ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 34
Information Theory and Coding
Final exam
Jan. 23, 2018

4 problems, 72 points (every sub-part 4 pts)
180 minutes
2 sheet (4 pages) of notes allowed.

Good Luck!

Please write your name on each sheet of your answers.

Please write the solution of each problem on a separate sheet.

Problem 1. Suppose U_{1}, U_{2}, \ldots is an i.i.d. sequence of random variables, each taking value in an alphabet \mathcal{U}. Let N be a positive integer valued random variable determined by U_{1}, U_{2}, \ldots E.g., "the smallest n for which $U_{n-2}=U_{n-1}=U_{n}$ ", "the smallest n for which $U_{n}=a$ ", "smallest n such that $\sum_{i=1}^{n} U_{i}>10$ ", etc.

Assume that for each $n \geq 1$, upon observing U_{1}, \ldots, U_{n} we can determine if $N \leq n$. (This is the case in the examples above, but will not be the case for "the largest n such that $\left.U_{1}=U_{2}=\cdots=U_{n} . "\right)$ Assume further that $N<\infty$ with probability 1 .

Let $Z_{n}=\mathbb{1}\{N \geq n\}$, and $V=U^{N}$ (the word formed by the first N letters of U_{1}, U_{2}, \ldots - we are assured that V is a word of finite length because $N<\infty$ with probability 1).
(a) Find $H\left(Z_{n} \mid U^{n-1}\right)$.
(b) Show that Z_{n} and U_{n} are independent.
(c) Let $\mathcal{V} \subset \mathcal{U}^{*}$ denote the set of possible values of V. Show that \mathcal{V} is a prefix-free collection.
(d) Given a function $f: \mathcal{U} \rightarrow \mathbb{R}$, let $g\left(U_{1}, U_{2}, \ldots\right)=\sum_{n=1}^{N} f\left(U_{n}\right)$. Show that

$$
E\left[g\left(U_{1}, U_{2}, \ldots\right)\right]=E[N] E\left[f\left(U_{1}\right)\right]
$$

by first showing $\sum_{n=1}^{N} f\left(U_{n}\right)=\sum_{n=1}^{\infty} Z_{n} f\left(U_{n}\right)$. Hint: $Y=\sum_{n=1}^{\infty} \mathbb{1}\{Y \geq n\}$ for any Y which is non-negative integer valued.
(e) For $v=u_{1} \ldots u_{n}$ in \mathcal{V} we have $\operatorname{Pr}(V=v)=\prod_{i=1}^{n} P_{U}\left(u_{i}\right)$. Show that

$$
H(V)=E[N] H\left(U_{1}\right)
$$

[Hint: use (d) to compute the expectation of $\log p_{V}(V)$.]

Problem 2. A " K-ary erasure channel with erasure probability p " is described as follows: the input U belongs to the alphabet $\{1, \ldots, K\}$, the output V belongs to the alphabet $\{1, \ldots, K\} \cup\{?\}$, and if u is the input, the output V equals u with probability $1-p$, and equals ? with probability p. Note that $\operatorname{Pr}(V=?)=p$ regardless of the input distribution.
(a) Show that $\operatorname{Pr}(U=u \mid V=?)=p_{U}(u)$.
(b) Show that $I(U ; V)=(1-p) H(U)$.
(c) Find the capacity of this channel and the input distribution that maximizes the mutual information.

Suppose we have a channel from X to Y with capacity C and we process the output Y by a $|\mathcal{Y}|$-ary erasure channel with erasure probability p to obtain Z.
(d) Show that $I(X ; Z)=(1-p) I(X ; Y)$.
(e) Find the capacity of the channel from X to Z in terms of p and C.

Problem 3. Suppose $\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)$ is an $n+m$ dimensional Gaussian random vector with covariance matrix K. Partition the $(n+m) \times(n+m)$ matrix K as

$$
K=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right]
$$

where K_{11} is $n \times n$ and K_{22} is $m \times m$.
(a) Express $h\left(X_{1}, \ldots, X_{n}\right), h\left(Y_{1}, \ldots, Y_{n}\right)$ and $h\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)$ in terms of the matrices above.
(b) Show if the matrix $A=\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$ is positive definite, then $\operatorname{det}(A) \leq \operatorname{det}\left(A_{11}\right) \operatorname{det}\left(A_{22}\right)$. [Hint: for any positive definite matrix $A, f(x)=\operatorname{det}(2 \pi A)^{-1 / 2} \exp \left(-\frac{1}{2} x^{T} A^{-1} x\right)$ is a probability density.]

Problem 4. Let \mathcal{C}_{1} and \mathcal{C}_{2} be binary two linear codes. Let $n_{i}, 2^{k_{i}}$, and d_{i} denote the blocklength, number of codewords, and the minimum distance of \mathcal{C}_{i}. Assume that the generator matrices of the codes are of the form

$$
G_{i}=\left[\begin{array}{c}
I_{k_{i}} \\
A_{i}
\end{array}\right]
$$

Consider the code \mathcal{C} of blocklength $n=n_{1} n_{2}$ whose codewords X we will think of as binary matrices of size $n_{1} \times n_{2}$ and is described as follows: a binary matrix X with n_{1} rows and n_{2} columns is a codeword in \mathcal{C} if and only if each of its rows belongs to \mathcal{C}_{2} and each of its columns belongs to \mathcal{C}_{1}.
(a) Show that \mathcal{C} is a linear code.
(b) Suppose we are given $k_{1} k_{2}$ data bits in the form of a binary matrix U of size $k_{1} \times k_{2}$. We place U in the $k_{1} \times k_{2}$ upper left corner of a matrix X

$$
X=\left[\begin{array}{cc}
X_{11}=U & X_{12} \\
X_{21} & X_{22}
\end{array}\right]
$$

Explain how to determine the remaining submatrices X_{12}, X_{21}, X_{22} so that X belongs to \mathcal{C}. How many codewords does \mathcal{C} have?

For the remainder of the problem X is related to U as above.
(c) Suppose $U_{r s}=1$. What can you say about the weight w_{1} of the s^{\prime} 'th column of X ?
(d) Again supposing $U_{r s}=1$, consider a row t with $X_{t s}=1$. What can you say about the weight of the t 'th row of X ?
(e) Suppose $c^{(i)}=\left(c_{1}^{(i)}, \ldots, c_{n_{i}}^{(i)}\right) \in \mathcal{C}_{i}$ is a codeword with weight $d_{i}, i=1,2$. Show that X with $X_{r s}=c_{r}^{(1)} c_{s}^{(2)}$ is a codeword of \mathcal{C}.
(f) Show that the minimum distance d of \mathcal{C} equals $d_{1} d_{2}$. [Hint: use (b) and (c) to lower bound d.]

