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Problem 1. Suppose we have a source that produces an independent and identically
distributed sequence U1U2 . . . according to pU . We design a source coder in the following
fashion:

• generate M = 2nR sequences
U(1) = U(1)1 . . . U(1)n
...
U(M) = U(M)1 . . . U(M)n
by drawing {U(m)i : 1 ≤ i ≤ n, 1 ≤ m ≤M} independently according to pU .

• encode U1 . . . Un as follows:
if there exists m such that U1 . . . Un = U(m) send the log2M = nR bit representation
of m else declare encoding failure.

(a) Conditioned on Un = un, what is the probability that U(1) 6= Un?

(b) Conditioned on Un = un, what is the probability of encoding failure?

(c) Show that Pr(“failure”|Un ∈ T nε (pU)) ≤ exp
(
−2nR−nH(U)(1+ε)

)
.

Hint: (1− x)M ≤ exp(−Mx)

(d) Show that if R > H(U) then Pr(error)→ 0 as n gets large.

Problem 2. A discrete memoryless channel has three input symbols: {−1, 0, 1}, and two
output symbols: {1,−1}. The transition probabilities are

p(−1| − 1) = p(1|1) = 1, p(1|0) = p(−1|0) = 0.5.

Find the capacity of this channel with cost constraint β, if the cost function is b(x) = x2.

Problem 3. Consider a vector Gaussian channel described as follows:

Y1 = x+ Z1

Y2 = Z2

where x is the input to the channel constrained in power to P ; Z1 and Z2 are jointly
Gaussian random variables with E[Z1] = E[Z2] = 0, E[Z2

1 ] = E[Z2
2 ] = σ2 and E[Z1Z2] =

ρσ2, with ρ ∈ [−1, 1], and independent of the channel input.

(a) Consider a receiver that discards Y2 and decodes the message based only on Y1. What
rates are achievable with such a receiver?

(b) Consider a receiver that forms Y = Y1− ρY2, and decodes the message based only on
Y . What rates are achievable with such a receiver?

(c) Find the capacity of the channel and compare it to the part (b).



Problem 4. Consider an additive noise channel Y = X + Z where X is the input of
the channel, Y is the output of the channel and Z is the noise. The set of inputs to the
channel are non-negative real numbers. Furthermore, the channel input is constrained in
its average value: a codeword x = (x1, . . . , xn) has to satisfy

1

n

n∑
i=1

xi ≤ P.

The noise Z is independent of the input X, and has the exponential distribution with
E[Z] = 1, i.e.,

fZ(z) =

{
exp(−z) z ≥ 0

0 else.

(a) The capacity of this channel is given by

C = max
X:E[X]≤P

X is non-negative

I(X;Y ).

Express the mutual information in terms of the differential entropy of Y and the
differential entropy of Z.

(b) What is the differential entropy of Z?

(c) For a random variable X that satisfies the input constraints, what are the constraints
on the range and the expectation of Y ? Find the maximum possible differential
entropy of Y subject to these constraints. Hence show that the capacity is upper
bounded by

C ≤ log(1 + P ).

(d) Find the distribution on X that gives an exponential distribution for Y = X + Z

fY (y) = µe−µy for y ≥ 0

[Use Laplace transforms to compute this distribution.]

(e) Conclude that the upper bound of part (c) is actually an equality, i.e.,

C = log(1 + P ).

Problem 5. Let P (y|x) be a channel of input alphabet X and of output alphabet Y , and
let p(x) be a distribution on X . Let r(x|y) be a conditional distribution on X given Y ,

i.e., for each x ∈ X and each y ∈ Y , r(x|y) ≥ 0 and
∑
x′∈X

r(x′|y) = 1. Define the functional

F (p, r) as follows:

F (p, r) =
∑
x∈X

∑
y∈Y

p(x)P (y|x) log2

r(x|y)

p(x)
.

Now for each input distribution p on X , define the conditional distribution rp as

rp(x|y) =
p(x)P (y|x)∑

x′∈X p(x
′)P (y|x′)

.

I.e., rp is the “true” conditional distribution of X given Y when p is the input distribution.
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(a) Use the positivity of divergence to show that for all conditional distributions r we
have F (p, r) ≤ F (p, rp) = I(X;Y ), and deduce that I(X;Y ) = max

r
F (p, r).

(b) Show that F (p, r) is concave in both p and r.

The fact that the capacity C is equal to max
p

max
r
F (p, r) suggests the following algorithm

to compute the capacity of the channel P :

1. Set p0 to be uniform in X , and set k = 0.

2. Set rk = argmax
r

F (pk, r) = rpk .

3. Set pk+1 = argmax
p

F (p, rk).

4. Set k = k + 1.

5. Go to step 2.

(c) Use the Kuhn-Tucker conditions to show that pk+1(x) =
αk(x)∑

x′∈X αk(x
′)

, where

log2 αk(x) =
∑
y∈Y

P (y|x) log2 rk(x|y).

This shows how to do step 3 of the algorithm.

(d) Show that C ≥ F (pk+1, rk) = log2

∑
x∈X

αk(x).

(e) Show that log2

αk(x)

pk(x)
=
∑
y∈Y

P (y|x) log2

P (y|x)∑
x′∈X P (y|x′)pk(x′)

.

(f) Let p∗ be the input distribution that achieves the capacity C of the channel P . Use
the result of Homework 8 Problem 2 to show that

C ≤
∑
x

p∗(x) log2

αk(x)

pk(x)
.

(g) Show that

C − F (pk+1, rk) ≤
∑
x∈X

p∗(x) log2

pk+1(x)

pk(x)
≤ max

x∈X
log2

pk+1(x)

pk(x)
.

This upper bound provides us with a stopping condition for the algorithm. I.e., we

can run the algorithm until max
x∈X

log2

pk+1(x)

pk(x)
≤ ε, where ε is some desired accuracy.

(h) Show that

n∑
k=0

(C − F (pk+1, rk)) ≤
∑
x∈X

p∗(x) log2

pn+1(x)

p0(x)
≤ log |X |.

Hint: p0 was chosen to be uniform.
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(i) Deduce that the sequence F (pk+1, rk) converges to C and that the stopping condition

max
x∈X

log2

pk+1(x)

pk(x)
≤ ε is guaranteed to be met eventually.

Problem 6. In this problem we will show that a binary linear code contains 2k codewords
for some k. Suppose C is a binary linear code of block length n, that is, C is a non-empty
set of binary sequences of length n with the property that if x and y are in C so is their
modulo 2 sum. Consider the following algorithm.

(i) Initialize D to be the set that contains only the all-zero sequence.

(ii) If C does not contain any element not in D stop. Otherwise C contains
an element x not in D. Form D′ = {x+ y : y ∈ D}.

(iii) Augment D to D ∪D′ where D′ is found above, and go to step (ii).

(a) Show that the all-zero sequence is in C so that at the end of step (i) D ⊂ C. Note
that initially |D| = 1 which is a power of 2.

(b) Show that if D is a linear subset of C and there is an x that is in C but not in D,
then D′ formed in (ii) is a subset of C. [The phrase “A is a linear subset of B” means
that A is a subset of B, and that if x ∈ A and y ∈ A then x+ y ∈ A.]

(c) Under the assumptions of (b) show that D′ is disjoint from D.

(d) Again under the assumptions of (b) show that D′ has the same number of elements
as D.

(e) Still under the assumptions of (b) show that D ∪D′ is a linear subset of C.

(f) Using parts (b), (c), (d) and (e) show that if at the beginning of step (ii) D is a linear
subset of C, then at the end of step (iii) D is still a linear subset of C and it has twice
as many elements as in the beginning. Conclude that when the algorithm terminates
D = C and the number of elements in D is a power of 2.

Note that the above algorithm also gives a generator matrix G for the code: Let x1, . . . , xk
be the codewords that are picked at the successive stages of step (ii) of the algorithm. It
then follows that each codeword in C can be written as a (unique) linear combination of
these xi’s. Taking G as the matrix whose rows are the xi’s gives us the generator matrix.

4


