ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 16

Principles of Digital Communications

Solutions to Problem Set 6

Apr. 11, 2018

SOLUTION 1.

(a) We have a binary hypothesis testing problem: The hypothesis H is the answer you will select, and your decision will be based on the observation of \hat{H}_L and \hat{H}_R . Let H take value 1 if answer 1 is chosen, and value 2 if answer 2 is chosen. In this case, we can write the MAP decision rule as follows:

$$\Pr\{H = 1 | \hat{H}_L = 1, \hat{H}_R = 2\} \quad \stackrel{\hat{H}=1}{\underset{\hat{H}=2}{\geq}} \quad \Pr\{H = 2 | \hat{H}_L = 1, \hat{H}_R = 2\}$$

From the problem setting we know the priors $\Pr\{H=1\}$ and $\Pr\{H=2\}$; we can also determine the conditional probabilities $\Pr\{\hat{H}_L=1|H=1\}$, $\Pr\{\hat{H}_L=1|H=2\}$, $\Pr\{\hat{H}_R=2|H=1\}$ and $\Pr\{\hat{H}_R=2|H=2\}$ (we have $\Pr\{\hat{H}_L=1|H=1\}=0.9$ and $\Pr\{\hat{H}_L=1|H=2\}=0.1$). Introducing these quantities and using the Bayes rule we can formulate the MAP decision rule as

$$\frac{\Pr\{\hat{H}_L=1,\hat{H}_R=2|H=1\}\Pr\{H=1\}}{\Pr\{\hat{H}_L=1,\hat{H}_R=2\}} \quad \overset{\hat{H}=1}{\underset{\hat{H}=2}{\gtrless}} \quad \frac{\Pr\{\hat{H}_L=1,\hat{H}_R=2|H=2\}\Pr\{H=2\}}{\Pr\{\hat{H}_L=1,\hat{H}_R=2\}}$$

Now, assuming that the event $\{\hat{H}_L = 1\}$ is independent of the event $\{\hat{H}_R = 2\}$ and simplifying the expression, we obtain

$$\Pr{\{\hat{H}_L = 1 | H = 1\}} \Pr{\{\hat{H}_R = 2 | H = 1\}} \Pr{\{H = 1\}} \stackrel{\hat{H} = 1}{\underset{\hat{H} = 2}{\geq}}$$
$$\Pr{\{\hat{H}_L = 1 | H = 2\}} \Pr{\{\hat{H}_R = 2 | H = 2\}} \Pr{\{H = 2\}},$$

which is our final decision rule.

(b) Evaluating the previous decision rule, we have

$$0.9 \times 0.3 \times 0.25$$
 $\stackrel{\hat{H}=1}{\underset{\hat{H}=2}{\geq}}$ $0.1 \times 0.7 \times 0.75$,

which gives

$$0.0675 \stackrel{\hat{H}=1}{\underset{\hat{H}=2}{\gtrless}} 0.0525$$

This implies that the answer \hat{H} is equal to 1.

SOLUTION 2.

(a) We can write the MAP decision rule in the following way:

$$\frac{P_{Y|H}(y|1)}{P_{Y|H}(y|0)} \stackrel{\hat{H}=1}{\underset{\hat{H}=0}{\geq}} \frac{P_{H}(0)}{P_{H}(1)}$$

Plugging in, we find

$$\frac{\lambda_1^y e^{-\lambda_1}}{\lambda_0^y e^{-\lambda_0}} \stackrel{\hat{H}=1}{\underset{\hat{H}=0}{\geq}} \frac{p_0}{1-p_0},$$

and then

$$\left(\frac{\lambda_1}{\lambda_0}\right)^y \stackrel{\hat{H}=1}{\underset{\hat{H}=0}{\geq}} \frac{p_0}{1-p_0} e^{\lambda_1-\lambda_0}$$

Taking logarithms on both sides does not change the direction of the inequalities, therefore

$$y \log \left(\frac{\lambda_1}{\lambda_0}\right) \stackrel{\hat{H}=1}{\underset{\hat{H}=0}{\geq}} \log \left(\frac{p_0}{1-p_0}e^{\lambda_1-\lambda_0}\right)$$

Attention: the term $\log(\lambda_1/\lambda_0)$ can be negative, and if it is, then dividing by it involves changing the direction of the inequality.

Suppose $\lambda_1 > \lambda_0$. Then, $\log(\lambda_1/\lambda_0) > 0$, and the decision rule becomes

$$y \overset{\hat{H}=1}{\underset{\hat{H}=0}{\geq}} \frac{\log\left(\frac{p_0}{1-p_0}e^{\lambda_1-\lambda_0}\right)}{\log\left(\frac{\lambda_1}{\lambda_0}\right)} \overset{\text{def}}{=} \theta$$

(b) We compute

$$P_e(0) = \Pr\{Y > \theta | H = 0\} = \sum_{y = \lceil \theta \rceil}^{\infty} P_{Y|H}(y|0)$$

= $1 - \sum_{y = 0}^{\lfloor \theta \rfloor} \frac{\lambda_0^y}{y!} e^{-\lambda_0}$,

and by analogy

$$P_e(1) = \Pr\{Y < \theta | H = 1\} = \sum_{y=0}^{\lfloor \theta \rfloor} P_{Y|H}(y|1)$$
$$= \sum_{y=0}^{\lfloor \theta \rfloor} \frac{\lambda_1^y}{y!} e^{-\lambda_1}$$

Thus, the probability of error becomes

$$P_{e} = p_{0} \left(1 - \sum_{y=0}^{\lfloor \theta \rfloor} \frac{\lambda_{0}^{y}}{y!} e^{-\lambda_{0}} \right) + (1 - p_{0}) \sum_{y=0}^{\lfloor \theta \rfloor} \frac{\lambda_{1}^{y}}{y!} e^{-\lambda_{1}}$$

Now, suppose that $\lambda_1 < \lambda_0$. Then, $\log(\lambda_1/\lambda_0) < 0$, and we have to swap the inequality sign, thus

$$y \overset{\hat{H}=0}{\underset{\hat{H}=1}{\geq}} \frac{\log\left(\frac{p_0}{1-p_0}e^{\lambda_1-\lambda_0}\right)}{\log\left(\frac{\lambda_1}{\lambda_0}\right)} \overset{\text{def}}{=} \theta$$

The rest of the analysis goes along the same lines, and finally, we obtain

$$P_{e} = p_{0} \sum_{y=0}^{\lfloor \theta \rfloor} \frac{\lambda_{0}^{y}}{y!} e^{-\lambda_{0}} + (1 - p_{0}) \left(1 - \sum_{y=0}^{\lfloor \theta \rfloor} \frac{\lambda_{1}^{y}}{y!} e^{-\lambda_{1}} \right)$$

The case $\lambda_0 = \lambda_1$ yields $\log(\lambda_1/\lambda_0) = 0$, so the decision rule becomes $0 \stackrel{\hat{H}=1}{\underset{\hat{H}=0}{\gtrless}} \theta$, regardless of y. Thus, we can exclude the case $\lambda_0 = \lambda_1$ from our discussion.

(c) Here, we are in the case $\lambda_1 > \lambda_0$, and we find $\theta \approx 4.54$. We thus evaluate

$$P_e = \frac{1}{3} \left(1 - \sum_{y=0}^{4} \frac{2^y}{y!} e^{-2} \right) + \frac{2}{3} \sum_{y=0}^{4} \left(\frac{10^y}{y!} e^{-10} \right) \approx 0.03705$$

(d) We find $\theta \approx 7.5163$

$$P_e = \frac{1}{3} \left(1 - \sum_{y=0}^{7} \frac{2^y}{y!} e^{-2} \right) + \frac{2}{3} \sum_{y=0}^{7} \left(\frac{20^y}{y!} e^{-20} \right) \approx 0.000885$$

The two Poisson distributions are much better separated than in (c); therefore, it becomes considerably easier to distinguish them based on one single observation y.

Solution 3. We use the Fisher-Neyman factorization theorem.

(a) Since Y is an i.i.d. sequence,

$$P_{Y|H}(y|i) = \prod_{k=1}^{n} P_{Y_k|H}(y_k|i) = \frac{\lambda_i^{\sum_{k=1}^{n} y_k}}{\prod_{k=1}^{n} (y_k)!} e^{-n\lambda_i}$$

$$= \underbrace{e^{-n\lambda_i} \lambda_i^{n(\frac{1}{n} \sum_{k=1}^{n} y_k)}}_{g_i(T(y))} \underbrace{\frac{1}{\prod_{k=1}^{n} (y_k)!}}_{h(y)}$$

(b) Since Z_1, \ldots, Z_n are i.i.d. additive noise samples,

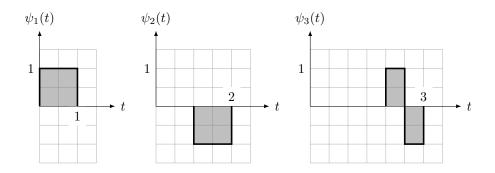
$$f_{Y|H}(y|i) = \prod_{k=1}^{n} f_{Z_k|H}(y_k - \theta_i) = \prod_{k=1}^{n} \lambda_i e^{-\lambda_i (y_k - \theta_i)} \mathbb{1}\{y_k \ge \theta_i\}$$

$$= \underbrace{\lambda_i^n e^{n\lambda_i \theta_i} e^{-n\lambda_i (\frac{1}{n} \sum_{k=1}^{n} y_k)} \mathbb{1}\{\min\{y_1, \dots, y_n\} \ge \theta_i\}}_{g_i(T(y))}$$

with h(y) = 1.

SOLUTION 4.

(a) It is straightforward to check that $w_0(t)$ has unit norm, i.e., $||w_0(t)|| = 1$, thus $\psi_1(t) = w_0(t)$. With $\psi_1(t)$ we can reproduce the first portion of $w_1(t)$ (for t between 0 and 1). With $\psi_2(t)$ we need to be able to describe the remaining part of $w_1(t)$. Clearly $\psi_2(t)$ is as illustrated below. With $\psi_1(t)$ and $\psi_2(t)$ we also describe the part of $w_2(t)$ between t = 0 and t = 2. Hence $\psi_3(t)$ is selected as the unit-norm function that matches the part of $w_2(t)$ between t = 2 and t = 3. We immediately see that $w_3(t)$ is also a linear combination of $\psi_i(t)$, i = 1, 2, 3.



(b) Using the basis $\{\psi_1(t), \psi_2(t), \psi_3(t)\}$, one can give the following representation for the waveforms $w_i(t)$, $i = 0, \dots, 3$:

$$w_0 = (1, 0, 0)^\mathsf{T}, w_1 = (-1, 1, 0)^\mathsf{T}, w_2 = (1, 1, 1)^\mathsf{T}, w_3 = (1, 1, -1)^\mathsf{T}$$

Solution 5. (Mismatched receiver)

(a) The optimal solution is to pass R(t) through the matched filter w(T-t) and sample the result at t=T to get a sufficient statistic denoted by Y. (In this problem, T=1.) Note that Y=S+N, where S and N are random variables denoting the signal and the noise components respectively. Under $H=i, Y \sim \mathcal{N}(\alpha_i, N_0/2)$, where $\alpha_0, \ldots, \alpha_3$ are 3c, c, -c and -3c respectively.

Let \hat{X} be the recovered signal value at the receiver. Based on the nearest neighbor decision rule, the receiver chooses the value of \hat{X} in the following fashion:

$$\hat{X} = \begin{cases} +3, & Y \in [2c, \infty) \\ +1, & Y \in [0, 2c) \\ -1, & Y \in [-2c, 0) \\ -3, & Y \in [-\infty, -2c) \end{cases}$$
 (1)

(b) The probability of error is given by

$$\begin{split} P_e &= \sum_{i=0}^3 \frac{1}{4} \Pr\{\text{error}|H=i\} \\ &= \frac{1}{4} \left[Q\left(\frac{c}{\sqrt{N_0/2}}\right) + 2Q\left(\frac{c}{\sqrt{N_0/2}}\right) + 2Q\left(\frac{c}{\sqrt{N_0/2}}\right) + Q\left(\frac{c}{\sqrt{N_0/2}}\right) \right] \\ &= \frac{3}{2} Q\left(\frac{c}{\sqrt{N_0/2}}\right) \end{split}$$

4

(c) In this case under H=i, $Y \sim \mathcal{N}(\alpha_i, N_0/2)$, where $\alpha_0, \ldots, \alpha_3$ are $\frac{9c}{4}$, $\frac{3c}{4}$, $\frac{-3c}{4}$ and $\frac{-9c}{4}$ respectively. Using the decision rule in (1), the probability of error is given by

$$P_{e} = \sum_{i=0}^{3} \frac{1}{4} \Pr\{\text{error}|H = i\}$$

$$= \frac{1}{4} \left[Q\left(\frac{c/4}{\sqrt{N_{0}/2}}\right) + Q\left(\frac{5c/4}{\sqrt{N_{0}/2}}\right) + Q\left(\frac{3c/4}{\sqrt{N_{0}/2}}\right) + Q\left(\frac{5c/4}{\sqrt{N_{0}/2}}\right) + Q\left(\frac{5c/4}{\sqrt{N_{0}/2}}\right) + Q\left(\frac{c/4}{\sqrt{N_{0}/2}}\right) + Q\left(\frac{c/4}{\sqrt{N_{0}/2}}\right) \right]$$

$$= \frac{1}{2} \left[Q\left(\frac{c/4}{\sqrt{N_{0}/2}}\right) + Q\left(\frac{3c/4}{\sqrt{N_{0}/2}}\right) + Q\left(\frac{5c/4}{\sqrt{N_{0}/2}}\right) \right]$$

(d) The noise process N(t) is a stationary Gaussian random process. So the noise component N (which is the sample of match-filter output at time T) is a Gaussian random variable with mean

$$\mathbb{E}[N] = \mathbb{E}\left[\int_{-\infty}^{\infty} N(t)w(t)dt\right] = \mathbb{E}\left[\int_{0}^{1} N(t)dt\right] = 0$$

Because the process N(t) is stationary, without loss of generality we choose the boundaries of the integral to be 0 and T where in this problem T = 1.

Now, let us calculate the noise variance.

$$\operatorname{var}(N) = \mathbb{E}[N^{2}] - \mathbb{E}[N]^{2} = \mathbb{E}[N^{2}]$$

$$= \mathbb{E}\left[\int_{-\infty}^{\infty} N(t)w(t)dt \int_{-\infty}^{\infty} N(v)w(v)dv\right]$$

$$= \mathbb{E}\left[\int_{0}^{1} N(t)dt \int_{0}^{1} N(v)dv\right]$$

$$= \mathbb{E}\left[\int_{0}^{1} \int_{0}^{1} N(t)N(v)dtdv\right]$$

$$= \int_{0}^{1} \int_{0}^{1} K_{N}(t-v)dtdv$$

$$= \int_{0}^{1} \int_{0}^{1} \frac{1}{4\alpha}e^{-|t-v|/\alpha}dtdv$$

$$= \frac{1}{2}\left(\alpha\left(e^{-1/\alpha} - 1\right) + 1\right)$$

Thus the new probability of error is given by

$$\begin{split} P_e &= \sum_{i=0}^3 \frac{1}{4} \Pr\{\text{error}|H=i\} \\ &= \frac{1}{4} \left[Q\left(\frac{c}{\sqrt{\text{var}(N)}}\right) + 2Q\left(\frac{c}{\sqrt{\text{var}(N)}}\right) + 2Q\left(\frac{c}{\sqrt{\text{var}(N)}}\right) + Q\left(\frac{c}{\sqrt{\text{var}(N)}}\right) \right] \\ &= \frac{3}{2} Q\left(\frac{c}{\sqrt{\frac{1}{2}\left(\alpha\left(e^{-1/\alpha}-1\right)+1\right)}}\right) \end{split}$$