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Problem 1.

(a) From the multinomial formula, for any non-negative x1, . . . , xK with x1+ · · ·+xK = 1
we have

1 = (x1+· · ·+xK)n =
∑

n1,...,nK :
n1+···+nK=n

ni≥0

(
n

n1, . . . , nK

)
xn1
1 . . . xnK

K ≥
(

n

n1, . . . , nK

)
xn1
1 . . . xnK

K .

(b) From (a), for any non-negative x1, . . . , xn that sum to 1,

log |Sn1,...,nK
| = log

(
n

n1, . . . , nK

)
≤ n

K∑
i=1

ni

n
log

1

xi
.

Choose now xi = ni/n to obtain the desired result.

(c) Consider the following code: given (u1, . . . , un), compute n1, . . . , nK . Describe each
of the ni ∈ {0, 1, . . . n}, i = 1, . . . K − 1, using dlog(1 + n)e bits in the usual binary
encoding of integers (no need to describe nK since the ni’s sum to n). At this moment
the decoder will know that the sequence u1, . . . , un belongs to Sn1,...,nK

, and thus with
further dlog |Sn1,...,nK

|e bits we can describe which element of Sn1,...,nK
we were given.

An alternative solution consists of verifying that the given codeword lengths sat-
isfy the Kraft’s inequality: let `0 := (K − 1)dlog(n + 1)e and `1(u1, . . . , un) :=
dlogSn1,...,nK

e (with n1, . . . , nK as before) so that the codeword lengths are

`(u1, . . . , un) = `0 + `1(u1, . . . , un).

Then,∑
u1,...,un

2−`(u1,...,un) =
∑

n1,...,nK :
n1+···+nK=n

ni≥0

∑
u1,...,un∈Sn1,...,nK

2−`0−`1(u1,...un)

≤
∑

n1,...,nK :
n1+···+nK=n

ni≥0

2−`0
∑

u1,...,un∈Sn1,...,nK

1/|Sn1,...,nK
| = 2−`0

∑
n1,...,nK :

n1+···+nK=n
ni≥0

1.

The last sum contains at most (n + 1)K−1 terms: for each of n1, . . . , nK−1 there are
at most (n+ 1) choices and once (n1, . . . , nK−1) is chosen there is but a single choice
for nK . As 2`0 ≥ (n + 1)K−1 we see that the Kraft’s inequality is satisfied and a
prefix-free code with the specified lengths exists.

(d) We have

0 ≤ E[D((X1, . . . , XK)‖(µ1, . . . , µK))] =
∑
i

E[Xi log(Xi/µi)] =

−E[h(X1, . . . , Xn)] +
∑
i

E[Xi] log(1/µi) = −E[h(X1, . . . , Xn)] + h(µ1, . . . , µn).



(e) Let Ni be the number of occurrences of the symbol i in the sequence U1, . . . , Un. By
(c) and (b)

length(Cn(U1, . . . , Un)) ≤ (K − 1)dlog(1 + n)e+ dnh(N1/n, . . . , NK/n)e
≤ K + (K − 1) log(1 + n) + nh(N1/n, . . . , NK/n)

Note that E[Ni] = npi where pi = Pr(U = i), and thus by (d) we have

1

n
E[length(Cn(U1, . . . , Un))] ≤ K + (K − 1) log(1 + n)

n
+ h(p1, . . . , pK).

Noting that H(U) = h(p1, . . . , pK), we demonstrate what was asked.

Observe that in constructing the code Cn we did not use any knowledge of the statistics
of U , but for i.i.d. sources, we see that for large n the code performs as well a code
that is designed with the knowledge of the statistics. The ‘universality penalty’ we
pay is O((K log n)/n).
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Problem 2.

(a) Since {Xi : i ∈ Z} is stationary, (U1, . . . , Un) = (f(X1), . . . , f(Xn)) has the same
statistics as (f(Xk+1), . . . , f(Xk+n)) = (Uk+1, . . . , Uk+n). Thus the process {Ui : i ∈
Z} is stationary. Consequently, the sequence ai is non-increasing, and limi ai exists
and is equal to the entropy rate of the process {Ui : i ∈ Z}.

(b) Since {Xi : i ∈ Z} is Markov, conditional on X1 the sequence (X2, . . . , Xi+1) is in-
dependent of X0. Since (U2, . . . , Ui+1) is a function of (X2, . . . , Xi+1) we thus see
that conditional on X1, the sequence (U2, . . . , Ui+1) is also independent of X0. Con-
sequently, I(X0;U2, . . . , Ui+1|X1) = 0.

(c) By stationarity bi = H(Ui+1|Ui, . . . , U2, X1). Thus,

bi −H(Ui+1|Ui, . . . , U2, X1, X0) = I(X0;Ui+1|Ui, . . . , U2, X1).

But from (b) and the chain rule we have

0 = I(X0;U2, . . . , Ui+1|X1) =
i+1∑
j=2

I(X0;Uj|U2, . . . , Uj−1, X1)

and conclude that each term in the sum above, in particular I(X0;Ui+1|Ui, . . . , U2, X1),
equals zero. We thus find that bi = H(Ui+1|Ui, . . . , U2, X1, X0) as claimed.

(d) From (c) and the fact that U1 is a function of X1

bi = H(Ui+1|Ui, . . . , U2, X1, X0) = H(Ui+1|Ui, . . . , U1, X1, X0)

≤ H(Ui+1|Ui, . . . , U1, X0) = bi+1.

(e) Observe that di = I(X0;Ui|U1, . . . , Ui−1). So di ≥ 0, and by the chain rule
∑n

i=1 di =
I(X0;U1, . . . , Un).

(f) Since ai ≥ ai+1 (see comments in (a)) and bi ≤ bi+1 (by (d)), di+1 = ai+1 − bi+1 ≤
ai − bi = di.

(g) From (f) and (e)

ndn ≤ d1 + · · ·+ dn = I(X0;U1, . . . , Un) ≤ H(X0) ≤ log |X |.

Thus limn→∞ dn = 0. Consequently, limn→∞ bn = limn→∞ an.

A process {Ui : i ∈ Z} as in this problem is called a ‘hidden Markov process.’
Observe that for a stationary process the sequence an converges to the entropy rate
H from above, but in general there is no way how large one should take n to get a
good estimate of H. We now see that for hidden Markov processes we have another
sequence bn that converges to H from below, and taking n = log |X |/ε guarantees
that bn ≤ H ≤ an with an − bn ≤ ε.
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Problem 3.

(a) Note that when W 6= w0, we have W ′ = W , and when W = w0 we have W ′ = w0u
for some u ∈ U . Thus

length(W ′)− length(W ) = 1(W = w0).

Thus E[length(W ′)]− E[length(W )] equals Pr(W = w0) = p0.

(b) We have

H(W ′)−H(W ) =
∑
u∈U

p(w0u) log
1

p(w0u)
− p0 log

1

p0

The first sum equals∑
u

p0p(u) log
1

p0p(u)
= p0

[
log

1

p0
+H(U)

]
,

consequently H(W ′)−H(W ) = p0H(U).

(c) The only dictionary with k = 1 interior node is D = U . For this dictionary
length(W ) = 1 and H(W ) = H(U) so S1 is true.

(d) Any dictionary D′ with k + 1 interior nodes is obtained from a dictionary D with k
interior nodes by the construction described in the problem. Consequently, from (b),
hypothesis Sk, and (a)

H(W ′) = H(W )+p0H(U) = E[length(W )]H(U)+p0H(U) = E[length(W ′)]H(U)

proving Sk+1. The statement that Sk is true for all k then follows by induction.

In class we had proved this relationship between H(W ), H(U) and E[length(W )] by
a more complicated proof than the one described in this problem.
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