ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 35	Principles of Digital Communications
Final exam	Jul. 3, 2018

3 problems, 82 points 165 minutes 2 sheet (4 pages) of notes allowed.

Good Luck!

PLEASE WRITE YOUR NAME ON EACH SHEET OF YOUR ANSWERS.

PLEASE WRITE THE SOLUTION OF EACH PROBLEM ON A SEPARATE SHEET.

PROBLEM 1. (24 points) Consider a communication system with two codewords $c_0 = (\sqrt{\mathcal{E}}, 0)$ and $c_1 = (0, \sqrt{\mathcal{E}})$. One of these codewords is chosen (each with equal probability) and transmitted. With $X = (X_1, X_2)$ denoting the chosen codeword, the receiver's observation (Y_1, Y_2) is given by

$$(Y_1, Y_2) = (e^{j\theta}X_1 + Z_1, e^{j\theta}X_2 + Z_2)$$

where $0 \leq \theta < 2\pi$ is a phase shift, and Z_1 and Z_2 are i.i.d. circularly symmetric complex Gaussian random variables and $E[|Z_1|^2] = \sigma^2$. (In other words, the real and imaginary parts of Z_1 and Z_2 are independent Gaussians with zero mean and variance $\sigma^2/2$.)

- (a) (6 pts) Suppose $\theta = 0$. Is $T = (\Re\{Y_1\}, \Re\{Y_2\})$, the real part of the observation, a sufficient statistic? Is $U = \Re\{Y_1 Y_2\}$ a sufficient statistic?
- (b) (4 pts) Still supposing $\theta = 0$, find the MAP decision rule. Express the error probability in terms of a *Q*-function.
- (c) (4 pts) Suppose now $\theta = \pi/2$, but we continue use the decision rule found in (b). What is the probability of error?
- (d) (6 pts) Suppose now that θ is a random variable uniformly distributed on $[0, 2\pi)$, and independent of (Z_1, Z_2) . Show that the probability density of the observation

$$f_{Y_1Y_2|H}(y_1, y_2|i)$$

depends on (y_1, y_2) only through $(|y_1|, |y_2|)$.

Hint: Note that $g(a, \theta, \theta_0) = \exp(a\cos(\theta + \theta_0))$ is a periodic function of θ , thus $\int_0^{2\pi} g(a, \theta, \theta_0) d\theta$ depends only on a.

(e) (4 pts) Continuing with part (d), find the MAP decision rule. Hint: with $I_0(a) = \int_0^{2\pi} g(a, \theta, \theta_0) d\theta$, it is known that I_0 is an even function, increasing in |a|. PROBLEM 2. (30 points) Consider transmitting a sequence of bits over the continuous time AWGN channel of noise power spectral density $N_0/2$, using the strategy of "bit-by-bit on a pulse train." The transmitted signal is given by

$$w(t) = \sum_{j} c_{j} \psi(t-j)$$

where c_j are i.i.d. random variables taking the value $+\sqrt{\mathcal{E}}$ or $-\sqrt{\mathcal{E}}$ with equal probability, and

$$\psi(t) = \begin{cases} 1 & t \in [-1/2, 1/2) \\ 0 & \text{else.} \end{cases}$$

The receiver first passes the received signal through a filter with impulse response ψ .

- (a) (4 pts) At what times should the filter output be sampled so as to minimize the bit error probability?
- (b) (4 pts) Give a mathematical description of the discrete time channel model seen by the decoder. (In other words how do the samples $\{Y_j\}$ taken in (a) relate to the transmitted data $\{c_i\}$?)
- (c) (4 pts) What is the bit error probability of the system above?
- (d) (6 pts) Suppose now that the samples are offset from those you found in (a) by 0.1 units of time. Re-do part (b).
- (e) (6 pts) Suppose the decoder is unaware of the time offset. What is the bit error probability?
- (f) (6 pts) Suppose the decoder is aware of the time offset, but is constrained to work with these (incorrectly sampled) sample-values. How would you implement a decoder that finds the maximally likely transmitted sequence based on the samples $\{Y_j\}$? (Explain in words.)

PROBLEM 3. (28 points) Binary data $\{b_j\}$ (with b_j i.i.d., taking values in +1 and -1 with equal probability) is coded by a rate 1/2 convolution code as

$$x_{2j-1} = b_j, \quad x_{2j} = b_j b_{j-1}.$$

The coded bits $\{x_k\}$ are then transmitted over an AWGN channel as the signal

$$w(t) = \sum_{k} (\sqrt{\mathcal{E}} x_k) \psi(t - kT) \tag{(*)}$$

where $\psi(t)$ is a real-valued unit-norm pulse with $|\psi_{\mathcal{F}}(f)|^2$ as follows:

- (a) (4 pts) Draw the state diagram description of the convolutional encoder.
- (b) (4 pts) Find T and $b = |\psi_{\mathcal{F}}(0)|^2$ so that equation (*) is an orthonormal expansion with coefficients $\{\sqrt{\mathcal{E}}x_k\}$.
- (c) (4 pts) How many coded bits per second are transmitted? What is the bit rate (the number of data bits transmitted per second)?
- (d) (6 pts) What is the autocorrelation function of the coded bits? (That is, find $K_x[k] := E[x_i x_{i+k}] E[x_i] E[x_{i+k}]$. [Hint: You may want to consider even/odd *i* separately.])
- (e) (4 pts) What is the power spectral density of the signal $w(t \Theta)$ where Θ is a random variable independent of everything else and uniformly distributed in [0, T]?

At the receiver the received signal w(t) + N(t) is match filtered by $\psi(-t)$, sampled at instants $\{kT : k \in \mathbb{Z}\}$ to form the discrete-time sequence $\{Y_k\}$. The sequence $\{Y_k\}$ is then decoded by a Viterbi-decoder.

(f) (6 pts) Assume that the initial state of the encoder is the all-ones state. Suppose data b_1, b_2, b_3, b_4, b_5 , followed by sufficiently many 1's to bring the encoder back to the all-ones state, is input to the encoder.

If the sequence $(Y_1, Y_2), (Y_3, Y_4), \ldots$ is given by

$$(+1.2, +1.1), (+0.1, -1.7), (+0.5, -0.2), (-0.6, -1.7), (-0.3, +0.3), (+0.6, -1.0), (+0.9, +0.2), (1.2, 0.9), \dots,$$

find the maximally likely sequence $\hat{b}_1, \ldots, \hat{b}_5$.