ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 17	Information Theory and Coding
Solutions to Midterm	Oct. 27, 2015

PROBLEM 1.

(a) From the multinomial formula, for any non-negative x_1, \ldots, x_K with $x_1 + \cdots + x_K = 1$ we have

$$1 = (x_1 + \dots + x_K)^n = \sum_{\substack{n_1, \dots, n_K : \\ n_1 + \dots + n_K = n \\ n_i \ge 0}} \binom{n}{n_1, \dots, n_K} x_1^{n_1} \dots x_K^{n_K} \ge \binom{n}{n_1, \dots, n_K} x_1^{n_1} \dots x_K^{n_K}.$$

(b) From (a), for any non-negative x_1, \ldots, x_n that sum to 1,

$$\log |S_{n_1,\dots,n_K}| = \log \binom{n}{n_1,\dots,n_K} \le n \sum_{i=1}^K \frac{n_i}{n} \log \frac{1}{x_i}.$$

Choose now $x_i = n_i/n$ to obtain the desired result.

(c) Consider the following code: given (u_1, \ldots, u_n) , compute n_1, \ldots, n_K . Describe each of the $n_i \in \{0, 1, \ldots, n\}$, $i = 1, \ldots, K - 1$, using $\lceil \log(1 + n) \rceil$ bits in the usual binary encoding of integers (no need to describe n_K since the n_i 's sum to n). At this moment the decoder will know that the sequence u_1, \ldots, u_n belongs to S_{n_1, \ldots, n_K} , and thus with further $\lceil \log |S_{n_1, \ldots, n_K}| \rceil$ bits we can describe which element of S_{n_1, \ldots, n_K} we were given. An alternative solution consists of verifying that the given codeword lengths satisfy the Kraft's inequality: let $\ell_0 := (K - 1) \lceil \log(n + 1) \rceil$ and $\ell_1(u_1, \ldots, u_n) := \lceil \log S_{n_1, \ldots, n_K} \rceil$ (with n_1, \ldots, n_K as before) so that the codeword lengths are

$$\ell(u_1,\ldots,u_n) = \ell_0 + \ell_1(u_1,\ldots,u_n).$$

Then,

$$\sum_{u_1,\dots,u_n} 2^{-\ell(u_1,\dots,u_n)} = \sum_{\substack{n_1,\dots,n_K:\\n_1+\dots+n_K=n\\n_i\ge 0}} \sum_{u_1,\dots,u_n\in S_{n_1,\dots,n_K}} 2^{-\ell_0-\ell_1(u_1,\dots,u_n)}$$

$$\leq \sum_{\substack{n_1,\dots,n_K:\\n_1+\dots+n_K=n\\n_i\ge 0}} 2^{-\ell_0} \sum_{\substack{u_1,\dots,u_n\in S_{n_1,\dots,n_K}\\u_1,\dots,u_n\in S_{n_1,\dots,n_K}}} 1/|S_{n_1,\dots,n_K}| = 2^{-\ell_0} \sum_{\substack{n_1,\dots,n_K:\\n_1+\dots+n_K=n\\n_i\ge 0}} 1.$$

The last sum contains at most $(n+1)^{K-1}$ terms: for each of n_1, \ldots, n_{K-1} there are at most (n+1) choices and once (n_1, \ldots, n_{K-1}) is chosen there is but a single choice for n_K . As $2^{\ell_0} \ge (n+1)^{K-1}$ we see that the Kraft's inequality is satisfied and a prefix-free code with the specified lengths exists.

(d) We have

$$0 \le E[D((X_1, \dots, X_K) \| (\mu_1, \dots, \mu_K))] = \sum_i E[X_i \log(X_i / \mu_i)] = -E[h(X_1, \dots, X_n)] + \sum_i E[X_i] \log(1/\mu_i) = -E[h(X_1, \dots, X_n)] + h(\mu_1, \dots, \mu_n).$$

(e) Let N_i be the number of occurrences of the symbol *i* in the sequence U_1, \ldots, U_n . By (c) and (b)

$$\operatorname{length}(\mathcal{C}_n(U_1,\ldots,U_n)) \le (K-1) \lceil \log(1+n) \rceil + \lceil nh(N_1/n,\ldots,N_K/n) \rceil$$
$$\le K + (K-1) \log(1+n) + nh(N_1/n,\ldots,N_K/n)$$

Note that $E[N_i] = np_i$ where $p_i = \Pr(U = i)$, and thus by (d) we have

$$\frac{1}{n}E[\operatorname{length}(\mathcal{C}_n(U_1,\ldots,U_n))] \le \frac{K + (K-1)\log(1+n)}{n} + h(p_1,\ldots,p_K).$$

Noting that $H(U) = h(p_1, \ldots, p_K)$, we demonstrate what was asked.

Observe that in constructing the code C_n we did not use any knowledge of the statistics of U, but for i.i.d. sources, we see that for large n the code performs as well a code that is designed with the knowledge of the statistics. The 'universality penalty' we pay is $O((K \log n)/n)$. Problem 2.

- (a) Since $\{X_i : i \in \mathbb{Z}\}$ is stationary, $(U_1, \ldots, U_n) = (f(X_1), \ldots, f(X_n))$ has the same statistics as $(f(X_{k+1}), \ldots, f(X_{k+n})) = (U_{k+1}, \ldots, U_{k+n})$. Thus the process $\{U_i : i \in \mathbb{Z}\}$ is stationary. Consequently, the sequence a_i is non-increasing, and $\lim_i a_i$ exists and is equal to the entropy rate of the process $\{U_i : i \in \mathbb{Z}\}$.
- (b) Since $\{X_i : i \in \mathbb{Z}\}$ is Markov, conditional on X_1 the sequence (X_2, \ldots, X_{i+1}) is independent of X_0 . Since (U_2, \ldots, U_{i+1}) is a function of (X_2, \ldots, X_{i+1}) we thus see that conditional on X_1 , the sequence (U_2, \ldots, U_{i+1}) is also independent of X_0 . Consequently, $I(X_0; U_2, \ldots, U_{i+1}|X_1) = 0$.
- (c) By stationarity $b_i = H(U_{i+1}|U_i, \dots, U_2, X_1)$. Thus,

$$b_i - H(U_{i+1}|U_i, \dots, U_2, X_1, X_0) = I(X_0; U_{i+1}|U_i, \dots, U_2, X_1).$$

But from (b) and the chain rule we have

$$0 = I(X_0; U_2, \dots, U_{i+1} | X_1) = \sum_{j=2}^{i+1} I(X_0; U_j | U_2, \dots, U_{j-1}, X_1)$$

and conclude that each term in the sum above, in particular $I(X_0; U_{i+1}|U_i, \ldots, U_2, X_1)$, equals zero. We thus find that $b_i = H(U_{i+1}|U_i, \ldots, U_2, X_1, X_0)$ as claimed.

(d) From (c) and the fact that U_1 is a function of X_1

$$b_{i} = H(U_{i+1}|U_{i}, \dots, U_{2}, X_{1}, X_{0}) = H(U_{i+1}|U_{i}, \dots, U_{1}, X_{1}, X_{0})$$

$$\leq H(U_{i+1}|U_{i}, \dots, U_{1}, X_{0}) = b_{i+1}.$$

- (e) Observe that $d_i = I(X_0; U_i | U_1, \dots, U_{i-1})$. So $d_i \ge 0$, and by the chain rule $\sum_{i=1}^n d_i = I(X_0; U_1, \dots, U_n)$.
- (f) Since $a_i \ge a_{i+1}$ (see comments in (a)) and $b_i \le b_{i+1}$ (by (d)), $d_{i+1} = a_{i+1} b_{i+1} \le a_i b_i = d_i$.
- (g) From (f) and (e) (e)

$$nd_n \le d_1 + \dots + d_n = I(X_0; U_1, \dots, U_n) \le H(X_0) \le \log |\mathcal{X}|.$$

Thus $\lim_{n\to\infty} d_n = 0$. Consequently, $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n$.

A process $\{U_i : i \in \mathbb{Z}\}\$ as in this problem is called a 'hidden Markov process.' Observe that for a stationary process the sequence a_n converges to the entropy rate H from above, but in general there is no way how large one should take n to get a good estimate of H. We now see that for hidden Markov processes we have another sequence b_n that converges to H from below, and taking $n = \log |\mathcal{X}|/\epsilon$ guarantees that $b_n \leq H \leq a_n$ with $a_n - b_n \leq \epsilon$. Problem 3.

(a) Note that when $W \neq w_0$, we have W' = W, and when $W = w_0$ we have $W' = w_0 u$ for some $u \in \mathcal{U}$. Thus

 $length(W') - length(W) = \mathbf{1}(W = w_0).$

Thus $E[\operatorname{length}(W')] - E[\operatorname{length}(W)]$ equals $\Pr(W = w_0) = p_0$.

(b) We have

$$H(W') - H(W) = \sum_{u \in \mathcal{U}} p(w_0 u) \log \frac{1}{p(w_0 u)} - p_0 \log \frac{1}{p_0}$$

The first sum equals

$$\sum_{u} p_0 p(u) \log \frac{1}{p_0 p(u)} = p_0 \Big[\log \frac{1}{p_0} + H(U) \Big],$$

consequently $H(W') - H(W) = p_0 H(U)$.

- (c) The only dictionary with k = 1 interior node is $\mathcal{D} = \mathcal{U}$. For this dictionary length(W) = 1 and H(W) = H(U) so S_1 is true.
- (d) Any dictionary \mathcal{D}' with k + 1 interior nodes is obtained from a dictionary \mathcal{D} with k interior nodes by the construction described in the problem. Consequently, from (b), hypothesis S_k , and (a)

$$H(W') = H(W) + p_0 H(U) = E[\text{length}(W)]H(U) + p_0 H(U) = E[\text{length}(W')]H(U)$$

proving S_{k+1} . The statement that S_k is true for all k then follows by induction.

In class we had proved this relationship between H(W), H(U) and E[length(W)] by a more complicated proof than the one described in this problem.