.5)

Eai = min
xi

{Ei→a(xi) + Êa→i(xi)} (17.6)

Note that we can shift the constant factors Ci→a and Ĉa→i without affecting the

value of the Bethe energy functional (17.3).

From the messages we can also compute a “marginal energy cost”

Ei(xi) =
∑
a∈∂i

Êa→i(xi)−min{
∑
a∈∂i

Êa→i(xi)} (17.7)

These marginal energy costs can be used to guide a decimation algorithm in

order to find minimizers of the Hamiltonian.

As already pointed out in previous chapters (in the context of compresive

sensing) the min-sum formalism summarized above can be derived from the

sum-product equations and Bethe free energy functional by taking a suitable

zero temperature limit. The essential point is to represent the messages at low

temperatures as µi→a(xi) ∝ e−βEi→a(xi) and µa→i(xi) ∝ e−βÊa→i(xi).

Landscape, complexity and level-one energetic model

When the factor graph is a tree the message passing equations have one valid so-

lution and the Bethe energy yields the exact ground state energy, i.e. minH(x) =
EBethe. At the same time the marginal energy cost (17.7) gives the exact excita-

tion energy, i.e. Ei(xi) = min∼xi H(x)−minH(x).
Here we are interested in cases where the factor graph is not a tree and the
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— figure —

Figure 17.1 Cartoon of the energy landscape. The horizontal axis represents the space
of energy costs {Ei→a(·), Êa→i(·)} and the vertical axis is the Bethe energy (17.3).

min-sum equations may have numerous solutions, possibly exponentially many

in n, which requires a statistical description in the spirit of the level-one model

of the previous chapter. The Bethe energy functional is viewed as an effective

energy landscape over the space of messages {Ei→a(·), Êa→i(·)}, with numerous

minima, maxima and saddles. We consider models such that the energy landscape

has a large number of minima at vanishing energy as illustrated Figure 17.1 we

illustrates such an energy landscape for a model in its satisfiable phase where

there are a large number of minima of vanishing energy. We introduce a counting

function - the energetic complexity - which will enable us to count the minima

of vanishing energy. For ϵ > 0 we set

enΣBethe(ϵ) dϵ =
∑

stat points

δ(nϵ− EBethe({Ei→a(·), Êa→i(·)})) dϵ. (17.8)

where the sum is over the solutions of (17.2), in other words stationary points of

(17.3). The energetic complexity counts such stationary points which fall in the

energy band [nϵ, n(ϵ+dϵ)]. As ϵ→ 0 we expect that the minima are exponentially

more numerous than maxima and saddles and therefore we expect that only

minima contribute to

lim
ϵ→0

ΣBethe(ϵ).

The ensemble average of this complexity at zero energy allows to distinguish

between a SAT and UNSAT phases. Indeed we expect that it is non-negative if

and only if solutions exist (for typical formulas).

To make this discussion more concrete let us briefly ilustrate the situation for

random K-SAT. We will find that the average zero-energy complexity vanishes

for α < αSP (called the survey propagation threshold), jumps to a positive value

at αSP and then monotonically decreases until it becomes negative at a density

αs(K) and looses any meaning. The interpretation is that there exists only one

minimum of zero energy for the Bethe energy functional as long as α < αSP, then

an exponential number of such minima appear until the satisfiability threshold
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— figure —

Figure 17.2 The average energetic complexity of the 4-SAT ensemble of random
formulas.

αs(K) where no solutions exist and zero energy minima disappear. Figure 17.2

shows the average energetic complexity of the 4-SAT ensemble as a function of

α.

In order to compute ΣBethe(ϵ) we introduce the Laplace transform of (17.1)

Ξ(y) =

∫ +∞

0

dϵ e−n(yϵ−ΣBethe(ϵ))

=
∑

stat points

e−yEBethe[{Ei→a(·),Êa→i(·)}] . (17.9)

When the parameter y → +∞ the sum on the right hand side is dominated by

the minima of vanishing energy, therefore

lim
ϵ→0

ΣBethe(ϵ) = lim
y→+∞

1

n
ln Ξ(y) (17.10)

More generally, we can compute the complexity at any energy level, in other

words count the number of stationary points in any energy band [nϵ, n(ϵ+ dϵ)].

For n→ +∞ (17.9) formally implies

− lim
n→+∞

1

n
ln Ξ(y) = min

ϵ≥0
(yϵ− ΣBethe(ϵ))

= yϵ∗(y)− ΣBethe(ϵ∗(y)). (17.11)

where ϵ∗(y) is the solution of y = Σ′
Bethe(ϵ∗).

Clearly, (17.9) is a new statistical mechanical model for a system whose “micro-

scopic degrees of freedom” are the energy costs satisfying the min-sum equations

(the stationary points of the Bethe energy functional), “Hamiltonian” given by

the Bethe functional, and “temperature” y. According to the general thermody-

namic relations the “free energy” −y−1 ln Ξ(y) is given by the “internal energy”

ϵ∗(y) minus y times the “entropy” ΣBethe(ϵ∗(y)). At zero “temperature” y → +∞
(and in a SAT phase) the internal energy vanishes, therefore limy→+∞ Ξ(y) re-

duces to the zero energy entropy ΣBethe(ϵ = 0). Note that in this model the

energetic complexity is nothing else than a “Boltzman entropy”.
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It is also illuminating to clarify the connection between the energetic level-

one model and the more general one introduced in 16. In the level one model

of the prvious chapter the extremal Bethe states are given the Gibbs weights

e−βxFBethe[µ,µ̂]. In the zero temperature limit µi→a(xi) ∝ e−βEi→a(xi), µa→i(xi) ∝
e−βÊa→i(xi) and limβ→+∞ FBethe = EBethe. We see that the partition function

(17.9) is recovered from (16.19) by letting β → +∞, and x → 0 such that

βx = y is fixed. The energetic cavity method appears as a special case of the

general cavity method developped in the previous chapter in a limit of very

low temperatures where we weight the extremal states according to their energy

instead of free energy. In this way when y → +∞ the partition function Ξ(y)

counts “zero energy extremal states” (or ground states) all with the same weight.

Factor graph representation of the energetic level-one model

The new partition function (17.9) can be represented as a factor graph model in

essentially the same manner than in section 16.4 for the general level-one model.

Here it will be sufficient to be brief.

To take into account the constraint of summing over solutions of min-sum

equations in (17.9) we introduce two indicator functions (these are analogous to

(16.21) and we abuse notation by using the same symbols){
∆i→a = 1

(
Ei→a(·) =

∑
b∈∂i\a Êb→i(·)− Ci→a

)
,

∆̂a→i = 1
(
Êa→i(xi) = min∼xi

{
Ea(x∂a) +

∑
j∈∂a\iEj→a(xj)

}
− Ĉa→i

)
.

(17.12)

Then, proceeding exactly as in (16.22)-(16.26) (and abusively using similar no-

tations) the partition function (17.9) can be written in the factorized form

Ξ(y) =
∑

{Ei→a(·),Êa→i(·)}

∏
i

ψi

∏
a

ψa

∏
ia

ψia (17.13)

with

ψi = e−yEi

∏
a∈∂i

∆i→a, ψa = e−yEa

∏
i∈∂a

∆̂a→i, ψia = e+yEia (17.14)

where we recall that Ei, Ea and Eia are the three contributions (17.4)-(17.6) to

the Bethe energy functional. The factor graph of the model is the same as the

one on the right of Figure 16.3.

17.2 Survey propagation equations and complexity of the energetic
model

Now that we have formulated the energetic level-one model in the factor graph

language (17.13) we can use our usual machinery to derive sum product equations

and a Bethe free energy functional.
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Survey propagation equations

The analysis is essentially identical to that of Section 16.5 and it is possible

to reduce the sum-product equations on the new factor graph (Fig. 16.3) to

a set of message passing equations with messages flowing on the edges of the

original factor graph. Messages are distributions over energy costs Qi→a(Ei→a)

and Q̂i→a(Êa→i). In the present context it is usual to call them surveys and the

set of resulting equations linking them survey propagation equations. The later

are analogous to (16.28),Q̂a→i(Êa→i) ∝
∑

E ∆̂a→ie
−y(Ea−Eai)

∏
j∈∂a\iQj→a(Ej→a)

Qi→a(Ei→a) ∝
∑

Ê ∆i→ae
−y(Ei−Eai)

∏
b∈∂i\a Q̂b→i(Êb→i).

(17.15)

We leave it as an exercise for the reader to show that the exponents in the

“reweighting factors” have the following explicit expressionsEa − Eai = Ĉa→i = minx∂a

{
Ea(x∂a) +

∑
j∈∂a\iEj→a(xj)

}
Ei − Eai = Ci→a = minxi

∑
b∈∂i\a Êb→i(xi)

(17.16)

where Ĉa→i and Ci→a are the “normalization constants” in the min-sum equa-

tions (17.2).

Bethe free energy and complexity of the energetic model

The survey propagation equations are stationnary point equations of a Bethe free

energy functional. As usual on a tree this functional would be an exact expression

for n−1 ln Ξ(y)). Here we are not on a tree, but one may hope that the Bethe

functional forms teh basis of an exact 1RSB like formula for n−1E[ln Ξ(y)] (when
n→ +∞) where the expectation is over the ensemble of random instances. This

is believed to be the case in the applicatioj to K-SAT.

It should be clear to the reader (by now) that the expression for the relevant

Bethe functional is analogous to (16.30)-(16.33), that is

FBethe(Q, Q̂; y) =
∑
i∈V

Fi +
∑
a∈C

Fa −
∑
ai∈E

Fai (17.17)

where

Fi({Q̂b→i}b∈∂i) = −y−1 ln

{∑
µ̂

e−yEi

∏
b∈∂i

Q̂b→i

}
, (17.18)

Fa({Qj→a}j∈∂a) = −y−1 ln

{∑
µ

e−yEa

∏
j∈∂a

Qj→a

}
, (17.19)

Fai(Qi→a, Q̂a→i) = −y−1 ln

{∑
µ,µ̂

e−yEaiQi→aQ̂a→i

}
. (17.20)
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In view of (17.10), the Bethe complexity for zero energy is found from

ΣBethe(Q, Q̂) = − lim
y→+∞

yFBethe(E, Ê; y) (17.21)

17.3 Survey propagation for K-SAT instances

We use our usual notations introduced for the K-SAT problem. The alphabet is

binary xi ∈ {0, 1} and we switch to the spin language si = (−1)xi . Full edges

(variable i appears un-negated in clause a) have Jia = +1 and dashed edges

(variable i appears negated in clause a) have Jia = −1. Recall also that ∂±i is

the set of constraints a such that Jia = ±1. The cost functions Ea defining the

Hamiltonian (17.1) are

Ea(s∂a) =
∏
i∈∂a

1

2
(1 + Jiasi) (17.22)

We keep in mind for later use that a constraint a is satisfied if for at least one

node i ∈ ∂a we have si = −Jia. Similarly it is unsatisfied if for all i ∈ ∂a we

have si = +Jia.

Energy costs Ei→a(si), Êa→i(si) appearing in the min-sum equations are func-

tions of a binary variable si = ±1 and normalized such that their minimum

vanishes. It is not very hard to see that any such function can be parametrized

as

Ei→a(si) = |hi→a|+ hi→aJiasi, Êa→i(si) = |ĥa→i|+ ĥa→iJiasi (17.23)

where hi→a, ĥa→i are for the moment arbitrary numbers (“fields”). With this

parametrization the min-sum equations become (exercise)hi→a =
∑

b∈∂i\a JbiJaihb→i

ĥa→i =
∏

j∈∂a\i(1− θ(hj→a))
(17.24)

where θ(u) = 0, 1for u ≤ 0, u > 0 the Heaviside function. Obviously messages

ha→i live in the discrete alphabet {0, 1}; but what about hi→a?. We notice in

the second min-sum equation that only the sign of hj→a really matters. In other

words, introducing the “sign function” sgn(u) = −1, 0, +1 for u < 0, u = 0, u >

0, (17.24) are equivalent tohi→a = sgn
{∑

b∈∂i\a JbiJaiĥb→i

}
ĥa→i =

∏
j∈∂a\i(1− θ(hj→a))

(17.25)

The message alphabet is thus entirely discrete, namely hi→a ∈ {−1, 0,+1} and
ĥa→i ∈ {0, 1}, and this reduction is a crucial simplifying feature of the energetic

cavity method.
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Equations (17.25) are sometimes called “warning propagation” equations be-

cause the messages can be nicely interpreted as “warnings”. For example ĥa→i =

+1 is equivalent to Ea→i(si = Jia) = +2, Ea→i(si = −Jia) = 0. Thus ĥa→i = +1

is interpreted as a “warning”: given the information a receives from j ∈ ∂a \ i
it warns i to satisfy it (i.e. set si = −Jia) otherwise this would incur an energy

cost. When ĥa→i = +0, Ea→i(si = ±Jia) = 0 so a warns i that both choices

si = ±Jia are indifferent and incur an energy cost. Similarly ĥi→a = −1 is

equivalent to Ei→a(si = Jia) = 0, Ei→a(si = −Jia) = +2; thus given the infor-

mation i receives from b ∈ ∂a \ i it warns a that it is forced to not satisfy it (i.e.

si = Jia). Finally for ĥi→a = 0 we have Ei→a(si = ±Jia) = 0 so i warns a that

it can take a random value, and for ĥi→a = +1 we have Ei→a(si = Jia) = +2,

Ei→a(si = −Jia) = 0 and i warns a that it is forced to satisfy it. With these in-

terpretations the second warning propagation equation in (17.25) expresses that

if a receives a warning from at least one j ∈ ∂a \ i that j can satisfy a (i.e.

hj→a = +1) then a can warn i that it is free to take any value (i.e. ha→i = 0).

The first equation expresses that i is forced not to satisfy a (i.e. ĥi→a = −1)
when i receives from b ∈ ∂i \ a complete the sentence properly.

Since the essential object of interest is the zero-energy complexity (because it

controls the zero temperature phase diagram) we are interested in the y → +∞
limit of the survey propagation equations (17.15). In this limit only terms such

Ci→a = 0 and Ĉa→i = 0 survive. In fact (for K-SAT) Ĉa→ i = 0 anyway so

this does not yield an extra constraint in the sum. Indeed in (see (17.16)),

Ĉa→i = mins∂a

{
Ea(s∂a) +

∑
j∈∂a\i

Ej→a(sj)
}

once we fix sj = Jjasgnhj→a for all j ∈ ∂aı, we can still fix si = −Jia to achieve

Ĉa→i = 0. For the other constant we have

Ĉi→a = min
si

{ ∑
b∈∂a\i

Êb→i(si)
}

= min
si

{ ∑
b∈∂a\i

|ĥb→i|+ si
∑

b∈∂a\i

Jbiĥb→i

}
=
∑

b∈∂a\i

|ĥb→i| − |
∑

b∈∂a\i

Jbiĥb→i|

where the last equality is obtained by setting si = −Jbi to achieve the minimum.

In order to satisfy Ci→a = 0 we can allow ûb→i = 1 on a certain number of edges

with the same sign and ûb→i = 0 on the remaining edges that have both signs.

We can now work out the explicit form of the survey propagation equa-

tions (17.15) for K-SAT instances in the limit y → +∞. Consider the surveys

Q̂a→i(ĥa→i). These must satisfy Q̂a→i(1) + Q̂a→i(0) = 1 and we will keep track
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only of Q̂a→i(1). We have

Q̂a→i(1) =
∑
h

1
(
1 =

∏
j∈∂a\i

(1− θ(hj→a)
) ∏
j∈∂a\i

Qj→a(hj→a)

=
∏

j∈∂a\i

Qj→a(−1) (17.26)

This equation says that the probability that a warns i that it must satisfy it is

equal to the probability that all j ∈ ∂a\ i warn that they are forced to un-satisfy

a (here these are probabilities over the set of fixed points of the warning propaga-

tion equations which have zero Bethe free energy and the warnings are treated as

independent). Consider now the three other surveysQi→a(−1), Qi→a(0), Qi→a(+1),

namely the probabilities that i warns a it must un-satisfy it, is free to take any

value, must satisfy it. For Qi→a(0) we have

Qi→a(0) ∝
∑
ĥ

1
(
0 = sgn

{ ∑
b∈∂i\a

JbiJaiĥb→i

})
× 1

(
0 =

∑
b∈∂a\i

|ĥb→i| − |
∑

b∈∂a\i

Jbiĥb→i|
) ∏
b∈∂i\a

Q̂b→i(ĥb→i)

=
∑
ĥ

1
(
0 = sgn

{ ∑
b∈∂i\a

JbiJaiĥb→i

})
× 1

(
0 =

∑
b∈∂a\i

|ĥb→i|
) ∏
b∈∂i\a

Q̂b→i(ĥb→i)

=
∏

b∈∂i\a

Q̂b→i(0)

=
∏

b∈∂i\a

(1− Q̂b→i(1)) (17.27)

In words the probability that i warns it is free to take any value equals the

probability that all constraints b ∈ ∂i \ a warn they are satisfied. We leave it to

the reader to work out in detail the two other cases,

Qi→a(1) ∝
∑
ĥ

1
(
1 = sgn

{ ∑
b∈∂i\a

JbiJaiĥb→i

})
× 1

(
0 =

∑
b∈∂a\i

|ĥb→i| − |
∑

b∈∂a\i

Jbiĥb→i|
) ∏
b∈∂i\a

Q̂b→i(ĥb→i)

=

{ ∏
b∈∂i\a:Jbi ̸=Jai

(1− Q̂b→i(1))

}{
1−

∏
b∈∂i\a:Jbi=Jai

(1− Q̂b→i(1))

}
,

(17.28)
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Qi→a(−1) ∝
∑
ĥ

1
(
−1 = sgn

{ ∑
b∈∂i\a

JbiJaiĥb→i

})
× 1

(
0 =

∑
b∈∂a\i

|ĥb→i| − |
∑

b∈∂a\i

Jbiĥb→i|
) ∏
b∈∂i\a

Q̂b→i(ĥb→i)

=

{ ∏
b∈partiali\a:Jbi=Jai

(1− Q̂b→i(1))

}{
1−

∏
b∈∂i\a:Jbi ̸=Jai

(1− Q̂b→i(1))

}
(17.29)

Equation (17.28) says the probability i warns that it satisfies a equals the prob-

ability that i is forced to satisfy clauses with Jbi = Jai and free with respect to

clauses with Jbi ̸= Jai. Similarly equation (17.29) says the probability i warns

that it un-satisfies a equals the probability that i is forced to satisfy clauses with

Jbi ̸= Jai and free with respect to clauses with Jbi = Jai.

The four equations (17.26)-(17.29) are the survey propagation equations forK-

SAT when y → +∞ and can be used in the satisfiable phase. The three equations

(17.27), (17.28), (17.29) must be normalized so that Qi→a(−1) + Qi→a(0) +

Qi→a(1) = 1. A bit of thought shows that (17.26) is already correctly normalized

(hence the equality line in the first line).

17.4 Energetic complexity and satisfiability threshold

With a bit more work (see exercises) one can derive from (17.21) the Bethe

formula for the energetic complexity at zero energy. The resulting expression is

ΣBethe(Q, Q̂) =
∑
i

Σi +
∑
a

Σa −
∑
ai

Σai (17.30)

with

Σi = log
{ ∏
a∈∂+i

(1− Q̂a→i(1)) +
∏

a∈∂−i

(1− Q̂a→i(1))−
∏
a∈∂i

(1− Q̂a→i(1))
}

(17.31)

Σa = log
{
1−

∏
j∈∂a

Qj→a(−1)
}

(17.32)

Σai = log
{
1−Qi→a(−1)Q̂a→i(1)

}
(17.33)

It is easy to check that the stationary point condition for ΣBethe(Q, Q̂) is equiv-

alent to (17.26)-(17.29).

Let us now give the 1RSB expression for the average energetic complexity. We

will be brief since we have already encountered this type of formulation several

times by now. Fix a trial distribution Qu(·) for a real valued random variable
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Qu and take K − 1 iid copies Qu
1 , · · · , Qu

K−1. Define the random variable

Q̂ =
K−1∏
k=1

Qu
k (17.34)

with induced distribution Q̂(·). Let p and q two Poisson(αK/2) integers and p+q

iid copies of Q̂, denoted Q̂+
1 , · · · Q̂+

p and Q̂−
1 , · · · Q̂−

q , as well as K iid copies of

Qu denoted Qu
1 , · · · , Qu

K . Consider the random variable

Σ = log
{ p∏
ℓ=1

(1− Q̂+
ℓ ) +

q∏
ℓ=1

(1− Q̂−
ℓ )−

p∏
ℓ=1

(1− Q̂+
ℓ )

q∏
ℓ=1

(1− Q̂−
ℓ )
}

+ log
{
1−

K∏
k=1

Qu
k

}
− log

{
1−Qu

1Q̂
+
1

}
(17.35)

The 1RSB energetic complexity is a function of the constraint density given by

Σ1RSB(α) = sup
Q(·)

E[Σ] (17.36)

where the expectation is over Qu,±, Q̂, and p, q.

Of course (17.34) is the distributional form of the corresponding equation for

specific instances (17.26). The other three distributional forms of (17.27), (17.28),

(17.29) are nothing else than the stationary point conditions for the variational

expression in the 1RSB formula (17.36). These take the form

Q∗ distr
=

1

N

p∏
ℓ=1

(1− Q̂+
ℓ )

q∏
ℓ=1

(1− Q̂−
ℓ ), (17.37)

Qu distr
=

1

N

{ p∏
ℓ=1

(1− Q̂+
ℓ )

}{
1−

q∏
ℓ=1

(1− Q̂−
ℓ )

}
, (17.38)

Qs distr
=

1

N

{ q∏
ℓ=1

(1− Q̂+
ℓ )

}{
1−

p∏
ℓ

(1− Q̂−
ℓ )

}
(17.39)

with a normalisation N such that Q∗ +Qu +Qs = 1.

To compute Σ1RSB(α) one solves equations (17.34) and (17.37)-(17.39) by a

population dynamics method and deduces the average of Σ in (17.35). There is

always (for all α) a trivial fixed point Q̂(Q̂) = δ(0) and Qs(Qs) = Qu(Qu) = δ(0),

Q∗(Q∗) = δ(Q∗ − 1). The survey propagation threshold αSP is by definition the

maximum value of α such that the trivial solution is unique. For α < αSP we

immediately see from (17.36) that the 1RSB energetic complexity vanishes. In

this regime we expect the Bethe energy has a single zero energy minimum. When

α > αSP the complexity is given by the non-trivial fixed point. We find a strictly

positive complexity for αSP < α < αs, meaning that the Bethe energy has

exponentially many (in n) minima of vanishing energy. At αs the complexity

becomes negative which means that the zero energy minima disappear. The
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K αSP αs

3 3.93 4.267

4 8.30 9.93

Table 17.1 Survey propagation and satisfiability thresholds predicted by the energetic
cavity method.

threshold αs is identified as the satisfiability threshold. Table 17.1 gives the

numerical values of the thresholds for the first few values of K.

For large K we can make an analytical asymptotic analysis and derive ex-

pansions for the survey propagation and satisfiability thresholds. Here we briefly

derive the leading term of these expansions but with more work it is possible to

compute higher order terms (see the notes). First we set X̂ = ln(1−Q̂). Equation

(17.38) becomes

Qu distr
=

e
∑p

ℓ=1 X̂+
ℓ − e

∑p
ℓ=1 X̂+

ℓ e
∑q

ℓ=1 X̂−
ℓ

e
∑p

ℓ=1 X̂+
ℓ + e

∑q
ℓ=1 X̂−

ℓ − e
∑p

ℓ=1 X̂+
ℓ e

∑q
ℓ=1 X̂−

ℓ

.

In the large K limit the law of large numbers (or Wald’s theorem) implies that

the sums in the exponentials all concentrate around (αK/2)E[X̂] (here αK/2

is the average of p and q). Therefore, setting E[X̂] = x̂, Qu concentrates on

(1 − eαK
2 x̂)/(2 − eαK

2 x̂). Applying again the law of large numbers to (17.34) we

get

x̂ = ln

{
1−

(
1− eαK

2 x̂

2− eαK
2 x̂

)K−1
}
≈ −

(
1− eαK

2 x̂

2− eαK
2 x̂

)K−1

.

The last approximation is justified a posteriori: when we calculate the order of

magnitude of the fixed point solutions we find that (· · · )K−1 = O(2−K) (for

example this is evident for the trivial fixed point x̂ = 0). It is convenient to set

ŷ = −αK
2 x̂ and scale the constraint density as α = 2K α̂ so the last equation

becomes

ŷ = α̂

(
eŷ − 1

eŷ − 1
2

)K−1

. (17.40)

The survey propagation integral equations (17.34), (17.37)-(17.39) have been

reduced to a simple one dimensional fixed point equation over R. Note ŷ =

−αK
2 E[ln(1 − Q̂)] so absence of warnings Q̂ = 0 means ŷ = 0 and presence of

warnings mean ŷ > 0. Proceeding with similar approximations for the complexity

we get in the large K limit

Σ1RSB(α) ≈ sup
ŷ

{
ln(2e−ŷ − e−2ŷ)− 2Kα̂

(
eŷ − 1

2eŷ − 1

)
+ŷ

eŷ − 1

2eφ − 1

}
(17.41)

One can check for consistency that the stationary points of (17.41) are given by

the fixed point equation (17.40). It remains to find solutions of the fixed point
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equation and deduce the complexity. Evidently (17.40) has a trivial fixed point

φ = 0 for all α̂ and the corresponding complexity vanishes. To find the non-

trivial fixed points we plot the curve α̂(φ) directly obtained from (17.40). This is

a convex function with a unique minimum at φSP ≈ ln( 12K lnK), α̂SP(K) ≈ lnK
K .

Fixing α̂ > α̂SP(K) we find two fixed point solutions, one (locally) stable and

the other unstable. The stable solution equals φst ≈ Kα̂ + φSP for φ >> φSP.

This is the solution which yields a maximal complexity for α̂ > α̂SP(K). We

find Σ1RSB(α) ≈ ln 2− α̂ for α̂ > α̂SP which implies α̂s ≈ ln 2. Summarizing, to

leading order we find

αSP ≈ 2K
lnK

K
, αs ≈ 2K ln 2

It is noteworthy that the 1RSB prediction for the satisfiability threshold has

been recently turned into a rigorous result for K large enough (but finite). The

proof uses the interpolation bounds to deduce an upper bound on αs and ideas

from the energetic cavity method for a lower bound.

theorem 17.1 Let αs ≡ sup{α|Σ1RSB(α) ≥ 0} where Σ1RSB(α) ≥ 0} is de-

fined through (17.34), (17.35), (17.36). Let P[−] the uniform probability distri-

bution over formulas F ∈ F(n,K, α). We have limn→+∞ P[F is satisfiable =

1(α < αs).

In particular, this theorem finally settles the question of the existence of a

sharp threshold in the thermodynamic limit discussed in Chapter 1. It is in fact

rather surprizing that the existence question has been settled only through a

complete characterisation of the threshold.

We end this section by mentioning that the energetic cavity method can be

developed for the spatially coupled K-SAT ensemble introduced in Chapter ??.

The thresholds depend on the size of the coupling window w, the length L of the

chain and of course K. One finds a threshold saturation phenomenon

lim
w→+∞

lim
L→+∞

αSP(K,w,L) = αs(K),

(here αs the usual satisfiability threshold of the standard uncoupled ensemble).

Besides, using an interpolation method (in the spirit of the one that proves the

existence of the free energy in Chapter ??) one can rigorously prove for all w

lim
L→+∞

αs(K,w,L) = αs(K).

17.5 Survey propagation guided decimation algorithm

In chapter 9 we showed how to use used belief propagation marginals to guide a

decimation algorithm for finding solutions of specific instances of K-SAT formu-

las. We can proceed analogoulsy and develop a new decimation algorithm where
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the decisions (fix and decimate a variable) are taken thanks to survey propaga-

tion marginals. This turns out to be a fruitful idea which allows to find solutions

close to the satisfiability threshol well inside a region constraint densities that

belief propagation guided decimation cannot probe.

Recall that from the min-sum message passing equations (17.2) we can com-

pute the “marginal energy costs” (17.7). The latter are vectors (here the alphabet

is discrete) with non-negative components with at least one which vanishes. For

K-SAT the alphabet is furthermore binary, so we can always parametrize the

marginal energy costs as

Ei(si) = |hi|+ hisi (17.42)

Replacing the parametrization of messages (17.23) in (17.7) it follows that

hi =
∑
a∈∂i

ha→iJia (17.43)

When hi > 0 we have Ei(+1) > 0, Ei(−1) = 0 and there is no energy cost

if si = −1 (or xi = 1); when hi < 0 we have Ei(+1) = 0, Ei(−1) > 0 and

there is no energy cost if si = +1 (or xi = 0); and when hi = 0 we have

Ei(+1) = Ei(−1) = 0 and there is no cost for s= ± 1 (or xi = 0, 1).

From survey propagation we can compute the fraction of zero energy minima

of the Bethe neergy (zero energy solutions of the min-sum equations) with a

marginal energy cost parametrized by hi. This fraction that we call Qi(hi) is

just the marginal of the level-one energetic model and can be computed from

messages Q̂a→i(ĥa→i) by the usual rules of message passing. The rules for y →
+∞ can easily be guessed from the interpretation of min-sum messages in terms

of messages (their formal deduction is left to the resder as an exercise). A variable

is free to take any value si = ±1 when it receives no warnings ĥa→i = 0 from all

neighboring constraints, so

Qi(hi = 0) ∝
∏
a∈∂i

(1− Q̂a→i(1)) (17.44)

A variable should take the value si = −1 when it receives at least one warning

ĥa→i = 1 from constraints a ∈ ∂+i (such that Jai = +1) and no warning

ĥa→i = 0 from constraints a ∈ ∂−i (such that Jai = −1), thus

Qi(hi > 0) ∝
{
1−

∏
a∈∂i+

(1− Q̂a→i(1))

}{ ∏
a∈∂i−

(1− Q̂a→i(1))

}
. (17.45)

Similarly we shoul have si = +1 when there is at least one warning ĥa→i = 1

from constraints a ∈ ∂−i (such that Jai = −1) and no warning ĥa→i = 0 from

constraints a ∈ ∂+i (such that Jai = 1),

Qi(hi < 0) ∝
{
1−

∏
a∈∂i−

(1− Q̂a→i(1))

}{ ∏
a∈∂i+

(1− Q̂a→i(1))

}
(17.46)

The survey propagation guided decimation algorithm can now be formulated.
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The main idea is to compute the survey messages and marginals. The variable

Algorithm 4: SPGD algorithm

1. Take a fixed instanceof size n.

2. Run tmax iterations of SP message passing equations starting from a random

initial condition Q̂a→i ∈ [0, 1]. If the iterations do not converge, return

fail. If they converge Compute the biases |Qi(1)−Qi(0)|0.
3. If all biases are smaller than some specified samll number δ > 0 call BP

decimation or Walksat.

4. Else fix a variable with the largest bias to xi = +1 if

Qi(hi > 0) > Qi(hi < 0) or xi = 0 if Qi(hi > 0) < Qi(hi < 0).

5. Decimate the variable and reduce the formula. Return to 2 until all variables

are eliminated.

with the maximal bias |Qi(hi > 0) −Qi(hi < 0)| is fixed appropriately, namely

si = sgn(Qi(hi < 0)−Qi(hi > 0), and the formula reduced. Reducing teh formula

means that the satisfied constraints are eliminated and the unsatisfied ones are

shortened. The process is iterated as long as there is a large bias. When no such

bias appears we call BPGD or Walksat. Note that the algorithm is effective only

for α > αSP. Indeed for α < αSP iterations are always attracted by the trivial

fixed point Q̂a→i(1) = 0 so Qi(hi = 0) = 1 and Qi(hi < 0) = Qi(hi > 0) = 0

and BPGD or Walksat are used. Note that the algorithm is effective only for

α > αSP. Indeed for α < αSP iterations are always attracted by the trivial fixed

point Q̂a→i(1) = 0 so Qi(hi = 0) = 1 and Qi(hi < 0) = Qi(hi > 0) = 0. In

practice when we start the algorithm at αSP < α < αs we find biases and the

formula gets reduced. At some point the density of the reduced formula is smaller

than some sort of effective survey propagation threshold of a “reduced ensemble

of formulas” and there is no more bias (and we call BPGD or Walksat).

The complexity of this algorithm is O(tmaxn
2). This is given by the product

of the complexity of each run of SP O(tmaxn) times the number of recursions or

decimation steps O(n). For a variant of the algorithm decimates a fraction fn

with 0 < f < 1 of variables at a time (the fraction fn of variables with largest

biases) one has to recurse O(n/fn) times so that the complexity is reduced to

O(tmaxn/f). Also, experimentally one finds that convergence of SP messages is

reached for tmax = log n even for densities larger than the satisfiability threshold.

Figure 17.3 shows the empirical probabilities of success and convergence over

100 instances of size n = 104, 1000 iterations and convergence criterion δ = 10−2

where δ is the difference between two successive messages). In practice we observe

that SPGD finds solutions of large instances for αSPGD(K = 3) ≈ 4.25 and

αSPGD(K = 4) ≈ 9.6. The effectiveness of the algorithm is apparent when one

compares these values with the one’s found with BPGD also with the SAT-

UNSAT threshold.

Decimation algorithms are in general very hard to analyse except when the
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— figure —

Figure 17.3 Empirical probabilities of success and convergence over 100 instances of
size n = 104, 1000 iterations and convergence criterion δ = 10−2.

decimation step preserves some uniform randomness property of the ensemble

of formulas, as is the case for unit clause propagation. To date it is not clear

how to rigorously analyse the survey propagation guided decimation algorithm.

However an interesting general result of Sudan and Gamarnik hints at some

necessary condition that this decimation algorithm satisfies in order to be suc-

cessful beyond the dynamical or survey propagation threshold. Roughly speaking

the result of Sudan and Gamarnik states that, when there exist exponentially

many clusters of solutions, any decimation rule based on a computational tree

of depth O(1) cannot succeed at finding solutions. Survey propagation guided

decimation evades this result because presumably one explores a neighbourhood

of size tmax = O(lnn) (we say ”presumably” because numerically this is not

so obvious to assess). This suggests that survey propagation messages should

”converge” (remain smaller than δ << 1) only after O(lnn) iterations, not O(1)

iterations as is the case with belief propagation.

17.6 Notes

Problems

17.1 1

17.2 2
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hen, die gegebene werte nicht annehmen’, Math Ann 64, 95–115.

Chaikin, P. & Lubensky, T. (2007), Principles of condensed matter physics, Cambridge

University Press.

Chen, S. & Donoho, D. (1995), ‘Examples of basis pursuit’, Proceedings Wavelet Ap-

plications in Signal and Image Processing III .

Cook, S. A. (1971), The complexity of theorem proving procedures, in ‘Proc. of STOC’,

pp. 151–158.

de Almeida, J. R. L. & Thouless, D. J. (1978), ‘Stability of the sherrington- kirkpatrick

solution of a spin glass model’, J. Phys. A 11, 983.

Dembo, A. & Montanari, A. (2010), ‘Ising models on locally tree-like graphs’, Ann.

Appl. Probab. 20 (2), 565–592.

Ding, J., Sly, A. & Sun, N. (2014), ‘Proof of the satisfiability threshold for large k’,

arXiv:1411.0650 [math.PR] .

Dobrushin, R. (1965), ‘Existence of a phase transition in the two-dimensional and

three-dimensional ising models’, Dokl. Akad. Nauk SSSR 160 1046–1048 (Russian);

translated as Soviet Physics Dokl. 10 (1965) 111-113 .

Donoho, D. (2006), ‘Compressed sensing’, IEEE Trans. Inform. Theory 52(4), 1289–

1306.

Edwards, S. F. & Anderson, P. W. (1975), ‘Theory of spin glasses’, Journal of Physics

F: Metal Physics 5, 965–974.

Eldar, Y. & Kutyniok, G., eds (2012), Compressed sensing, Cambridge University Press.

Fisher, K. & Hertz, J. (1991), Spin Glasses, Cambridge Studies in Magnetism,

Cambridge University Press.

Forney, Jr., G. D. (2001), ‘Codes on graphs: Normal realizations’, IEEE Trans. Inform.

Theory 47(2), 520–548.

Frey, B. (1998), Graphical Models for Machine Learning and Digital Communication,

Adaptive Computation and Machine Learning series, MIT press, Cambridge.

Friedgut, E. (1999), ‘Sharp thresholds of graph properties, and the k-sat problem’,

Journal of the American Mathematical Society 12, 1017–1054.

Fu, Y. & Anderson, P. (1986), ‘Applications of statistical mechanics to np-complete

problems in combinatorial optimization’, Journal of Physics A19, 1605.

Gallager, R. G. (1962), ‘Low-density parity-check codes’, IRE Trans. Inform. Theory

8, 21–28.

Gallager, R. G. (1963), Low-Density Parity-Check Codes, MIT Press, Cambridge, MA,

USA.

Gallavotti, G. (1999), Statistical Mechanics, A Short Treatise, Texts and Monographs

in Physics, Springer.

Garey, M. R. & Johnson, D. S. (1979), Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman, San Francisco, CA, USA.

Giurgiu, A., Macris, N. & Urbanke, R. (2016), ‘Spatial coupling as a proof technique

and three applications’, IEEE Trans. Inf. Theor. 62(10), 5281 – 5295.

Goff, S. L., Glavieux, A. & Berrou, C. (1994), Turbo-codes and high spectral efficiency

modulation, in ‘Proc. of ICC’, New Orleans, LA, pp. 645–649.

Goldenfeld, N. (1993), Lectures on phase transitions and the renormalization group,

Addison Wesley.



Bibliography 355

Griffiths, R. (1964), ‘Peierls proof of spontaneous magnetization in a two-dimensional

ising ferromagnet’, Physical Review .

Guerra, F. (2001), ‘Sum rules for the free energy in the mean field spin glass model’,

Fields Institute Communications 30, 161.

Guerra, F. & Toninelli, F. L. (n.d.), ‘Quadratic replica coupling in the sherrington-

kirkpatrick mean field spin glass model’, Journal of Mathematical Physics 43, 3704–

3716.

Hopfield, J. (1982), ‘Neural networks and physical systems with emergent collective

computational abilities’, Proc. Natl. Acad. Sci. USA 79(8), 2554–2558.

Huang, K. (1987), Statistical Physics, John Wiley and Sons.

Jaynes, E. T. (1957), ‘Information theory and statistical mechanics’, Physical Review

106, 620–630.

Jordan, M. (1999), Learning in Graphical Models, Adaptive Computation and Machine

Learning series, MIT press, Cambridge.

Kabashima, Y. (2003), ‘A cdma multiuser detection algorithm on the basis of belief

propagation’, Journal of Physics A: Mathematical and general 36, 11111?1112.

Kabashima, Y. & Saad, D. (1998), ‘Belief propagation vs. tap for decoding corrupted

messages’, Europhysics Letters 44, 668–674.

Kabashima, Y. & Saad, D. (2004), ‘Statistical mechanics of low-density parity check

codes’, J. Phys. A 37, R1–R43. Invited paper.

Kac, M. (1968), Mathematical mechanisms of phase transitions, in ‘Statistical Mechan-

ics of Phase Transitions and Superfluidity (Ed. M. Chr etilin, E. Gross, S. Dresser)’.

Kadanoff, L. (2009), ‘More is the same; phase transitions and mean field theories’,

Journal of Statistical Physics 137, 777–797.

Kim, J. H. & Pearl, J. (1983), A computational model for causal and diagnostic rea-

soning in inference systems, in ‘IJCAI’, pp. 190–193.

Kirkpatrick, S. & Selman, B. (1994), ‘Critical behavior in the satisfiability of random

boolean expressions’, Science 264, 1297–1301.

Kschischang, F. R., Frey, B. J. & Loeliger, H.-A. (2001), ‘Factor graphs and the sum-

product algorithm’, IEEE Trans. Inform. Theory 47(2), 498–519.

Landau, L. (1937), Phys. Z. Sow. 11, 26545. English Translation: Collected Papers of

Landau (1965), Pergamon Press.

Lebowitz, J. L. & Penrose, O. (1966), ‘Rigorous Treatment of the Van Der Waals-

Maxwell Theory of the Liquid-Vapor Transition’, Journal of Mathematical Physics

7, 98–113.

Lin, S. & Costello, Jr., D. J. (2004), Error Control Coding, 2nd edn, Prentice Hall,

Englewood Cliffs, NJ, USA.

Loeliger, H.-A. (2004), ‘An introduction to factor graphs’, Signal Process. 21(2), 28–41.

Loyd, S. (2000), ‘Ultimate physical limits to computation’, Nature 406, 1047–1054.

Luby, M., Mitzenmacher, M., Shokrollahi, A. & Spielman, D. A. (2001), ‘Improved

low-density parity-check codes using irregular graphs’, IEEE Trans. Inform. Theory

47(2), 585–598.

Luby, M., Mitzenmacher, M., Shokrollahi, A., Spielman, D. A. & Stemann, V. (1997),

Practical loss-resilient codes, in ‘Proc. of the 29th annual ACM Symposium on The-

ory of Computing’, pp. 150–159.

Lukke, H. (1999), ‘The origins of the sampling theorem’, IEEE Communications mag-

azine 37(4), 1–3.



356 Bibliography

Ma, S. (1976), Modern Theory of Critical Phenomena, Benjamin Reading, Mas-

sachusetts.

MacKay, D. J. C. (1999), ‘Good error correcting codes based on very sparse matrices’,

IEEE Trans. Info. Theory 45(2), 399–431.

MacKay, D. J. C. (2003), Information Theory, Inference, and Learning Algorithms,

Cambridge Univ. Press.

MacKay, D. J. C. & Neal, R. M. (1996), ‘Near Shannon limit performance of low density

parity check codes’, Electron. Lett. 32(18), 1645–1646. Reprinted in Electron. Lett.,

33 (1997), pp. 457–458.

Macris, N. (2007a), ‘Griffith-kelly-sherman correlation inequalities: A useful tool in

the theory of error correcting codes’, Information Theory, IEEE Transactions on

53, 664–683.

Macris, N. (2007b), ‘Sharp bounds on generalized exit functions’, IEEE Transactions

on Inform. Theory 53(7), 2365 – 2375.

Macris, N. & Korada, S. (2010), ‘Tight bounds on the capacity of binary input random

cdma systems’, Information Theory, IEEE Transactions on 56, 5590–5613.

Mao, Y. & Kschischang, F. R. (2005), ‘On factor graphs and the Fourier transform’,

IEEE Trans. Inform. Theory 51, 1635–1649.

Maxwell, J. C. (1875), ‘On the dynamical evidence of the molecular constitution of

bodies’, Nature 11, 357–359, 374–377.

McCoy, B. & Wu, T. (1973), The Two-Dimensional Ising Model, Harvard University

Press, Cambridge Massachusetts.

Méasson, C., Montanari, A., Richardson, T. J. & Urbanke, R. (2009), ‘The generalized

area theorem and some of its consequences’, IEEE Trans. Inf. Theor. 55(11), 4793–

4821.
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