ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 17
Information Theory and Coding
Solutions to Midterm
Oct. 27, 2015

Problem 1.

(a) From the multinomial formula, for any non-negative x_{1}, \ldots, x_{K} with $x_{1}+\cdots+x_{K}=1$ we have

$$
1=\left(x_{1}+\cdots+x_{K}\right)^{n}=\sum_{\substack{n_{1}, \ldots, n_{K}: \\ n_{1}+\ldots, n_{K}=n \\ n_{i} \geq 0}}\binom{n}{n_{1}, \ldots, n_{K}} x_{1}^{n_{1}} \ldots x_{K}^{n_{K}} \geq\binom{ n}{n_{1}, \ldots, n_{K}} x_{1}^{n_{1}} \ldots x_{K}^{n_{K}} .
$$

(b) From (a), for any non-negative x_{1}, \ldots, x_{n} that sum to 1 ,

$$
\log \left|S_{n_{1}, \ldots, n_{K}}\right|=\log \binom{n}{n_{1}, \ldots, n_{K}} \leq n \sum_{i=1}^{K} \frac{n_{i}}{n} \log \frac{1}{x_{i}}
$$

Choose now $x_{i}=n_{i} / n$ to obtain the desired result.
(c) Consider the following code: given $\left(u_{1}, \ldots, u_{n}\right)$, compute n_{1}, \ldots, n_{K}. Describe each of the $n_{i} \in\{0,1, \ldots n\}, i=1, \ldots K-1$, using $\lceil\log (1+n)\rceil$ bits in the usual binary encoding of integers (no need to describe n_{K} since the n_{i} 's sum to n). At this moment the decoder will know that the sequence u_{1}, \ldots, u_{n} belongs to $S_{n_{1}, \ldots, n_{K}}$, and thus with further $\left\lceil\log \left|S_{n_{1}, \ldots, n_{K}}\right|\right\rceil$ bits we can describe which element of $S_{n_{1}, \ldots, n_{K}}$ we were given.
An alternative solution consists of verifying that the given codeword lengths satisfy the Kraft's inequality: let $\ell_{0}:=(K-1)\lceil\log (n+1)\rceil$ and $\ell_{1}\left(u_{1}, \ldots, u_{n}\right):=$ $\left\lceil\log S_{n_{1}, \ldots, n_{K}}\right\rceil$ (with n_{1}, \ldots, n_{K} as before) so that the codeword lengths are

$$
\ell\left(u_{1}, \ldots, u_{n}\right)=\ell_{0}+\ell_{1}\left(u_{1}, \ldots, u_{n}\right) .
$$

Then,

$$
\begin{aligned}
\sum_{u_{1}, \ldots, u_{n}} 2^{-\ell\left(u_{1}, \ldots, u_{n}\right)} & =\sum_{\substack{n_{1}, \ldots, n_{K}: \\
n_{1}+\ldots+n_{K}=n \\
n_{i} \geq 0}} \sum_{\substack{u_{1}, \ldots, u_{n} \in S_{n_{1}}, \ldots, n_{K}}} 2^{-\ell_{0}-\ell_{1}\left(u_{1}, \ldots u_{n}\right)} \\
& \leq \sum_{\substack{n_{1}, \ldots, n_{K}: \\
n_{1}+\ldots+n_{K}=n \\
n_{i} \geq 0}} 2^{-\ell_{0}} \sum_{\substack{u_{1}, \ldots, u_{n} \in S_{n_{1}}, \ldots, n_{K}}} 1 /\left|S_{n_{1}, \ldots, n_{K}}\right|=2^{-\ell_{0}} \sum_{\substack{n_{1}, \ldots, n_{K}: \\
n_{1}+\ldots+n_{K}: \\
n_{i} \geq 0}} 1 .
\end{aligned}
$$

The last sum contains at most $(n+1)^{K-1}$ terms: for each of n_{1}, \ldots, n_{K-1} there are at most $(n+1)$ choices and once $\left(n_{1}, \ldots, n_{K-1}\right)$ is chosen there is but a single choice for n_{K}. As $2^{\ell_{0}} \geq(n+1)^{K-1}$ we see that the Kraft's inequality is satisfied and a prefix-free code with the specified lengths exists.
(d) We have

$$
\begin{aligned}
& 0 \leq E\left[D\left(\left(X_{1}, \ldots, X_{K}\right) \|\left(\mu_{1}, \ldots, \mu_{K}\right)\right)\right]=\sum_{i} E\left[X_{i} \log \left(X_{i} / \mu_{i}\right)\right]= \\
& -E\left[h\left(X_{1}, \ldots, X_{n}\right)\right]+\sum_{i} E\left[X_{i}\right] \log \left(1 / \mu_{i}\right)=-E\left[h\left(X_{1}, \ldots, X_{n}\right)\right]+h\left(\mu_{1}, \ldots, \mu_{n}\right) .
\end{aligned}
$$

(e) Let N_{i} be the number of occurrences of the symbol i in the sequence U_{1}, \ldots, U_{n}. By (c) and (b)

$$
\begin{aligned}
\operatorname{length}\left(\mathcal{C}_{n}\left(U_{1}, \ldots, U_{n}\right)\right) & \leq(K-1)\lceil\log (1+n)\rceil+\left\lceil n h\left(N_{1} / n, \ldots, N_{K} / n\right)\right\rceil \\
& \leq K+(K-1) \log (1+n)+n h\left(N_{1} / n, \ldots, N_{K} / n\right)
\end{aligned}
$$

Note that $E\left[N_{i}\right]=n p_{i}$ where $p_{i}=\operatorname{Pr}(U=i)$, and thus by (d) we have

$$
\frac{1}{n} E\left[\operatorname{length}\left(\mathcal{C}_{n}\left(U_{1}, \ldots, U_{n}\right)\right)\right] \leq \frac{K+(K-1) \log (1+n)}{n}+h\left(p_{1}, \ldots, p_{K}\right)
$$

Noting that $H(U)=h\left(p_{1}, \ldots, p_{K}\right)$, we demonstrate what was asked.
Observe that in constructing the code \mathcal{C}_{n} we did not use any knowledge of the statistics of U, but for i.i.d. sources, we see that for large n the code performs as well a code that is designed with the knowledge of the statistics. The 'universality penalty' we pay is $O((K \log n) / n)$.

Problem 2.

(a) Since $\left\{X_{i}: i \in \mathbb{Z}\right\}$ is stationary, $\left(U_{1}, \ldots, U_{n}\right)=\left(f\left(X_{1}\right), \ldots, f\left(X_{n}\right)\right)$ has the same statistics as $\left(f\left(X_{k+1}\right), \ldots, f\left(X_{k+n}\right)\right)=\left(U_{k+1}, \ldots, U_{k+n}\right)$. Thus the process $\left\{U_{i}: i \in\right.$ $\mathbb{Z}\}$ is stationary. Consequently, the sequence a_{i} is non-increasing, and $\lim _{i} a_{i}$ exists and is equal to the entropy rate of the process $\left\{U_{i}: i \in \mathbb{Z}\right\}$.
(b) Since $\left\{X_{i}: i \in \mathbb{Z}\right\}$ is Markov, conditional on X_{1} the sequence $\left(X_{2}, \ldots, X_{i+1}\right)$ is independent of X_{0}. Since $\left(U_{2}, \ldots, U_{i+1}\right)$ is a function of $\left(X_{2}, \ldots, X_{i+1}\right)$ we thus see that conditional on X_{1}, the sequence $\left(U_{2}, \ldots, U_{i+1}\right)$ is also independent of X_{0}. Consequently, $I\left(X_{0} ; U_{2}, \ldots, U_{i+1} \mid X_{1}\right)=0$.
(c) By stationarity $b_{i}=H\left(U_{i+1} \mid U_{i}, \ldots, U_{2}, X_{1}\right)$. Thus,

$$
b_{i}-H\left(U_{i+1} \mid U_{i}, \ldots, U_{2}, X_{1}, X_{0}\right)=I\left(X_{0} ; U_{i+1} \mid U_{i}, \ldots, U_{2}, X_{1}\right)
$$

But from (b) and the chain rule we have

$$
0=I\left(X_{0} ; U_{2}, \ldots, U_{i+1} \mid X_{1}\right)=\sum_{j=2}^{i+1} I\left(X_{0} ; U_{j} \mid U_{2}, \ldots, U_{j-1}, X_{1}\right)
$$

and conclude that each term in the sum above, in particular $I\left(X_{0} ; U_{i+1} \mid U_{i}, \ldots, U_{2}, X_{1}\right)$, equals zero. We thus find that $b_{i}=H\left(U_{i+1} \mid U_{i}, \ldots, U_{2}, X_{1}, X_{0}\right)$ as claimed.
(d) From (c) and the fact that U_{1} is a function of X_{1}

$$
\begin{aligned}
b_{i}=H\left(U_{i+1} \mid U_{i}, \ldots, U_{2}, X_{1}, X_{0}\right)=H\left(U_{i+1} \mid U_{i}, \ldots\right. & \left., U_{1}, X_{1}, X_{0}\right) \\
& \leq H\left(U_{i+1} \mid U_{i}, \ldots, U_{1}, X_{0}\right)=b_{i+1}
\end{aligned}
$$

(e) Observe that $d_{i}=I\left(X_{0} ; U_{i} \mid U_{1}, \ldots, U_{i-1}\right)$. So $d_{i} \geq 0$, and by the chain rule $\sum_{i=1}^{n} d_{i}=$ $I\left(X_{0} ; U_{1}, \ldots, U_{n}\right)$.
(f) Since $a_{i} \geq a_{i+1}$ (see comments in (a)) and $b_{i} \leq b_{i+1}$ (by (d)), $d_{i+1}=a_{i+1}-b_{i+1} \leq$ $a_{i}-b_{i}=d_{i}$.
(g) From (f) and (e)

$$
n d_{n} \leq d_{1}+\cdots+d_{n}=I\left(X_{0} ; U_{1}, \ldots, U_{n}\right) \leq H\left(X_{0}\right) \leq \log |\mathcal{X}| .
$$

Thus $\lim _{n \rightarrow \infty} d_{n}=0$. Consequently, $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} a_{n}$.
A process $\left\{U_{i}: i \in \mathbb{Z}\right\}$ as in this problem is called a 'hidden Markov process.' Observe that for a stationary process the sequence a_{n} converges to the entropy rate H from above, but in general there is no way how large one should take n to get a good estimate of H. We now see that for hidden Markov processes we have another sequence b_{n} that converges to H from below, and taking $n=\log |\mathcal{X}| / \epsilon$ guarantees that $b_{n} \leq H \leq a_{n}$ with $a_{n}-b_{n} \leq \epsilon$.

Problem 3.

(a) Note that when $W \neq w_{0}$, we have $W^{\prime}=W$, and when $W=w_{0}$ we have $W^{\prime}=w_{0} u$ for some $u \in \mathcal{U}$. Thus

$$
\operatorname{length}\left(W^{\prime}\right)-\operatorname{length}(W)=\mathbf{1}\left(W=w_{0}\right)
$$

Thus $E\left[\operatorname{length}\left(W^{\prime}\right)\right]-E[\operatorname{length}(W)]$ equals $\operatorname{Pr}\left(W=w_{0}\right)=p_{0}$.
(b) We have

$$
H\left(W^{\prime}\right)-H(W)=\sum_{u \in \mathcal{U}} p\left(w_{0} u\right) \log \frac{1}{p\left(w_{0} u\right)}-p_{0} \log \frac{1}{p_{0}}
$$

The first sum equals

$$
\sum_{u} p_{0} p(u) \log \frac{1}{p_{0} p(u)}=p_{0}\left[\log \frac{1}{p_{0}}+H(U)\right],
$$

consequently $H\left(W^{\prime}\right)-H(W)=p_{0} H(U)$.
(c) The only dictionary with $k=1$ interior node is $\mathcal{D}=\mathcal{U}$. For this dictionary $\operatorname{length}(W)=1$ and $H(W)=H(U)$ so S_{1} is true.
(d) Any dictionary \mathcal{D}^{\prime} with $k+1$ interior nodes is obtained from a dictionary \mathcal{D} with k interior nodes by the construction described in the problem. Consequently, from (b), hypothesis S_{k}, and (a)

$$
H\left(W^{\prime}\right)=H(W)+p_{0} H(U)=E[\text { length }(W)] H(U)+p_{0} H(U)=E\left[\text { length }\left(W^{\prime}\right)\right] H(U)
$$

proving S_{k+1}. The statement that S_{k} is true for all k then follows by induction.
In class we had proved this relationship between $H(W), H(U)$ and $E[$ length $(W)]$ by a more complicated proof than the one described in this problem.

