Exercise 1 1-qubit non-classical gate

Consider a gate $G = \begin{pmatrix} \frac{1}{2} + \frac{i}{2} & \frac{1}{2} - \frac{i}{2} \\ \frac{1}{2} - \frac{i}{2} & \frac{1}{2} + \frac{i}{2} \end{pmatrix}$.

- (a) Show that G^2 is a real matrix.
- (b) For $|v\rangle = |0\rangle$, $|1\rangle$ and $\alpha |0\rangle + \beta |1\rangle$, compute $G |v\rangle$ and $G^2 |v\rangle$.
- (c) The gate G is a purely quantum logic gate without any classical equivalent. However, G^2 is equivalent to a classical logic gate. What classical logic gate is it?

Exercise 2 Superposition of exponentially many component states

Suppose we have n qubits, all prepared in state $|0\rangle$. We want to obtain an equal superposition of 2^n component states, given by

$$\frac{1}{\sqrt{2^n}} \sum_{b_1, b_2, \dots, b_m \in \{0,1\}^2} |b_1\rangle \otimes |b_2\rangle \otimes \dots \otimes |b_n\rangle.$$
(1)

For example, when n = 2, we want to obtain

$$\frac{1}{2} \left| 0 \right\rangle \otimes \left| 0 \right\rangle + \frac{1}{2} \left| 0 \right\rangle \otimes \left| 1 \right\rangle + \frac{1}{2} \left| 1 \right\rangle \otimes \left| 0 \right\rangle + \frac{1}{2} \left| 1 \right\rangle \otimes \left| 1 \right\rangle.$$

Can you create a circuit that outputs (1)? Start thinking with n = 1, 2.

Exercise 3 $SWAP \cdot controlled \cdot U \cdot SWAP$

Let $U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$. The controlled-U gate is given by the following circuit :

$$\begin{aligned} |c\rangle &\longrightarrow |c\rangle \\ |t\rangle & \longrightarrow |U\rangle & \downarrow c|t\rangle = \begin{cases} |t\rangle & \text{if } c = 0 \\ U|t\rangle & \text{if } c = 1 \end{cases} \end{aligned}$$

(a) Show that the controlled-U has the following matrix representation :

controlled-
$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & U_{11} & U_{12} \\ 0 & 0 & U_{21} & U_{22} \end{pmatrix}$$

- (b) What is the circuit for SWAP \cdot controlled- $U \cdot$ SWAP?
- (c) Check that SWAP \cdot controlled- $U \cdot$ SWAP has the following matrix representation :

SWAP · controlled-
$$U$$
 · SWAP =
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & U_{11} & 0 & U_{12} \\ 0 & 0 & 1 & 0 \\ 0 & U_{21} & 0 & U_{22} \end{pmatrix}$$

Exercise 4 Contolled-controlled-U

In the last exercise, we have seen the construction of multi-controlled-U gate with the Toffoli gates and a simple controlled-U gate. This time, we are going to see a different construction for controlled-U gate.

Let V be any quantum gate such that $V^2 = U$. Prove the following circuit identity.

