Problem 1. Show that a cascade of n identical binary symmetric channels,

$$X_0 \xrightarrow{\text{BSC #1}} X_1 \to \cdots \to X_{n-1} \xrightarrow{\text{BSC #n}} X_n$$

each with raw error probability p, is equivalent to a single BSC with error probability

$$\frac{1}{2} \left(1 - (1 - 2p)^n \right)$$

and hence that $\lim_{n \to \infty} I(X_0; X_n) = 0$ if $p \neq 0, 1$. Thus, if no processing is allowed at the intermediate terminals, the capacity of the cascade tends to zero.

Problem 2. Consider a memoryless channel with transition probability matrix $P_{Y|X}(y|x)$, with $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. For a distribution Q over \mathcal{X}, let $I(Q)$ denote the mutual information between the input and the output of the channel when the input distribution is Q. Show that for any two distributions Q and Q' over \mathcal{X},

(a) $I(Q') \leq \sum_{x \in \mathcal{X}} Q'(x) \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log \left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in \mathcal{X}} P_{Y|X}(y|x') Q(x')} \right)$

(b) $C \leq \max_x \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log \left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in \mathcal{X}} P_{Y|X}(y|x') Q(x')} \right)$

where C is the capacity of the channel. Notice that this upper bound to the capacity is independent of the maximizing distribution.

Problem 3. Let $\{f_i : \mathbb{R} \to \mathbb{R}\}_{1 \leq i \leq n}$ be a set of convex functions on \mathbb{R} and $c_i \geq 0$ for all $i \in \{1, 2, \ldots, n\}$.

(a) Show that the function $f : x \mapsto \sum_{i=1}^n c_i f_i(x)$ is convex.

(b) Show that the function $g : (x_1, x_2, \ldots, x_n) \mapsto \sum_{i=1}^n c_i f_i(x_i)$ is convex.

Problem 4. Let $\{f_i(x)\}_{i \in I}$ be a set of convex real-valued functions defined over a convex domain D. Assuming that $f(x) = \sup_{i \in I} f_i(x)$ is finite for all $x \in D$, show that $f(x)$ is convex.

Problem 5. Let $f : U \to V$ be a convex function on U and let $l : W \to U$ be a linear function on W. Show that the function $g = f \circ l$ is convex on W.

Problem 6.

(a) Show that $I(U; V) \geq I(U; V|T)$ if T, U, V form a Markov chain, i.e., conditional on U, the random variables T and V are independent.
Fix a conditional probability distribution $p(y|x)$, and suppose $p_1(x)$ and $p_2(x)$ are two probability distributions on X.

For $k \in \{1, 2\}$, let I_k denote the mutual information between X and Y when the distribution of X is $p_k(\cdot)$.

For $0 \leq \lambda \leq 1$, let W be a random variable, taking values in $\{1, 2\}$, with

$$
\Pr(W = 1) = \lambda, \quad \Pr(W = 2) = 1 - \lambda.
$$

Define

$$
p_{W,X,Y}(w, x, y) = \begin{cases}
\lambda p_1(x) p(y|x) & \text{if } w = 1 \\
(1 - \lambda) p_2(x) p(y|x) & \text{if } w = 2.
\end{cases}
$$

(b) Express $I(X; Y|W)$ in terms of I_1, I_2 and λ.

(c) Express $p(x)$ in terms of $p_1(x)$, $p_2(x)$ and λ.

(d) Using (a), (b) and (c) show that, for every fixed conditional distribution $p_{Y|X}$, the mutual information $I(X; Y)$ is a concave function of p_X.

Problem 7. Suppose Z is uniformly distributed on $[-1, 1]$, and X is a random variable, independent of Z, constrained to take values in $[-1, 1]$. What distribution for X maximizes the entropy of $X + Z$? What distribution of X maximizes the entropy of XZ?

Problem 8. Random variables X and Y are correlated Gaussian variables:

$$
\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N}_2 \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix} : K = \begin{pmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{pmatrix} \right).
$$

Find $I(X; Y)$.