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SOLUTION 1.

(a)

We have a binary hypothesis testing problem: The hypothesis H is the answer you will
select, and your decision will be based on the observation of H; and Hp. Let H take
value 1 if answer 1 is chosen, and value 2 if answer 2 is chosen. In this case, we can
write the MAP decision rule as follows:

A=1
Pr{H =1|H, =1,Hr=2} = Pr{H=2/H,=1Hp=2}
A=2

From the problem setting we know the priors Pr{H = 1} and Pr{H = 2}; we can
also determine the conditional probabilities Pr{H, = 1|H = 1}, Pr{H, = 1|H = 2},
Pr{Hy = 2|H = 1} and Pr{Hp = 2|H = 2} (we have Pr{H, = 1|H = 1} = 0.9 and
Pr{H, = 1|H = 2} = 0.1). Introducing these quantities and using the Bayes rule we
can formulate the MAP decision rule as

Pr{f;, =1,Hy=2H=1}Pe{H =1} 2=' Pr{H; =1, Hy=2/H=2}Pr{H =2}

Pr{H, =1, Hp =2} Pl Pr{H, =1, Hp =2}

Now, assuming that the event {H, = 1} is independent of the event {Hz = 2} and
simplifying the expression, we obtain
. . H=1
Pr{H, =1|H =1}Pr{Hr =2|H =1} Pr{H =1} =
=2

Pr{H, = 1|H = 2} Pr{Hp = 2|H = 2} Pr{H = 2},
which is our final decision rule.

Evaluating the previous decision rule, we have

H=1
09%03x025 = 0.1x0.7x0.75,
H=2
which gives
H=1
0.0675 =  0.0525
H=2

This implies that the answer H is equal to 1.



SOLUTION 2.

(a) We can write the MAP decision rule in the following way:

Pyiu(yll) =" Py(0)

Pyia(ylo) 5=, Pu(l)
Plugging in, we find
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and then

Taking logarithms on both sides does not change the direction of the inequalities,

therefore
)\ H=1
ylog <>\—1) z log (—1 Po 6)\1>\0>
0 f—0 —Po

Attention: the term log(\;/\g) can be negative, and if it is, then dividing by it involves
changing the direction of the inequality.

Suppose A\; > Ag. Then, log(A;/Xg) > 0, and the decision rule becomes

7 Po_  A1—A

A=1 log<1_(;)oel 0) dof

y o= N = 0
H=0 log <>\_[1)>

(b) We compute

P.(0) = Pr{Y >6|H=0}= > Pyu(yl0)
y=[0]

and by analogy

9]
Pe(1) = Pr{Y <0[H =1} = ZPY\H@H)

y=0
6]
|
y=0 v
Thus, the probability of error becomes
M M
Po= 1= e |+ o)} fre™

y=0 y=0



Now, suppose that A\; < Ag. Then, log(\;/\g) < 0, and we have to swap the inequality
sign, thus

PI>:0 log < Po ’\1*A°> ot
y = = 40
AH=1 log <,\_(1)>

The rest of the analysis goes along the same lines, and finally, we obtain
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H=1

The case A\g = A; yields log(A1/Ag) = 0, so the decision rule becomes 0 z 0, regardless
H=0

of y. Thus, we can exclude the case \y = A\ from our discussion.

(c) Here, we are in the case A\; > Ao, and we find 6 ~ 4.54. We thus evaluate

4 4
1 A 2 10Y 40\ _
Pe = 5 <1 — E Ee > -+ g E (?6 > ~ 0.03705
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y=0

The two Poisson distributions are much better separated than in (c); therefore, it
becomes considerably easier to distinguish them based on one single observation y.

SoLUTION 3. We use the Fisher-Neyman factorization theorem.

(a) Since Y is an i.i.d. sequence,
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(b) Since Zi, ..., Z, are i.i.d. additive noise samples,
Ty (yli) HkaIH Y, — 0 H>\€ {001 {y > 6;}
_ \/\;‘zen)\ieief M Choue) 1 {min{y,, ..., yn} > 975},

(T(v))

with h(y) =



SOLUTION 4.

(a) It is straightforward to check that wy(t) has unit norm, i.e., [[wy(t)|| = 1, thus ¢ (t) =
wo(t). With 1, (t) we can reproduce the first portion of wy(¢) (for ¢ between 0 and 1).
With 15(t) we need to be able to describe the remaining part of w; (). Clearly 1s(t) is
as illustrated below. With () and 12(t) we also describe the part of ws(t) between
t =0 and t = 2. Hence 93(t) is selected as the unit-norm function that matches the
part of wq(t) between ¢t = 2 and t = 3. We immediately see that ws(t) is also a linear
combination of ¥;(t), i = 1,2, 3.

(1) Pa(t) V3(t)

(b) Using the basis {11 (t), ¥2(t),¥3(t)}, one can give the following representation for the
waveforms w;(t), i =0,...,3:

wy = (1,0,0)", w; = (=1,1,0) ", wy = (1,1,1) T, w3 = (1,1, —1)"

SOLUTION 5. (Mismatched receiver)

(a) The optimal solution is to pass R(f) through the matched filter w(7T — ¢) and sample
the result at ¢t = T' to get a sufficient statistic denoted by Y. (In this problem, 7" = 1.)
Note that Y = S + N, where S and N are random variables denoting the signal and
the noise components respectively. Under H =i, Y ~ N(a;, Ny/2), where ag, ..., a3
are 3¢, ¢, —c and —3c respectively.

Let X be the recovered signal value at the receiver. Based on the nearest neighbor
decision rule, the receiver chooses the value of X in the following fashion:

+3, Y € [2¢,00)

5 1, Y 2

- +1, € [0,2¢) 1)
-1, Y €[-2¢0)
-3, Y €[-00,—2¢)

(b) The probability of error is given by

3
1
P, = Z 2 Pr{error|H =i}
i=0

() (i) = (i) 2 ()|
Q( 150/2)

N W =] =



(¢) In this case under H =i , Y ~ N(a;, No/2), where ay, ..., a3 are %f, 340, ’T"’ and ’9‘3

respectively. Using the decision rule in (1), the probabihty of error is given by

P, = Z Pr{error|H = i}
1 c/4 5c/4 3c/4
ST ARG ARIC T
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(d) The noise process N (t) is a stationary Gaussian random process. So the noise compo-
nent N (which is the sample of match-filter output at time 7') is a Gaussian random

variable with mean
~E {/Z N(t)w(t)dt} ~E VOI N(t)dt} =0

Because the process N (t) is stationary, without loss of generality we choose the bound-
aries of the integral to be 0 and 7" where in this problem 7" = 1.

Now, let us calculate the noise variance.

var(N) = E[N?] — E[N]* =

E[N?]
=E /Z N (tyw(t)dt /Z N(v)w(u)dv]
_/1 N(zs)dzs/1 N(v)dv}
/ / Nt dtdv]
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Thus the new probability of error is given by
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