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Problem 1.

(a) Note that∑
x,y

pXY (x, y) log
qX|Y (x|y)

pX(x)
=
∑
x,y

pXY (x, y) log
pX|Y (x|y)

pX(x)
−
∑
x,y

pXY (x, y) log
pX|Y (x|y)

qX|Y (x|y)

The first term on the right is I(X;Y ). Writing pXY (x, y) = pY (y)pX|Y (x|y), we see
that the second term equals

∑
y pY (y)D(pX|Y=y‖qX|Y=y). The desired inequality now

follows from the positivity of D(p‖q). For equality to hold D(pX|Y=y‖qX|Y=y) needs
to equal 0 for each y for which pY (y) > 0, that is, pX|Y (x|y)pY (y) = qX|Y (x|y)pY (y)
for all x, y.

(b) Noting that D(pY ‖qY ) =
∑

y pY (y) log pY (y)
qY (y)

=
∑

x,y pXY (x, y) log pY (y)
qY (y)

, the inequality
follows.

(c) From (a) we see that I(X;Y ) = maxqX|Y
∑

x,y pX(x)W (y|x) log
qX|Y (x|y)
pX(x)

, so C(W ) =

maxpX I(X;Y ) can be written as the double maximization

C(W ) = max
pX , qX|Y

∑
x,y

pX(x)W (y|x) log
qX|Y (x|y)

pX(x)
.

Most numerical methods that compute C(W ) use this form and alternating between
maximizing over pX and qX|Y . Write the objective function in the maximization as

f(pX , qX|Y ). Start with some initial guess p
(0)
X (e.g., the uniform distribution on X ),

then iterate

q
(k)
X|Y = arg max

qX|Y
f(p

(k)
X , qX|Y ), p

(k+1)
X = arg max

pX
f(pX , q

(k)
X|Y ).

Each of these maximizations turns out to be easy and can be found in closed form
(e.g., we know from (a) that q

(k)
X|Y = p

(k)
X|Y ), and we repeat until some termination

condition (e.g., the approximate satisfaction of the KKT conditions derived in class)
is reached. (The method just outlined above is the Arimoto–Blahut algorithm.)

(d) By the KKT conditions derived in class
∑

yW (y|x) log W (y|x)
p∗Y (y)

≤ C(W ) for every x.

Multiplying both sides by pX(x) and summing over x gives∑
x,y

pXY (x, y) log
W (y|x)

p∗Y (y)
≤ C(W )

which is the left hand inequality to be shown. The right hand inequality follows from
(b) with p∗X and pY playing the roles of pX , and qY .

(e) From (b), D(pY ‖p∗Y ) =
∑

x,y p(x, y)W (y|x)
p∗Y (y)

−I(X;Y ). By (d) this is upper bounded by

C(W )− I(X;Y ). But I(X;Y ) = C(W ) as pX maximizes I(X;Y ). We thus see that
D(pY ‖p∗Y ) = 0. So we have shown that while the input distribution that maximizes
I(X;Y ) may not be unique the corresponding output distribution is unique.



Problem 2.

(a) The transmitted message does not appear in the list only when the list is empty,
which happens when the channel erases k or more times, which has probability∑n

i=k

(
n
i

)
pi(1 − p)n−i. Note that this is the probability that

∑n
i=1 Zi ≥ k where

Z1, . . . , Zn are {0, 1}-valued, i.i.d., with Pr(Zi = 1) = p.

(b) Given that Y n contains j erasures, a particular incorrect message m′ will appear on
the decoders list if Enc(m′)i = Yi for every i for which Yi is not an erasure. As
there are n − j such i’s and Enc(m′)i is chosen independently and is equally likely
to be 0 or 1, a particular incorrect message m′ will appear in the decoder’s list with
probability 1/2n−j. Since there are M − 1 such messages, the expected number of
incorrect messages on the list is (M − 1)/2n−j.

(c) If the number of erasures j ≥ k then there are no messages (and thus no incorrect)
messages in the decoder’s list. So by (b), E[`] (the expectation being over the random
choice of Enc) is upper bounded by (M − 1)/2n−k ≤ 2n(R−1+q). As q < 1 − R, this
quantity decays to zero as n gets large. At the same time, by (a) p0 is the probability
that 1

n

∑n
i=1 Zi ≥ q. Since E[Zi] = p < q, by the law of large number p0 approaches

0 as n gets large. Thus, for large enough n we will have both p0 < ε and E[`] < ε,
and consequently there is an encoder with p0 < ε and ` < ε.

(d) Take an encoder as in (c) with ε/2 in the role of ε. Modify the decoder to declare
‘?’ whenever the list contains two or more messages (i.e., when ` ≥ 1) or is empty.
Note that this decoder declares m only if it is the only message compatible with yn.
Now, the probability that the list contains two or more messages is upper bounded
by E[`] < ε/2, and the probability that the list is empty is upper bounded by ε/2.
By the union bound, we see that the decoder declares ‘?’ with probability at most ε.

Problem 3.

(a) Note that 1 − δ = Pr
(
λ(X, Y ) ≥ t

)
= Pr

(
Y ∈ T (X)

)
. Use Bayes’ rule to write the

second as∑
x

pX(x) Pr
(
Y ∈ T (X)

∣∣ X = x
)

=
∑
x

pX(x) Pr
(
Y ∈ T (x)

∣∣ X = x
)
.

If Pr(Y ∈ T (x)|X = x) < 1− ε for all x, the right hand side above would be strictly
less than 1 − ε. But this is a contradiction, as the right hand side equals 1 − δ and
ε ≥ δ.

(b) For y ∈ T (x) we have pY (y) ≤ 2−tpY |X(y|x). Thus

Pr
(
Y ∈ T (x)

)
=
∑
y∈T (x)

pY (y) ≤ 2−t
∑
y∈T (x)

pY |X(y|x) = 2−t Pr
(
Y ∈ T (x)

∣∣ X = x
)
.

(c) As {λ(X, Y ) ≥ t} is the same as {Y ∈ T (X)}, the event we are interested in is
{Y ∈ S ∩ T (X)}. By (∗) and the Bayes rule, we have Pr

(
Y ∈ S ∩ T (X)

)
< 1− ε as

to be shown.

(d) Note that Di ⊂ T (x(i)). By the union bound Pr(Y ∈ ∪mi=1Di) ≤
∑M

i=1 Pr(Y ∈ Di) ≤∑M
i=1 Pr(Y ∈ T (x(i)). By (b) each term in this sum is upper bounded by 2−t and the

conclusion follows.
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(e) The event {λ(X, Y ) ≥ t} is included in the union of {λ(X, Y ) ≥ t} ∩ {Y ∈ S} and
{Y 6∈ S}. Using (c) and (d) to upper bound the probabilities of these two events we
find

1− δ = Pr(λ(X, Y ) ≥ t) < 1− ε+ 2−t.

(f) Observe that λ(Xn, Y n) =
∑n

i=1 λ(Xi, Yi), a sum of i.i.d. random variables each with
expected value I(X;Y ). Thus, by the law of large numbers 1

n
λ(Xn, Y n) converges to

I(X;Y ). As tn/n→ R and R < I(X;Y ), we see that δn → 0.

(g) By (e) the algorithm will terminate with M ≥ (ε−δn)2tn ≥ (ε/2)2nR+log(2/ε) = 2nR, so
the code constructed by the algorithm has rate at least R. Consider now the decoder
that declares m when yn ∈ Dm, and 0 if there is no such m. (As Dm’s as disjoint yn

cannot belong to two or more Dm’s.) By construction Pr(Y n ∈ Dm|Xn = xn(m)) ≥
1− ε, so the error probability of this encoder and decoder is at most ε.

The ‘greedy algorithm’ outlined above to pick the codewords x(1), . . . , x(M) and decoding
sets D1, . . . , DM is due to Feinstein (in late 1950’s), and gives an alternative way to prove
the coding theorem without using the random coding argument. Note however, that just
like random coding, while proving the existence of a good code, the construction does not
lead to a practical coding technique.
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