ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 16 Midterm Exam

Information Theory and Coding Oct. 27, 2015

3 problems, 40 points 165 minutes 1 sheet (2 pages) of notes allowed.

Good Luck!

PLEASE WRITE YOUR NAME ON EACH SHEET OF YOUR ANSWERS.

PLEASE WRITE THE SOLUTION OF EACH PROBLEM ON A SEPARATE SHEET.

PROBLEM 1. (13 points) Suppose $\mathcal{U} = \{1, \ldots, K\}$ is an alphabet with K symbols. Let S_{n_1,\ldots,n_K} denote the set of sequences (u_1,\ldots,u_n) of length $n = n_1 + \cdots + n_K$ that contain exactly n_i occurrences of symbol *i* for each $i = 1, \ldots, K$. Note that the size of S_{n_1,\ldots,n_K} is given by the multinomial coefficient,

$$|S_{n_1,\dots,n_K}| = \binom{n}{n_1,\dots,n_K} = \frac{n!}{n_1!\dots n_K!}$$

Also note that the multinomial coefficient is also encountered when we express

$$(x_1 + \dots + x_K)^n = \sum_{\substack{n_1, \dots, n_K : \\ n_1 + \dots + n_K = n \\ n_i \ge 0}} \binom{n}{n_1, \dots, n_K} x_1^{n_1} \dots x_K^{n_K}.$$

(a) (2 pts) Show that for any non-negative x_1, \ldots, x_K that sum to 1,

$$\binom{n}{n_1,\ldots,n_K} \leq x_1^{-n_1}\ldots x_K^{-n_K}.$$

(b) (2 pts) Show that

$$\log |S_{n_1,\dots,n_K}| \le nh(p_1,\dots,p_K)$$

where $p_i = n_i/n$ and $h(p_1, \ldots, p_K) = -\sum_i p_i \log p_i$.

(c) (3 pts) Show that there is a prefix free code $C_n : U^n = \{0, 1\}^*$ such that

$$\operatorname{length}(\mathcal{C}_n(u_1,\ldots,u_n)) = (K-1)\lceil \log(1+n)\rceil + \lceil \log|S_{n_1,\ldots,n_K}|\rceil$$

where n_i is the number of occurrences of i in (u_1, \ldots, u_n) .

- (d) (3 pts) Suppose (X_1, \ldots, X_K) are [0, 1] valued random variables such that $\sum_i X_i = 1$ and $E[X_i] = \mu_i$. Show that $E[h(X_1, \ldots, X_K)] \leq h(\mu_1, \ldots, \mu_K)$. [*Hint:* We know from class that $D((X_1, \ldots, X_K) || (\mu_1, \ldots, \mu_K)) := \sum_i X_i \log(X_i/\mu_i)$ is non-negative.]
- (e) (3 pts) Suppose U_1, U_2, \ldots are i.i.d., show that for the code in (c),

$$\frac{1}{n}E[\operatorname{length}(\mathcal{C}_n(U_1,\ldots,U_n))] \le H(U) + \frac{K + (K-1)\log(1+n)}{n}$$

PROBLEM 2. (17 points) Suppose ..., $X_{-1}, X_0, X_1, X_2, \ldots$ is a stationary Markov process, and $U_i = f(X_i)$ where $f : \mathcal{X} \to \mathcal{U}$ is a deterministic function.

For $i \ge 1$ let $a_i = H(U_i | U_{i-1}, \dots, U_1)$ and $b_i = H(U_i | U_{i-1}, \dots, U_1, X_0)$.

- (a) (2 pts) The process $\{U_i : i \in \mathbb{Z}\}$ is not necessarily Markov. Is it stationary?
- (b) (2 pts) What is the value of $I(X_0; U_2, ..., U_{i+1}|X_1)$?
- (c) (3 pts) Show that

$$b_i = H(U_{i+1}|U_i, \dots, U_2, X_1, X_0)$$

- (d) (3 pts) Show that $b_{i+1} \ge b_i$.
- (e) (3 pts) Let $d_i = a_i b_i$. Show that d_i is non-negative and

$$\sum_{i=1}^{n} d_i = I(X_0; U_1, \dots, U_n).$$

- (f) (2 pts) Show that $d_{i+1} \leq d_i$.
- (g) (2 pts) Show that $d_n \leq (\log |\mathcal{X}|)/n$ and conclude that $\lim_{n\to\infty} b_n$ exists and is equal to the entropy rate of the process $\{U_i : i \in \mathbb{Z}\}$.

PROBLEM 3. (10 points) Suppose U_1, U_2, \ldots is a source producing an i.i.d. sequence of letters, and \mathcal{D} is a valid and prefix free dictionary for it.

Suppose w_0 is a word in \mathcal{D} and let the dictionary \mathcal{D}' be obtained from the dictionary \mathcal{D} by replacing the word $w_0 \in \mathcal{D}$ by its single letter extensions.

Let W denote the first word in the parsing of U_1, U_2, \ldots with the dictionary \mathcal{D} . Similarly, let W' denote the first word in the parsing of U_1, U_2, \ldots with the dictionary \mathcal{D}' . Let $p_0 = \Pr(W = w_0)$.

- (a) (2 pts) Express E[length(W')] E[length(W)] in terms of p_0 .
- (b) (3 pts) By explicit evaluation of H(W) and H(W'), express H(W') H(W) in terms of p_0 and H(U).

For $k = 1, 2, ..., \text{let } S_k$ be the statement that "for any valid and prefix-free dictionary with k interior nodes H(W) = H(U)E[length(W)]."

- (c) (2 pts) Show that the statement S_1 is true.
- (d) (3 pts) Using (a) and (b) show that S_k implies S_{k+1} , and conclude that for any valid and prefix-free dictionary H(W) = H(U)E[length(W)].