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Problem 1.

(a) E[N2] =
∑

j α
2
jσ

2
j , so we can choose v = (α1σ1, . . . , αnσn) to make E[N2] = ‖v‖2. As

S = ±
∑

j αjhj, choosing u = (h1/σ1, . . . , hn/σn) will ensure S = ±〈u, v〉.

(b) Cauchy–Schwarz inequality says 〈u, v〉2 ≤ ‖u‖2‖v‖2. As ‖u‖2 =
∑

j h
2
j/σ

2
j , the con-

clusion follows.

(c) Equality in Cauchy-Schwarz holds if u and v are scalar multiples of each other, in par-
ticular if u = v, or equivalently, choosing hj/σj = αjσj, again equivalently, choosing
α = (h1/σ

2
1, . . . , hn/σ

2
n).

(d) Note that

fY |H(y1, . . . , yn|0) =
∏
j

(2πσ2
j )−1/2 exp

[
−(yj − hj)2/(2σ2

j )
]

fY |H(y1, . . . , yn|1) =
∏
j

(2πσ2
j )−1/2 exp

[
−(yj + hj)

2/(2σ2
j )
]
,

so the log-likelihood-ratio equals −2
∑

j yjhj/σ
2 which is −2t(y). Since we know that

the log-likelihood ratio is a sufficient statistic, we conclude that T is too.

Problem 2.

(a) Note that

2(2πσ2)fY |H(y|0) = exp
(
−‖y − c0‖2/(2σ2)

)
+ exp

(
−‖y + c0‖2/(2σ2)

)
2(2πσ2)fY |H(y|1) = exp

(
−‖y − c1‖2/(2σ2)

)
+ exp

(
−‖y + c1‖2/(2σ2)

)
.

So (as c0 and c1 have the same norm) the decision rule is to decide 0 or 1 according
to

exp(〈y, c0〉/σ2) + exp(−〈y, c0〉/σ2) ≷ exp(〈y, c1〉/σ2) + exp(−〈y, c1〉/σ2).

As 〈y, c0〉 =
√
E/2(y1 + y2) and 〈y, c1〉 =

√
E/2(y1 − y2) the decision rule is, with

ỹi =
√
E/2yi/σ2,

eỹ1+ỹ2 + e−ỹ1−ỹ2 − eỹ1−ỹ2 − eỹ2−ỹ1 ≷ 0.

The left hand side above equals
(
eỹ1 − e−ỹ1

)(
eỹ2 − e−ỹ2

)
, so we decide 0 if y1 and y2

have the same sign, and decide 1 otherwise.

(b) By the symmetry in the problem the error probality is the same for the two hypothe-
ses, and is the same regardless of the value of A. So we can assume c0 is sent and
A = 1. We will make an error if either Y1 > 0 and Y2 < 0, or Y1 < 0 and Y2 > 0.
Again by symmetry, these two events have the same probability, and thus the error
probability is

2 Pr
(
Z1 > −

√
E/2

)
Pr
(
Z2 < −

√
E/2

)
= 2Q

(√
E/(2σ2)

)[
1−Q

(√
E/(2σ2)

)]
.



(c) If the receiver knows that A = 1, it knows that its observation is a noisy version
c0 =

√
E/2(1, 1) or c1 =

√
E/2(1,−1). The MAP rule will decide 0 if Y2 > 0 and 1

if Y2 < 0. Similarly, if the receiver knows A = −1, it will decide 0 if Y2 < 0 and 1 if
Y2 > 0. In either case the error probablity is Q

(√
E/(2σ2)

)
.

(d) If the receiver is told the correct value of A, then the error proabability is the value
q = Q

(√
E/(2σ2)

)
we found (c). If it is told the incorrect value of A the receiver’s

decision regions are flipped, and thus the error probabililty is 1−q. Combining these,
we find the error probability as (1− p)q + p(1− q).

Problem 3.

(a) An orthonormal basis for the four waveforms is given by p(t), p(t−1), p(t−2), p(t−3)
where p(t) is the rectangular pulse 1{t ∈ [0, 1)}. The map decoder would work with
Y1, Y2, Y2, Y3, the inner product of R(t) with these basis functions. But these can be
computed from the filter output as Y1 = R1 + R2, Y2 = R3 + R4, Y3 = R5 + R6,
Y4 = R7 +R8 with Ri denoting the filter output at time ti = i/2.

(b) The translate that gives the minimum energy should make the resulting constel-
lation have average equal to 0. In the original constellation the average signal
[w0(t) + w1(t) + w2(t) + w3(t)]/4 is a piecewise constant signal taking the values
1, 2, −1, −2 on the intervals [0, 1), [1, 2), [2, 3), [3, 4). The translated constella-
tion is obtained by subtracting this from each signal, and we obtain the constellation:
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(c) Note that the signal set is two dimentional, spanned by the ortonormal basis ψ1 =
w̃0/2 and ψ2 = w̃2/2. In this basis the codewords are c0 = (2, 0), c1 = (−2, 0),
c2 = (0, 2), c3 = (0,−2). This is a 4-QAM constellation consisting of four corners
of a square of side length 2

√
2. The error probability is thus q(2 − q) with q =

Q(
√

2/
√
N0/2) = Q(2/

√
N0).

(d) Since isometric transforms do not change the probability of error the implementation
in (a) has the same error probability as we found in (c).

Problem 4.

(a) For the case m = 2, the U–B bound is

∫∫ √
fY |H(y1, y2|1)fY |H(y1, y2|2) dy1dy2. This

evaluates as∫∫ √
q(y1)p(y2)p(y1)q(y2) dy1dy2 =

∫ √
p(y1)q(y1) dy1

∫ √
p(y2)q(y2) dy2 = B2.

2



(b) For general m, we need to first evaluate∫
· · ·
∫ √

fY |H(y1, . . . , ym|i)fY |H(y1, . . . , ym|j) dy1 · · · dym.

The integrand above equals
√
p(yi)q(yi)

√
p(yj)q(yj)

∏
k 6=i,j p(yk), so the integral splits

as a product of integrals. The integrals for yi and yj both give B, the other integrals
give 1. Thus the value of the above integral is B2. The U–B bound thus evaluates to
(m− 1)B2.

(c) For this p and q, B = m−1/2
∫∞
0

exp(−(1 + m−1)y/2) dy = 2
√
m/(m + 1). The U–B

bound in (b) is thus 4m2/(m + 1)2, which approaches 4 as m gets large — a rather
useless bound on error probability.

(d) The decision will be wrong only if, either Y1 ≤ t, or, for some j = 2, . . . ,m, Yj > t.
The union bound on these m events gives

Pr(Y1 ≤ t) +
m∑
j=2

Pr(Yj > t)

as an upper bound to the probability of error. But since since Y2, . . . , Ym have the
same distribution p, Pr(Yj > t) = P (Y2 > t). Which yields the upper bound Pr(Y1 ≤
t) + (m − 1) Pr(Y2 > t). As Pr(Y2 > t) = exp(−t) and Pr(Y1 > t) = exp(−t/m) we
obtain the desired conclusion.

Note that by choosing, for example, t =
√
m, this upper bound on error probabil-

ity approches zero as m gets large, and shows that the U–B bound may be very
pessimistic.
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