ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 11	Principles of Digital Communications
Quiz 1	Mar. 16, 2018

PROBLEM 1. Consider a binary hypothesis test. Our observation Y is a n-dimensional vector $(Y_1, ..., Y_n)$. When H = 0, $Y_i = 1 + Z_i$. When H = 1, $Y_i = -1 + Z_i$, where $\{Z_i\}$ are i.i.d. $\mathcal{N}(0, \sigma^2)$. For each of the following, indicate if it is a sufficient statistic.

- (a) $T_1 = \sum_i Y_i^2$.
- (b) $T_2 = \sum_i (Y_i + 1)^2$.
- (c) $T_3 = (T_1, T_2).$
- (d) $T_4 = \sum_i Y_i$.
- (e) $T_5 = sign(T_4)$.

PROBLEM 2. Suppose we have *m* hypotheses, and when H = i, the observation *Y* is a *n*-dimensional vector given by $Y = c_i + Z$ where *Z* is $\mathcal{N}(0, \sigma^2 I_n)$. Consider another observation \tilde{Y} which is 2*n*-dimensional, and equals $\tilde{c}_i + W$ where *W* is $\mathcal{N}(0, \tilde{\sigma}^2 I_{2n})$ and $\tilde{c}_i = (c_i, c_i)$ is the vector where c_i is repeated twice. For instance, if n = 2 and $c_i = (a, b)$, $\tilde{c}_i = (a, b, a, b)$.

- (a) Let d_{ij} be the distance between c_i and c_j and let \tilde{d}_{ij} be the distance between \tilde{c}_i and \tilde{c}_j . How are d_{ij} and \tilde{d}_{ij} related?
- (b) Suppose you are given the choice to observe Y or \tilde{Y} . Explain how you would make this choice (in terms of σ^2 and $\tilde{\sigma}^2$), so as to achieve the smallest error probability in guessing H. [Hint: use the result in (a).]

PROBLEM 3. Suppose Z_1 and Z_2 are independent, Z_1 is uniformly distributed in the interval [-2, 2], and Z_2 is $\mathcal{N}(0, \sigma^2)$. Suppose that under hypothesis i, i = 0, 1, the observation Y is $c_i + Z$ with $c_0 = (1, 1), c_1 = (-1, -1)$ and $Z = (Z_1, Z_2)$. With equally likely hypotheses, sketch the decision regions on the (Y_1, Y_2) plane and find the probability of error.