PROBLEM 1.

(a) From the multinomial formula, for any non-negative \(x_1, \ldots, x_K \) with \(x_1 + \cdots + x_K = 1 \) we have

\[
1 = (x_1 + \cdots + x_K)^n = \sum_{n_1, \ldots, n_K: \sum n_i = n} \binom{n}{n_1, \ldots, n_K} x_1^{n_1} \cdots x_K^{n_K} \geq \binom{n}{n_1, \ldots, n_K} x_1^{n_1} \cdots x_K^{n_K}.
\]

(b) From (a), for any non-negative \(x_1, \ldots, x_n \) that sum to 1,

\[
\log |S_{n_1, \ldots, n_K}| = \log \left(\binom{n}{n_1, \ldots, n_K} \right) \leq n \sum_{i=1}^K n_i \log \frac{1}{x_i}.
\]

Choose now \(x_i = n_i/n \) to obtain the desired result.

(c) Consider the following code: given \((u_1, \ldots, u_n)\), compute \(n_1, \ldots, n_K \). Describe each of the \(n_i \in \{0, 1, \ldots, n\}, i = 1, \ldots, K - 1\), using \(\lceil \log(1 + n) \rceil \) bits in the usual binary encoding of integers (no need to describe \(n_K \) since the \(n_i\)'s sum to \(n\)). At this moment the decoder will know that the sequence \(u_1, \ldots, u_n\) belongs to \(S_{n_1, \ldots, n_K}\), and thus with further \(\lceil \log |S_{n_1, \ldots, n_K}| \rceil\) bits we can describe which element of \(S_{n_1, \ldots, n_K}\) we were given.

An alternative solution consists of verifying that the given codeword lengths satisfy the Kraft’s inequality: let \(\ell_0 := (K - 1)[\log(n + 1)]\) and \(\ell_1(u_1, \ldots, u_n) := [\log |S_{n_1, \ldots, n_K}|] \) (with \(n_1, \ldots, n_K\) as before) so that the codeword lengths are

\[
\ell(u_1, \ldots, u_n) = \ell_0 + \ell_1(u_1, \ldots, u_n).
\]

Then,

\[
\sum_{u_1, \ldots, u_n} 2^{-\ell(u_1, \ldots, u_n)} = \sum_{n_1, \ldots, n_K: \sum n_i = n} \sum_{S_{n_1, \ldots, n_K}} 2^{-\ell_0 - \ell_1(u_1, \ldots, u_n)} \leq \sum_{n_1, \ldots, n_K: \sum n_i = n} 2^{-\ell_0} \sum_{S_{n_1, \ldots, n_K}} 1/|S_{n_1, \ldots, n_K}| = 2^{-\ell_0} \sum_{n_1, \ldots, n_K: \sum n_i = n} 1.
\]

The last sum contains at most \((n + 1)^{K - 1}\) terms: for each of \(n_1, \ldots, n_{K-1}\) there are at most \((n + 1)\) choices and once \((n_1, \ldots, n_{K-1})\) is chosen there is but a single choice for \(n_K\). As \(2^{-\ell_0} \geq (n + 1)^{K-1}\) we see that the Kraft’s inequality is satisfied and a prefix-free code with the specified lengths exists.

(d) We have

\[
0 \leq E[D((X_1, \ldots, X_K) || (\mu_1, \ldots, \mu_K))] = \sum_i E[X_i \log(X_i/\mu_i)] = -E[h(X_1, \ldots, X_n)] + \sum_i E[X_i] \log(1/\mu_i) = -E[h(X_1, \ldots, X_n)] + h(\mu_1, \ldots, \mu_n).
\]
(e) Let \(N_i \) be the number of occurrences of the symbol \(i \) in the sequence \(U_1, \ldots, U_n \). By (c) and (b)

\[
\text{length}(\mathcal{C}_n(U_1, \ldots, U_n)) \leq (K - 1)[\log(1 + n)] + [nh(N_1/n, \ldots, N_K/n)] \\
\leq K + (K - 1)\log(1 + n) + nh(N_1/n, \ldots, N_K/n)
\]

Note that \(E[N_i] = np_i \) where \(p_i = \Pr(U = i) \), and thus by (d) we have

\[
\frac{1}{n}E[\text{length}(\mathcal{C}_n(U_1, \ldots, U_n))] \leq \frac{K + (K - 1)\log(1 + n)}{n} + h(p_1, \ldots, p_K)
\]

Noting that \(H(U) = h(p_1, \ldots, p_K) \), we demonstrate what was asked.

Observe that in constructing the code \(\mathcal{C}_n \) we did not use any knowledge of the statistics of \(U \), but for i.i.d. sources, we see that for large \(n \) the code performs as well a code that is designed with the knowledge of the statistics. The ‘universality penalty’ we pay is \(O((K \log n)/n) \).
Problem 2.

(a) Since \(\{X_i : i \in \mathbb{Z}\} \) is stationary, \((U_1, \ldots, U_n) = (f(X_1), \ldots, f(X_n))\) has the same statistics as \((f(X_{k+1}), \ldots, f(X_{k+n})) = (U_{k+1}, \ldots, U_{k+n})\). Thus the process \(\{U_i : i \in \mathbb{Z}\}\) is stationary. Consequently, the sequence \(a_i\) is non-increasing, and \(\lim a_i\) exists and is equal to the entropy rate of the process \(\{U_i : i \in \mathbb{Z}\}\).

(b) Since \(\{X_i : i \in \mathbb{Z}\}\) is Markov, conditional on \(X_1\) the sequence \((X_2, \ldots, X_{i+1})\) is independent of \(X_0\). Since \((U_2, \ldots, U_{i+1})\) is a function of \((X_2, \ldots, X_{i+1})\) we thus see that conditional on \(X_1\), the sequence \((U_2, \ldots, U_{i+1})\) is also independent of \(X_0\). Consequently, \(I(X_0; U_2, \ldots, U_{i+1} \mid X_1) = 0\).

(c) By stationarity \(b_i = H(U_{i+1} \mid U_i, \ldots, U_2, X_1)\). Thus,
\[
0 = I(X_0; U_2, \ldots, U_{i+1} \mid X_1) = \sum_{j=2}^{i+1} I(X_0; U_j \mid U_2, \ldots, U_{j-1}, X_1)
\]
and conclude that each term in the sum above, in particular \(I(X_0; U_{i+1} \mid U_i, \ldots, U_2, X_1)\), equals zero. We thus find that \(b_i = H(U_{i+1} \mid U_i, \ldots, U_2, X_1, X_0)\) as claimed.

(d) From (c) and the fact that \(U_1\) is a function of \(X_1\)
\[
b_i = H(U_{i+1} \mid U_i, \ldots, U_2, X_1, X_0) = H(U_{i+1} \mid U_i, \ldots, U_1, X_1, X_0) \leq H(U_{i+1} \mid U_i, \ldots, U_1, X_0) = b_{i+1}.
\]

(e) Observe that \(d_i = I(X_0; U_i \mid U_1, \ldots, U_{i-1})\). So \(d_i \geq 0\), and by the chain rule \(\sum_{i=1}^{n} d_i = I(X_0; U_1, \ldots, U_n)\).

(f) Since \(a_i \geq a_{i+1}\) (see comments in (a)) and \(b_i \leq b_{i+1}\) (by (d)), \(d_{i+1} = a_{i+1} - b_{i+1} \leq a_i - b_i = d_i\).

(g) From (f) and (e)
\[
nd_n \leq d_1 + \cdots + d_n = I(X_0; U_1, \ldots, U_n) \leq H(X_0) \leq \log |\mathcal{X}|.
\]
Thus \(\lim_{n \to \infty} d_n = 0\). Consequently, \(\lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n\).

A process \(\{U_i : i \in \mathbb{Z}\}\) as in this problem is called a ‘hidden Markov process.’ Observe that for a stationary process the sequence \(a_n\) converges to the entropy rate \(H\) from above, but in general there is no way how large one should take \(n\) to get a good estimate of \(H\). We now see that for hidden Markov processes we have another sequence \(b_n\) that converges to \(H\) from below, and taking \(n = \log |\mathcal{X}| / \epsilon\) guarantees that \(b_n \leq H \leq a_n\) with \(a_n - b_n \leq \epsilon\).
Problem 3.

(a) Note that when $W \neq w_0$, we have $W' = W$, and when $W = w_0$ we have $W' = w_0u$ for some $u \in U$. Thus

$$\text{length}(W') - \text{length}(W) = 1(W = w_0).$$

Thus $E[\text{length}(W')] - E[\text{length}(W)]$ equals $\Pr(W = w_0) = p_0$.

(b) We have

$$H(W') - H(W) = \sum_{u \in U} p(w_0u) \log \frac{1}{p(w_0u)} - p_0 \log \frac{1}{p_0}.$$

The first sum equals

$$\sum_{u} p_0p(u) \log \frac{1}{p_0p(u)} = p_0 \left[\log \frac{1}{p_0} + H(U) \right],$$

consequently $H(W') - H(W) = p_0H(U)$.

(c) The only dictionary with $k = 1$ interior node is $D = U$. For this dictionary $\text{length}(W) = 1$ and $H(W) = H(U)$ so S_1 is true.

(d) Any dictionary D' with $k + 1$ interior nodes is obtained from a dictionary D with k interior nodes by the construction described in the problem. Consequently, from (b), hypothesis S_k, and (a)

$$H(W') = H(W) + p_0H(U) = E[\text{length}(W')]H(U) + p_0H(U) = E[\text{length}(W')]H(U)$$

proving S_{k+1}. The statement that S_k is true for all k then follows by induction.

In class we had proved this relationship between $H(W)$, $H(U)$ and $E[\text{length}(W)]$ by a more complicated proof than the one described in this problem.