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1 Hypothesis testing

Consider the problem of deciding which of two hypotheses, hypothesis 0 or hypothesis 1,
is true, based on an observation Y . For simplicity, assume that the observation Y is a
random variable taking values in an alphabet Y — a finite set of K = |Y| letters — and
under hypothesis j it has distribution Pj. To avoid trivial cases we will assume that for
each y ∈ Y both P0(y) and P1(y) are strictly positive. Otherwise, if we observe a y with,
say, P0(y) = 0, we would know for sure that hypothesis 1 is true.

A deterministic decision rule associates to each y ∈ Y a binary value — i.e., the rule is
a function φ : Y → {0, 1}— and we decide in favor of hypothesis φ(y) if the observation Y
equals y. In general, we will allow for randomized decision rules: such a rule is characterized
by a function φ : Y → [0, 1] that associates to each y ∈ Y a value in the interval [0, 1], that
gives the probability of deciding in favor of hypothesis 1. If our observation Y equals y, we
flip a coin that comes heads with probability φ(y) and tails with probability 1− φ(y), and
decide accordingly: 1 if heads, 0 if tails. We will identify a decision rule with the function
φ.

In this set up there are two kinds of error: deciding 1 when the true hypothesis is 0, and
deciding 0 when the true hypothesis is 1. Letting πφ(i|j) for rule φ denote the probability
of deciding i when the truth is j, we see that

πφ(0|1) =
∑
y

P1(y)[1− φ(y)], πφ(1|0) =
∑
y

P0(y)φ(y).

Given P0 and P1 and a positive real number η > 0, let Φη to be the set of decision rules
φ of the form

φ(y) =

{
1 if P1(y) > ηP0(y)

0 if P1(y) < ηP0(y).
(1)

Note that if there is no y for which P1(y) = ηP0(y), the test φ is uniquely specified and Φη

contains only this test.

Lemma 1. The rules in Φη are minimizers of π(0|1) + ηπ(1|0).

Proof. For any rule φ ∈ Φη, as a consequence of (1), for every y ∈ Y

P1(y)[1− φ(y)] + ηP0(y)φ(y) = min{P1(y), ηP0(y)}.

Thus for any rule φ ∈ Φη

πφ(0|1) + ηπφ(1|0) =
∑
y

P1(y)[1− φ(y)] + ηP0(y)φ(y) =
∑
y

min{P1(y), ηP0(y)}.

Suppose now ψ is any decision rule. The lemma follows by noting that

πψ(0|1) + ηπψ(1|0) =
∑
y

P1(y)[1− ψ(y)] + ηP0(y)ψ(y) ≥
∑
y

min{P1(y), ηP0(y)}.



Theorem (Neyman–Pearson, 1933). For any α ∈ [0, 1], (i) there is a rule φ of the
form (1) such that πφ(1|0) = α, and (ii) for any decision rule ψ either πψ(0|1) ≥ πφ(0|1) or
πψ(1|0) ≥ πφ(1|0).

Proof. Assertion (ii) follows from the lemma above: a ψ that violates both the inequalities
would contradict the lemma. It thus suffices to prove (i), the existence of a rule φ of
the form (1) with πφ(1|0) = α. To that end, define Λ(y) = P1(y)/P0(y), and label the
elements of Y as Y = {y1, . . . , yK} such that Λ(y1) ≥ Λ(y2) ≥ · · · ≥ Λ(yK). Now define,
ai =

∑i
j=1 P0(yj) for i = 0, . . . , K. We then have 0 = a0 < a1 < · · · < aK = 1. Given

0 ≤ α ≤ 1, we can find 1 ≤ i ≤ K for which ai−1 ≤ α ≤ ai, so that α = (1− ρ)ai−1 + ρai
for some ρ ∈ [0, 1]. Observe that α =

∑i−1
j=1 P0(yj) + ρP0(yi), and that the rule

φ(y) =


1 y ∈ {y1, . . . , yi−1}
ρ y = yi

0 y ∈ {yi+1, . . . , yK}

is of the form (1) with η = Λ(yi), and πφ(1|0) = α.

Rules of the form (1) are based on a likelihood ratio test : they compare the likelihood
ratio Λ(y) = P1(y)/P0(y) to a threshold η to make a decision. If the likelihood ratio is
larger than the threshold, decide 1; if less, decide 0. Equivalently one may compare the log
likelihood ratio, log(P1(y)/P0(y)) to the threshold log η.

The theorem stated just above shows the dominant nature of likelihood ratio tests in
making decisions: given any decision rule ψ, we can find a (log) likelihood ratio test φ which
is ‘as good or better’ — in the sense that the two error probabilities satisfy πφ(0|1) ≤ πψ(0|1)
and πφ(1|0) ≤ πψ(1|0).
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