ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 16
Information Theory and Coding
Midterm Exam

3 problems, 40 points
165 minutes
1 sheet (2 pages) of notes allowed.

Good Luck!

Please write your name on each sheet of your answers.

Please write the solution of each problem on a separate sheet.

Problem 1. (13 points) Suppose $\mathcal{U}=\{1, \ldots, K\}$ is an alphabet with K symbols. Let $S_{n_{1}, \ldots, n_{K}}$ denote the set of sequences (u_{1}, \ldots, u_{n}) of length $n=n_{1}+\cdots+n_{K}$ that contain exactly n_{i} occurrences of symbol i for each $i=1, \ldots, K$. Note that the size of $S_{n_{1}, \ldots, n_{K}}$ is given by the multinomial coefficient,

$$
\left|S_{n_{1}, \ldots, n_{K}}\right|=\binom{n}{n_{1}, \ldots, n_{K}}=\frac{n!}{n_{1}!\ldots n_{K}!} .
$$

Also note that the multinomial coefficient is also encountered when we express

$$
\left(x_{1}+\cdots+x_{K}\right)^{n}=\sum_{\substack{n_{1}, \ldots, n_{K}: \\ n_{1}+, n_{K}=n \\ n_{i} \geq 0}}\binom{n}{n_{1}, \ldots, n_{K}} x_{1}^{n_{1}} \ldots x_{K}^{n_{K}}
$$

(a) (2 pts) Show that for any non-negative x_{1}, \ldots, x_{K} that sum to 1 ,

$$
\binom{n}{n_{1}, \ldots, n_{K}} \leq x_{1}^{-n_{1}} \ldots x_{K}^{-n_{K}}
$$

(b) (2 pts) Show that

$$
\log \left|S_{n_{1}, \ldots, n_{K}}\right| \leq n h\left(p_{1}, \ldots, p_{K}\right)
$$

where $p_{i}=n_{i} / n$ and $h\left(p_{1}, \ldots, p_{K}\right)=-\sum_{i} p_{i} \log p_{i}$.
(c) (3 pts) Show that there is a prefix free code $\mathcal{C}_{n}: \mathcal{U}^{n}=\{0,1\}^{*}$ such that

$$
\operatorname{length}\left(\mathcal{C}_{n}\left(u_{1}, \ldots, u_{n}\right)\right)=(K-1)\lceil\log (1+n)\rceil+\left\lceil\log \left|S_{n_{1}, \ldots, n_{K}}\right|\right\rceil
$$

where n_{i} is the number of occurrences of i in $\left(u_{1}, \ldots, u_{n}\right)$.
(d) (3 pts) Suppose $\left(X_{1}, \ldots, X_{K}\right)$ are $[0,1]$ valued random variables such that $\sum_{i} X_{i}=1$ and $E\left[X_{i}\right]=\mu_{i}$. Show that $E\left[h\left(X_{1}, \ldots, X_{K}\right)\right] \leq h\left(\mu_{1}, \ldots, \mu_{K}\right)$.
[Hint: We know from class that $D\left(\left(X_{1}, \ldots, X_{K}\right) \|\left(\mu_{1}, \ldots, \mu_{K}\right)\right):=\sum_{i} X_{i} \log \left(X_{i} / \mu_{i}\right)$ is non-negative.]
(e) (3 pts) Suppose U_{1}, U_{2}, \ldots are i.i.d., show that for the code in (c),

$$
\frac{1}{n} E\left[\operatorname{length}\left(\mathcal{C}_{n}\left(U_{1}, \ldots, U_{n}\right)\right)\right] \leq H(U)+\frac{K+(K-1) \log (1+n)}{n} .
$$

Problem 2. (17 points) Suppose $\ldots, X_{-1}, X_{0}, X_{1}, X_{2}, \ldots$ is a stationary Markov process, and $U_{i}=f\left(X_{i}\right)$ where $f: \mathcal{X} \rightarrow \mathcal{U}$ is a deterministic function.

For $i \geq 1$ let $a_{i}=H\left(U_{i} \mid U_{i-1}, \ldots, U_{1}\right)$ and $b_{i}=H\left(U_{i} \mid U_{i-1}, \ldots, U_{1}, X_{0}\right)$.
(a) (2 pts) The process $\left\{U_{i}: i \in \mathbb{Z}\right\}$ is not necessarily Markov. Is it stationary?
(b) (2 pts) What is the value of $I\left(X_{0} ; U_{2}, \ldots, U_{i+1} \mid X_{1}\right)$?
(c) (3 pts) Show that

$$
b_{i}=H\left(U_{i+1} \mid U_{i}, \ldots, U_{2}, X_{1}, X_{0}\right)
$$

(d) (3 pts) Show that $b_{i+1} \geq b_{i}$.
(e) (3 pts) Let $d_{i}=a_{i}-b_{i}$. Show that d_{i} is non-negative and

$$
\sum_{i=1}^{n} d_{i}=I\left(X_{0} ; U_{1}, \ldots, U_{n}\right)
$$

(f) (2 pts) Show that $d_{i+1} \leq d_{i}$.
(g) (2 pts) Show that $d_{n} \leq(\log |\mathcal{X}|) / n$ and conclude that $\lim _{n \rightarrow \infty} b_{n}$ exists and is equal to the entropy rate of the process $\left\{U_{i}: i \in \mathbb{Z}\right\}$.

Problem 3. (10 points) Suppose U_{1}, U_{2}, \ldots is a source producing an i.i.d. sequence of letters, and \mathcal{D} is a valid and prefix free dictionary for it.

Suppose w_{0} is a word in \mathcal{D} and let the dictionary \mathcal{D}^{\prime} be obtained from the dictionary \mathcal{D} by replacing the word $w_{0} \in \mathcal{D}$ by its single letter extensions.

Let W denote the first word in the parsing of U_{1}, U_{2}, \ldots with the dictionary \mathcal{D}. Similarly, let W^{\prime} denote the first word in the parsing of U_{1}, U_{2}, \ldots with the dictionary \mathcal{D}^{\prime}. Let $p_{0}=\operatorname{Pr}\left(W=w_{0}\right)$.
(a) (2 pts) Express $E\left[\operatorname{length}\left(W^{\prime}\right)\right]-E[\operatorname{length}(W)]$ in terms of p_{0}.
(b) (3 pts) By explicit evaluation of $H(W)$ and $H\left(W^{\prime}\right)$, express $H\left(W^{\prime}\right)-H(W)$ in terms of p_{0} and $H(U)$.

For $k=1,2, \ldots$, let S_{k} be the statement that "for any valid and prefix-free dictionary with k interior nodes $H(W)=H(U) E[\operatorname{length}(W)]$."
(c) (2 pts) Show that the statement S_{1} is true.
(d) (3 pts) Using (a) and (b) show that S_{k} implies S_{k+1}, and conclude that for any valid and prefix-free dictionary $H(W)=H(U) E[\operatorname{length}(W)]$.

