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1 Hypothesis testing

Consider the problem of deciding which of two hypotheses, hypothesis 0 or hypothesis 1,
is true, based on an observation Y. For simplicity, assume that the observation Y is a
random variable taking values in an alphabet ) — a finite set of K = || letters — and
under hypothesis j it has distribution P;. To avoid trivial cases we will assume that for
each y € Y both Py(y) and P;(y) are strictly positive. Otherwise, if we observe a y with,
say, Py(y) = 0, we would know for sure that hypothesis 1 is true.

A deterministic decision rule associates to each y € )} a binary value — i.e., the rule is
a function ¢ : ) — {0, 1} — and we decide in favor of hypothesis ¢(y) if the observation Y
equals y. In general, we will allow for randomized decision rules: such a rule is characterized
by a function ¢ : Y — [0, 1] that associates to each y € ) a value in the interval [0, 1], that
gives the probability of deciding in favor of hypothesis 1. If our observation Y equals y, we
flip a coin that comes heads with probability ¢(y) and tails with probability 1 — ¢(y), and
decide accordingly: 1 if heads, 0 if tails. We will identify a decision rule with the function
}.

In this set up there are two kinds of error: deciding 1 when the true hypothesis is 0, and
deciding 0 when the true hypothesis is 1. Letting 7, (i|j) for rule ¢ denote the probability
of deciding ¢ when the truth is j, we see that

75(0[1) Zpl ], me(1]0) = ZPO

Given Py and P; and a positive real number 7 > 0, let ®, to be the set of decision rules

¢ of the form
1 it Piy) > nPo(y)
o) = {0 it Pi(y) < nPy(y).

Note that if there is no y for which P;(y) = nFy(y), the test ¢ is uniquely specified and @,
contains only this test.
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LEMMA 1. The rules in @, are minimizers of 7(0[1) + nm(1]0).

Proof. For any rule ¢ € ®,, as a consequence of (1), for every y € Y

Py(y)[1 = o(y)] + nPo(y)o(y) = min{ Pi(y), nFo(y)}-
Thus for any rule ¢ € @,

6 (0]1) + nmy(1|0) = ZPI (y)] +nFo(y Zmln{Pl nFo(y)}-

Suppose now ¥ is any decision rule. The lemma follows by noting that

Ty (0]1) + nmy(1]0) = ZP1 V()] +nbly Zmln{Pl n(y)} O



THEOREM (NEYMAN-PEARSON, 1933). For any a € [0,1], (i) there is a rule ¢ of the
form (1) such that 74(1|0) = «, and (ii) for any decision rule 1 either m,;(0]1) > 7,(0|1) or
mu(110) = mo(110).

Proof. Assertion (ii) follows from the lemma above: a 1 that violates both the inequalities
would contradict the lemma. It thus suffices to prove (i), the existence of a rule ¢ of
the form (1) with 7,(1|0) = a. To that end, define A(y) = Pi(y)/Fo(y), and label the
elements of Y as J = {y1,...,yx} such that A(y;) > A(y2) > --- > A(yx). Now define,
a; = Z;ZlPo(yj) fori =0,...,K. We then have 0 = a9 < a1 < --- < axg = 1. Given
0 <a <1, wecan find 1 <i < K for which a;—1 < o < ay, so that a = (1 — p)a;_1 + pa;
for some p € [0, 1]. Observe that @ = Z;ll Po(y;) + pPo(yi), and that the rule

1 yed{y, ... ¥}
oW)=4p y=u
0 ye{yi+17"'7yK}

is of the form (1) with n = A(y;), and 7,(1]0) = a. O

Rules of the form (1) are based on a likelihood ratio test: they compare the likelihood
ratio A(y) = Pi(y)/FPo(y) to a threshold n to make a decision. If the likelihood ratio is
larger than the threshold, decide 1; if less, decide 0. Equivalently one may compare the log
likelihood ratio, log(Pi(y)/Po(y)) to the threshold logn.

The theorem stated just above shows the dominant nature of likelihood ratio tests in
making decisions: given any decision rule ¢, we can find a (log) likelihood ratio test ¢ which
is ‘as good or better’ — in the sense that the two error probabilities satisfy m,(0[1) < 7, (0[1)
and 7, (1]0) < my(1]0).



