ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 36	Principles of Digital Communications
Final exam solutions	Jul. 3, 2018

Problem 1.

(a) Note that under either hypotesis (X_1, X_2) is real valued. With $\theta = 0$

$$(Y_1, Y_2) = (X_1, X_2) + (Z_1, Z_2) = (X_1 + \Re\{Z_1\}, X_2 + \Re\{Z_2\}) + j(\Im\{Z_1\}, \Im\{Z_2\})$$

Since the imaginary parts of the Z's are independent of the real parts we see (by invoking Fischer-Neyman) that the real part of (Y_1, Y_2) , i.e., T, is a sufficient statistic. From the above observation, the log-likelihood ratio is given by

$$\sigma^{-2} \left[(\Re\{Y_1\}^2 + (\Re\{Y_2\} - \sqrt{\mathcal{E}})^2 - (\Re\{Y_1\} - \sqrt{\mathcal{E}})^2 - \Re\{Y_2\}^2 \right] \\ = 2\sqrt{\mathcal{E}}\sigma^{-2}\Re\{Y_1 - Y_2\} = 2\sqrt{\mathcal{E}}\sigma^{-2}U,$$

so we see that U is also a sufficient statistic.

- (b) From (a) we see that the MAP rule is to decide 0 if U > 0 and 1 else. Note that $U = (X_1 X_2) + Z$ where $Z = \Re\{Z_1\} \Re\{Z_2\}$ is a Gaussian with zero mean and variance σ^2 , (the sum of the variances of the real parts of Z_1 and Z_2). When 0 is sent $(X_1 X_2) = \sqrt{\mathcal{E}}$ and when 1 is sent $(X_1 X_2) = -\sqrt{\mathcal{E}}$. Thus, the probability of error is $Q(\sqrt{\mathcal{E}/\sigma^2})$.
- (c) When θ is $\pi/2$, the observation is

$$(Y_1, Y_2) = (\Re\{Z_1\}, \Re\{Z_2\}) + j(X_1 + \Im\{Z_1\}, X_2 + \Im\{Z_2\}).$$

Consequently the real part of the observation used in (b) is independent of the transmitted codeword. The error probability is thus 1/2.

(d) With θ uniform random variable, the probability density of the observation

$$f_{Y_1Y_2|H}(y_1, y_2|0) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{(\pi\sigma^2)^2} \exp\left\{-\frac{1}{\sigma^2} \left(|y_1 - e^{j\theta}\sqrt{\mathcal{E}}|^2 + |y_2|^2\right)\right\} d\theta,$$

With ϕ_1 denoting the phase of y_1 ,

$$|y_1 - e^{j\theta}\sqrt{\mathcal{E}}|^2 + |y_2|^2 = |y_1|^2 + |y_2|^2 + \mathcal{E} - 2\sqrt{\mathcal{E}}|y_1|\cos(\theta - \phi_1),$$

thus

$$f_{Y_1Y_2|H}(y_1y_2|0) = \frac{1}{(\pi\sigma^2)^2} \exp\left\{-\sigma^{-2}(|y_1|^2 + |y_2|^2 + \mathcal{E})\right\} \frac{1}{2\pi} \int_0^{2\pi} g(2\sqrt{\mathcal{E}}|y_1|/\sigma^2, \theta, \phi_1),$$

with $g(\cdot)$ as in the hint. By the hint, the integral of g depends only on the value of $2\sqrt{\mathcal{E}}|y_1|/\sigma^2$ and consequently, $f_{Y_1Y_2|H}(y_1, y_2|0)$ depends only on $(|y_1|, |y_2|)$. The case for $f_{Y_1Y_2|H}(y_1, y_2|1)$ is analogous, only by swapping y_1 and y_2 .

(e) By part (d) the likelihood ratio is given by

$$\frac{f_{Y_1Y_2|H}(y_1, y_2|0)}{f_{Y_1Y_2|H}(y_1, y_2|1)} = \frac{I_0(2\sqrt{\mathcal{E}}|y_1|/\sigma^2)}{I_0(2\sqrt{\mathcal{E}}|y_2|/\sigma^2)}$$

and the MAP rule will decide in favor of 0 if the numerator is larger than the denominator (and vice versa). By the hint I_0 is increasing in its argument when the argument is non-negavite, so the MAP rule is to decide 0 if $|y_1| > |y_2|$ and to decide 1 otherwise.

The situation analyzed in this problem is equivalent to the following: one of two orthogonal, complex baseband signals w_{E0} or w_{E1} , each with energy \mathcal{E} is sent over an AWGN channel by upconverting them to the passband. At the receiver, the received signal is downcoverted to the baseband, and passed through two matched filters: one matched to w_{E0} and the other to w_{E1} . The output of the filters are Y_1 and Y_2 . The quantity θ is the phase difference between the transmitters upconverter and the receivers downconverter oscillators. Parts (a) and (b) analyze the case when the two oscillators are completely in-phase (known as 'coherent'); part (d) considers the case of uncoherent reception where the phase difference is completely random. Problem 2.

- (a) Since ψ is real and symmetric the receiver is passing the received signal through the filter $\psi^*(-t)$ which is the matched filter. The output of the matched filter should thus be sampled at integer times, ..., -2, -1, 0, 1, 2,
- (b) With ψ_j denoting the ψ time-shifted by j, we have $w = \sum_j c_j \psi_j$, and $Y_j = \langle w + N, \psi_j \rangle$. As $\{\psi_j\}$ form an orthnormal collection we see that

$$Y_j = c_j + Z_j$$

where $\{Z_j\}$ is an i.i.d. collection of zero mean Gaussians with variance $N_0/2$.

(c) From (b) the decision rule is to decide

$$\hat{c}_j = \begin{cases} 0 & Y_j > 0\\ 1 & \text{else,} \end{cases}$$

and the error probability is thus $Q(\sqrt{2\mathcal{E}/N_0})$.

(d) Let $\tilde{\psi}_j$ denote ψ shifted by j - 0.1. Then

$$Y_j = \langle w + N, \psi_j \rangle = 0.9c_j + 0.1c_{j-1} + Z_j$$

(e) With the decision rule still as in (c), there are two equally likely possibilities either $c_{j-1} = c_j$ or $c_{j-1} = -c_j$. In the first case the error probability is $Q(\sqrt{2\mathcal{E}/N_0})$, in the second the error probability is $Q(0.8\sqrt{2\mathcal{E}/N_0})$. The bit error probability is thus

$$\frac{1}{2} \left[Q(\sqrt{2\mathcal{E}/N_0}) + Q(0.8\sqrt{2\mathcal{E}/N_0}) \right].$$

(f) We see that the data bit sequence $\{c_j\}$ influence the received sequence $\{Y_j\}$ via $x_j = 0.9c_j + 0.1c_{j-1}$. The x's are obtained from c's via a two-state 'encoder': state at time j is c_{j-1} . The MAP rule consists of finding the c sequence whose x sequence is closest to the received Y sequence, and this can be done by the Viterbi algorithm that walks through a two-state trellis. (This is as in Problem 3 of Homework 10.)

Problem 3.

(a) Using the convention (x_{2j-1}, x_{2j}) , the state diagram of the encoder is

- (b) We need to find T such that shifts of $\psi_{\mathcal{F}}$ by integer multiples of 1/T add to a constant. (This constant should then equal T to ensure the unit norm constraint). By inspection we see that $|\psi_{\mathcal{F}}|^2$ has band-edge symmetry around 2.5 kHz. Consequently 1/(2T) = 2.5 kHz, and we find T = 0.2 ms. We also obtain $b = 0.2 \times 10^{-3}$.
- (c) Since one coded bit is sent every T seconds, we transmit 5000 coded bits each second. Since each data bit generates two coded bits, the bit rate is 2.5 kbps.
- (d) It is easy to see that $E[x_i] = 0$. For the correlations between x_n and x_m , note that

$$x_n x_m = \begin{cases} b_i b_j & n = 2i - 1, m = 2j - 1\\ b_i b_{i-1} b_j & n = 2i, m = 2j - 1\\ b_i b_j b_{j-1} & n = 2i - 1, m = 2j\\ b_i b_{i-1} b_j b_{j-1} & n = 2i, m = 2j. \end{cases}$$

1

we see that unless n = m, there is at least one b_{ℓ} that occurs by itself in the expression $x_n x_m$. (E.g, $x_1 x_2 = b_1^2 b_0$ with $b_{\ell} = b_0$; $x_2 x_4 = b_1^2 b_0 b_2$ and we can take $\ell = 0$ or $\ell = 2$.) When we take the expection, as $E[b_{\ell}] = 0$, this ensures that $E[x_n x_m] = 0$, except when n = m for which $E[x_n x_n] = 1$. Thus

$$K_X[k] = \begin{cases} 1 & k = 0\\ 0 & \text{else.} \end{cases}$$

- (e) Since the $\{x_k\}$ sequence is uncorrelated, the power spectral density of $w(t \Theta)$ is given by $\mathcal{E}|\psi_{\mathcal{F}}(f)|^2/T = 5000\mathcal{E}|\psi_{\mathcal{F}}(f)|^2$.
- (f) The trellis is given by

Therefore, the decoded bits are $(\hat{b}_1, \hat{b}_2, \hat{b}_3, \hat{b}_4, \hat{b}_5) = (1, -1, 1, -1, -1).$