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Problem 1.

(a) Note that under either hypotesis (X1, X2) is real valued. With θ = 0

(Y1, Y2) = (X1, X2) + (Z1, Z2) = (X1 + <{Z1}, X2 + <{Z2}) + j(={Z1},={Z2})

Since the imaginary parts of the Z’s are independent of the real parts we see (by
invoking Fischer-Neyman) that the real part of (Y1, Y2), i.e., T , is a sufficient statistic.
From the above observation, the log-likelihood ratio is given by
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so we see that U is also a sufficient statistic.

(b) From (a) we see that the MAP rule is to decide 0 if U > 0 and 1 else. Note that
U = (X1 − X2) + Z where Z = <{Z1} − <{Z2} is a Gaussian with zero mean and
variance σ2, (the sum of the variances of the real parts of Z1 and Z2). When 0 is
sent (X1 −X2) =

√
E and when 1 is sent (X1 −X2) = −

√
E . Thus, the probability

of error is Q(
√
E/σ2).

(c) When θ is π/2, the observation is

(Y1, Y2) = (<{Z1},<{Z2}) + j(X1 + ={Z1}, X2 + ={Z2}).

Conseqently the real part of the observation used in (b) is independent of the trans-
mitted codeword. The error probability is thus 1/2.

(d) With θ uniform random variable, the probability density of the observation
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With φ1 denoting the phase of y1,
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with g(·) as in the hint. By the hint, the integral of g depends only on the value of
2
√
E|y1|/σ2 and consequently, fY1Y2|H(y1, y2|0) depends only on (|y1|, |y2|). The case

for fY1Y2|H(y1, y2|1) is analogous, only by swapping y1 and y2.



(e) By part (d) the likelihood ratio is given by

fY1Y2|H(y1, y2|0)
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)
and the MAP rule will decide in favor of 0 if the numerator is larger than the de-
nominator (and vice versa). By the hint I0 is increasing in its argument when the
argument is non-negavite, so the MAP rule is to decide 0 if |y1| > |y2| and to decide
1 otherwise.

The situation analyzed in this problem is equivalent to the following: one of two orthogonal,
complex baseband signals wE0 or wE1, each with energy E is sent over an AWGN channel by
upconverting them to the passband. At the receiver, the received signal is downcoverted to
the baseband, and passed through two matched filters: one matched to wE0 and the other
to wE1. The output of the filters are Y1 and Y2. The quantity θ is the phase difference
between the transmitters upconverter and the receivers downconverter oscillators. Parts
(a) and (b) analyze the case when the two oscillators are completely in-phase (known as
‘coherent’); part (d) considers the case of uncoherent reception where the phase difference
is completely random.
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Problem 2.

(a) Since ψ is real and symmetric the receiver is passing the received signal through the
filter ψ∗(−t) which is the matched filter. The output of the matched filter should
thus be sampled at integer times, . . . ,−2,−1, 0, 1, 2, . . . .

(b) With ψj denoting the ψ time-shifted by j, we have w =
∑

j cjψj, and Yj = 〈w+N,ψj〉.
As {ψj} form an orthnormal collection we see that

Yj = cj + Zj

where {Zj} is an i.i.d. collection of zero mean Gaussians with variance N0/2.

(c) From (b) the decision rule is to decide

ĉj =

{
0 Yj > 0

1 else,

and the error probability is thus Q(
√

2E/N0).

(d) Let ψ̃j denote ψ shifted by j − 0.1. Then

Yj = 〈w +N, ψ̃j〉 = 0.9cj + 0.1cj−1 + Zj

(e) With the decision rule still as in (c), there are two equally likely possibilities either
cj−1 = cj or cj−1 = −cj. In the first case the error probability is Q(

√
2E/N0), in the

second the error probability is Q(0.8
√

2E/N0). The bit error probability is thus

1
2

[
Q(
√

2E/N0) +Q(0.8
√

2E/N0)
]
.

(f) We see that the data bit sequence {cj} influence the received sequence {Yj} via
xj = 0.9cj + 0.1cj−1. The x’s are obtained from c’s via a two-state ‘encoder’: state
at time j is cj−1. The MAP rule consists of finding the c sequence whose x sequence
is closest to the received Y sequence, and this can be done by the Viterbi algorithm
that walks through a two-state trellis. (This is as in Problem 3 of Homework 10.)
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Problem 3.

(a) Using the convention (x2j−1, x2j), the state diagram of the encoder is

+1 −11/(1, 1)

−1/(−1,−1)

1/(1,−1)

−1/(−1, 1)

(b) We need to find T such that shifts of ψF by integer multiples of 1/T add to a
constant. (This constant should then equal T to ensure the unit norm constraint). By
inspection we see that |ψF |2 has band-edge symmetry around 2.5 kHz. Consequently
1/(2T ) = 2.5 kHz, and we find T = 0.2 ms. We also obtain b = 0.2× 10−3.

(c) Since one coded bit is sent every T seconds, we transmit 5000 coded bits each second.
Since each data bit generates two coded bits, the bit rate is 2.5 kbps.

(d) It is easy to see that E[xi] = 0. For the correlations between xn and xm, note that

xnxm =


bibj n = 2i− 1,m = 2j − 1

bibi−1bj n = 2i,m = 2j − 1

bibjbj−1 n = 2i− 1,m = 2j

bibi−1bjbj−1 n = 2i,m = 2j.

we see that unless n = m, there is at least one b` that occurs by itself in the expression
xnxm. (E.g, x1x2 = b21b0 with b` = b0; x2x4 = b21b0b2 and we can take ` = 0 or ` = 2.)
When we take the expection, as E[b`] = 0, this ensures that E[xnxm] = 0, except
when n = m for which E[xnxn] = 1. Thus

KX [k] =

{
1 k = 0

0 else.

(e) Since the {xk} sequence is uncorrelated, the power spectral density of w(t − Θ) is
given by E|ψF(f)|2/T = 5000E|ψF(f)|2.

(f) The trellis is given by
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Therefore, the decoded bits are (b̂1, b̂2, b̂3, b̂4, b̂5) = (1,−1, 1,−1,−1).

4


