ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 34	Information Theory and Coding
Final exam	Jan. 23, 2018

4 problems, 72 points (every sub-part 4 pts) 180 minutes 2 sheet (4 pages) of notes allowed.

Good Luck!

PLEASE WRITE YOUR NAME ON EACH SHEET OF YOUR ANSWERS.

PLEASE WRITE THE SOLUTION OF EACH PROBLEM ON A SEPARATE SHEET.

PROBLEM 1. Suppose U_1, U_2, \ldots is an i.i.d. sequence of random variables, each taking value in an alphabet \mathcal{U} . Let N be a positive integer valued random variable determined by U_1, U_2, \ldots E.g., "the smallest n for which $U_{n-2} = U_{n-1} = U_n$ ", "the smallest n for which $U_n = a$ ", "smallest n such that $\sum_{i=1}^n U_i > 10$ ", etc.

Assume that for each $n \geq 1$, upon observing U_1, \ldots, U_n we can determine if $N \leq n$. (This is the case in the examples above, but will not be the case for "the largest n such that $U_1 = U_2 = \cdots = U_n$.") Assume further that $N < \infty$ with probability 1.

Let $Z_n = \mathbb{1}\{N \ge n\}$, and $V = U^N$ (the word formed by the first N letters of U_1, U_2, \ldots — we are assured that V is a word of finite length because $N < \infty$ with probability 1).

- (a) Find $H(Z_n|U^{n-1})$.
- (b) Show that Z_n and U_n are independent.
- (c) Let $\mathcal{V} \subset \mathcal{U}^*$ denote the set of possible values of V. Show that \mathcal{V} is a prefix-free collection.
- (d) Given a function $f: \mathcal{U} \to \mathbb{R}$, let $g(U_1, U_2, \dots) = \sum_{n=1}^N f(U_n)$. Show that

$$E[g(U_1, U_2, \dots)] = E[N]E[f(U_1)],$$

by first showing $\sum_{n=1}^{N} f(U_n) = \sum_{n=1}^{\infty} Z_n f(U_n)$. Hint: $Y = \sum_{n=1}^{\infty} \mathbb{1}\{Y \ge n\}$ for any Y which is non-negative integer valued.

(e) For $v = u_1 \dots u_n$ in \mathcal{V} we have $\Pr(V = v) = \prod_{i=1}^n P_U(u_i)$. Show that

 $H(V) = E[N]H(U_1).$

[Hint: use (d) to compute the expectation of $\log p_V(V)$.]

PROBLEM 2. A "K-ary erasure channel with erasure probability p" is described as follows: the input U belongs to the alphabet $\{1, \ldots, K\}$, the output V belongs to the alphabet $\{1, \ldots, K\} \cup \{?\}$, and if u is the input, the output V equals u with probability 1 - p, and equals ? with probability p. Note that $\Pr(V = ?) = p$ regardless of the input distribution.

- (a) Show that $\Pr(U = u | V = ?) = p_U(u)$.
- (b) Show that I(U; V) = (1 p)H(U).
- (c) Find the capacity of this channel and the input distribution that maximizes the mutual information.

Suppose we have a channel from X to Y with capacity C and we process the output Y by a $|\mathcal{Y}|$ -ary erasure channel with erasure probability p to obtain Z.

- (d) Show that I(X; Z) = (1 p)I(X; Y).
- (e) Find the capacity of the channel from X to Z in terms of p and C.

PROBLEM 3. Suppose $(X_1, \ldots, X_n, Y_1, \ldots, Y_m)$ is an n + m dimensional Gaussian random vector with covariance matrix K. Partition the $(n + m) \times (n + m)$ matrix K as

$$K = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}$$

where K_{11} is $n \times n$ and K_{22} is $m \times m$.

- (a) Express $h(X_1, \ldots, X_n)$, $h(Y_1, \ldots, Y_n)$ and $h(X_1, \ldots, X_n, Y_1, \ldots, Y_m)$ in terms of the matrices above.
- (b) Show if the matrix $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ is positive definite, then $\det(A) \leq \det(A_{11}) \det(A_{22})$. [Hint: for any positive definite matrix A, $f(x) = \det(2\pi A)^{-1/2} \exp(-\frac{1}{2}x^T A^{-1}x)$ is a probability density.]

PROBLEM 4. Let C_1 and C_2 be binary two linear codes. Let n_i , 2^{k_i} , and d_i denote the blocklength, number of codewords, and the minimum distance of C_i . Assume that the generator matrices of the codes are of the form

$$G_i = \begin{bmatrix} I_{k_i} \\ A_i \end{bmatrix}$$

Consider the code C of blocklength $n = n_1 n_2$ whose codewords X we will think of as binary matrices of size $n_1 \times n_2$ and is described as follows: a binary matrix X with n_1 rows and n_2 columns is a codeword in C if and only if each of its rows belongs to C_2 and each of its columns belongs to C_1 .

- (a) Show that \mathcal{C} is a linear code.
- (b) Suppose we are given k_1k_2 data bits in the form of a binary matrix U of size $k_1 \times k_2$. We place U in the $k_1 \times k_2$ upper left corner of a matrix X

$$X = \begin{bmatrix} X_{11} = U & X_{12} \\ X_{21} & X_{22} \end{bmatrix}.$$

Explain how to determine the remaining submatrices X_{12}, X_{21}, X_{22} so that X belongs to C. How many codewords does C have?

For the remainder of the problem X is related to U as above.

- (c) Suppose $U_{rs} = 1$. What can you say about the weight w_1 of the s'th column of X?
- (d) Again supposing $U_{rs} = 1$, consider a row t with $X_{ts} = 1$. What can you say about the weight of the t'th row of X?
- (e) Suppose $c^{(i)} = (c_1^{(i)}, \ldots, c_{n_i}^{(i)}) \in \mathcal{C}_i$ is a codeword with weight d_i , i = 1, 2. Show that X with $X_{rs} = c_r^{(1)} c_s^{(2)}$ is a codeword of \mathcal{C} .
- (f) Show that the minimum distance d of C equals d_1d_2 . [Hint: use (b) and (c) to lower bound d.]