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Problem 1.

(a) Observe that

Zn = 1{N ≥ n}
= 1− 1{N ≤ n− 1},

and, as the value of 1{N ≤ n − 1} is determined by Un−1, so is the value of Zn.
Therefore H(Zn|Un−1) = 0.

(b) We have shown in the previous question that Zn only depends on U1, · · · , Un−1. Given
that U1, U2, · · · are i.i.d. random variables and Zn is a function of U1, · · · , Un−1, we
see that Zn is independent of Un.

(c) Assume V is not a prefix-free collection. Then there exists two words v1 = v11v12 · · · v1m
and v2 = v21v22 · · · v2n, with m < n and v1 is prefix of v2. Thus observing Um = v1

we cannot determine if N = m or N = n. This is a contradiction to the property
that the event {N = m} is determined by Um.

(d) We have

E [g (U1, U2, · · ·)] = E

[
N∑

n=1

f (Un)

]
(a)
= E

[
∞∑
n=1

f (Un)1{N ≥ n}

]
(b)
=

∞∑
n=1

E [f (Un)Zn]

(c)
=

∞∑
n=1

E [f (Un)]E [Zn]

(d)
= E [f(U1)]

∞∑
n=1

E[Zn]

= E [f(U1)]E

[
∞∑
i=1

Zn

]
(e)
= E [f (U1)]E [N ] ,

where in (a) we replaced the finite random sum by an infinite sum while multiplying
by 1{N ≥ n} to make sure that for indices bigger than N we are multiplying by
0. (b) is due to the fact that the bounds of the sum are not random anymore and
hence is obtained by linearity of the expectation. (c) is due to the independence of
Zn and Un, thus of Zn and f (Un). (d) is due to the fact that the Un’s are i.i.d and
hence E [f (Un)] = E [f (U1)]. (e) is due to the fact that N is a non-negative random
variable thus N =

∑∞
n=1 1{N ≥ n} =

∑∞
n=1 Zn, as per the hint.



(e) Let’s take g (U1, U2, · · ·) = log pV (V ) in our result in (d). Then,

g (U1, U2, · · ·) = log pV (V ) = log pUN

(
UN
)

= log ΠN
i=1pU (Ui) =

N∑
i=1

log pU (Ui) =
N∑
i=1

f(Ui),

where f(Ui) = log pU(Ui).

H(V ) = −E [log pV (V )]

= −E [g (U1, U2, · · ·)]
(a)
= −E [N ]E [f(U1)]

(b)
= −E [log pU(U1)]E [N ]

(c)
= H(U1)E [N ] ,

where (a) is obtained by applying the result in question (d). (b) is obtained by
replacing f(.) by its expression and (c) is obtained using the definition of entropy.
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Problem 2.

(a)

Pr (U = u|V = ?) =
Pr (V = ?|U = u) pU(u)

Pr(V = ?)
=
pU(u)p

p
= pU(u)

(b)

I(U ;V ) = H(U)−H(U |V )

= H(U)− Pr(V = ?)H(U |V = ?)− Pr(V 6= ?)H(U |V 6= ?)

(a)
= H(U)− p

K∑
u=1

Pr(U = u|V = ?) log
1

Pr(U = u|V = ?)

(b)
= H(U)− p

K∑
u=1

pU(u) log
1

pU(u)
= H(U)− pH(U) = (1− p)H(U),

where (a) is obtained by noticing that if V 6= ? then V = U and H(U |V 6= ?) = 0
and (b) is obtained since Pr (U = u|V = ?) = pU(u).

(c) Let Cp be the capacity of this channel. Then,

Cp = max
pU

I(U, V ) = max
pU

(1− p)H(U) = (1− p) max
pU

H(U) = (1− p) logK,

with the maximum achieved when U is uniformly distributed over {1, · · · , K}.

(d)

I(X;Z) = H(X)−H(X|Z)

= H(X)− Pr(Z = ?)H(X|Z = ?)− Pr(Z 6= ?)H(X|Z 6= ?)
(a)
= H(X)− pH(X|Z = ?)− (1− p)H(X|Y )

(b)
= (1− p)(H(X)−H(X|Y )) + p(H(X)−H(X|Z = ?))
(c)
= (1− p)I(X;Y ) + p(H(X)−H(X)) = (1− p)I(X;Y )

where

– (a) is due to the fact Pr(Z = ?) = p and when we don’t have erasures Z = Y .
– (b) H(X) = pH(X) + (1− p)H(X).
– (c) First notice that X −Y −Z forms a Markov chain, so Pr(Z = ?|X = x, Y =
y) = Pr(Z = ?|Y = y). Then

Pr(X = x|Z = ?) =
pX(x)Pr(Z = ?|X = x)

Pr(Z = ?)

=
pX(x)

∑
y Pr(Y = y|X = x)Pr(Z = ?|Y = y)

p

=
pX(x)p

∑
y Pr(Y = y|X = x)

p
= pX(x).

So H(X|Z = ?) = H(X).

(e) Let Ctot be the capacity of the channel from X to Z. Then,

Ctot = max
pX

I(X;Z) = max
pX

(1− p)I(X;Y ) = (1− p) max
pX

I(X;Y ) = (1− p)C.
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Problem 3.

(a) In this exercise we assume all the vectors are column vectors. We know that (X1, · · · , Xn, Y1, · · · , Ym)
are jointly Gaussian random variables if and only if any linear combination of these
variables is normally distributed. This means that any linear combination of X =
(X1, X2, · · · , Xn) is normally distributed and thus X is an n Gaussian random vector.
Similarly, the vector Y = (Y1, · · · , Ym) is an m dimensional random vector.

Moreover, we can write (X1, · · · , Xn, Y1, · · · , Ym) = (X,Y). So its covariance matrix
is

K = E

([
X
Y

] [
XT YT

])
=

[
E
(
XXT

)
E
(
XYT

)
E
(
YXT

)
E
(
YYT

)] =

[
K11 K12

K21 K22

]
.

So K11 = E
(
XXT

)
and K22 = E

(
YYT

)
. Thus the vector X = (X1, · · · , Xn) is

normally distributed with covariance matrix K11 and the vector Y = (Y1, · · · , Ym) is
normally distributed with covariance matrix K22.

Hence, using the results derived in class we get

h(X1, · · · , Xn) =
1

2
ln ((2πe)ndet (K11)) ,

h(Y1, · · · , Ym) =
1

2
ln ((2πe)mdet (K22))

and
h(X1, · · · , Xn, Y1, · · · , Ym) =

1

2
ln
(
(2πe)n+mdet (K)

)
.

(b) Let A11 be an n × n matrix and A22 be an m ×m matrix. So A becomes an (n +
m)× (n+m) matrix. Since A is a positive definite matrix then there exists an n+m
dimensional Gaussian random vector which covariance matrix is A. Let’s denote this
vector as (X1, · · · , Xn, Y1, · · · , Ym). From question (a) we know that

h(X1, · · · , Xn) =
1

2
ln ((2πe)ndet (A11)) ,

h(Y1, · · · , Ym) =
1

2
ln ((2πe)mdet (A22))

and
h(X1, · · · , Xn, Y1, · · · , Ym) =

1

2
ln
(
(2πe)n+mdet (A)

)
.

Moreover, we know that

h (X1, · · · , Xn, Y1, · · · , Ym) ≤ h (X1, · · · , Xn) + h (Y1, · · · , Ym) .

So,

1

2
ln
(
(2πe)n+mdet (A)

)
≤ 1

2
ln ((2πe)ndet (A11)) +

1

2
ln ((2πe)mdet (A22))

(2πe)n+mdet (A) ≤ (2πe)ndet (A11)× (2πe)mdet (A22)

det(A) ≤ det(A11)det(A22).
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Problem 4. In this exercise, unless stated otherwise, all vectors are column vectors.

(a) Let X1 and X2 be two codewords in C. Then X1 and X2 have their columns and
their rows belong to C1 and C2 respectively. Since C1 and C2 are linear codes and the
rows and columns of X1 +X2 correspond to the sum of the rows and columns of X1

and X2, then the rows of X1 + X2 belong to C2 and its columns to C1. Therefore,
X1 +X2 ∈ C. This proves the linearity of C.

(b) Since X ∈ C, then its columns (v1, · · · ,vn2) are C1 codewords. This means that there

exist u1, · · · ,un2 ∈ Fk1
2 such that vj = G1uj =

[
uj

A1uj

]
for j = 1, · · · , n2. So the

codeword can be written as

X =

[
u1 u2 · · · un2

A1u1 A1u2 · · · A1un2

]
. (1)

Similarly, denoting by (r1, · · · , rn1) the rows of X, there exist w1, · · · ,wn1 ∈ Fk2
2 such

that rl = G2wl =

[
wl

A2wl

]
for l = 1, · · · , n1. So X can be also written as

X =

r
T
1
...
rTn1

 =


wT

1 wT
1A

T
2

wT
2 wT

2A
T
2

...
...

wT
n1

wT
n1
AT

2

 . (2)

This means that

U =
[
u1 u2 · · · uk2

]
=


wT

1

wT
2
...

wT
k1

 .
From (2) we deduce that X12 = UAT

2 and from (1) we deduce that X21 = A1U . To
find X22 we can either notice from (1) that X22 = A1X12 = A1UA

T
2 or notice from

(2) that X22 = X21A
T
2 = A1UA

T
2 . Hence,

X =

[
U UAT

2

A1U A1UA
T
2

]
.

This shows that X is determined solely by U . Therefore the number of codewords in
C is equal to the number of possible values of U . Since there are 2k1k2 possible values
of U then C has 2k1k2 codewords.

(c) If Urs = 1 this means that the sth column of X is a non-zero codeword of the linear
code C1. Therefore, its weight w1 ≥ d1.

(d) If Xts = 1 this means that the tth row of X is a non-zero codeword of the linear code
C2. Therefore, its weight w2 ≥ d2.

(e) To show that X with Xrs = c
(1)
r c

(2)
s is a codeword of C with c(i) ∈ Ci, we need to show

that its columns belong to C1 and its rows belong to C2. The sth column of X can be
written as 

c
(1)
1

c
(1)
2
...
c
(1)
n1

 c(2)s .

5



If c(2)s = 0 then the sth column of X is the all zero vector and thus a codeword of C1.
If c(2)s = 1 then the sth column of X is the c(1) vector and thus also a codeword of C1.
This shows that all columns of X are codewords of C1. Similarly, the rth row of X
can be written as [

c
(2)
1 · · · c

(2)
n2

]
c(1)r .

If c(1)r = 0, then the rth row is the all-zero vector. If c(1)r = 1, then the rth row is the
codeword c(2). In both cases the rth is a codeword of C2. Hence all rows are codeword
of C2. This shows that X is a codeword of C.

(f) The minimum distance d of a codeword X of C is the smallest number of 1 possible
in X. From part (c) we know that the number of 1’s per column w1 ≥ d1 and from
part (d) we know that the number of 1’s per row w2 ≥ d2. Thus d ≥ d1d2. Moreover,
take c(1) and c(2) to be minimum weight codewords in C1 and C2 so they are of weight
d1 and d2, then the codeword X such that Xrs = c

(1)
r c

(2)
s will have exactly d2 columns

with each column having d1 1’s. This means that the weight of such X is d1d2.
Therefore d ≤ d1d2. Therefore d = d1d2.
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