
Homework 6: 27 October 2016
Traitement Quantique de l’Information

Exercise 1 No-cloning theorem

In class we saw that unitarity and tensor product structure imply the no-cloning theorem.
Here we show that linearity and tensor product structures also imply the no-cloning theorem.

Suppose a common cloning machine U exists for all inputs |Ψ〉 = α |0〉 + β |1〉 where
α2 + β2 = 1. Alice claims that

U |Ψ〉 ⊗ |blank〉 = α |0〉 ⊗ |0〉+ β |1〉 ⊗ |1〉 .

But Bob just by the definition of the copying operator claims that

U |Ψ〉 ⊗ |blank〉 = α2 |0〉 ⊗ |0〉+ αβ |0〉 ⊗ |1〉+ αβ |1〉 ⊗ |0〉+ β2 |1〉 ⊗ |1〉 .

This contradiction can be used to show the no-cloning theorem.

1) Elaborate in detail the steps that Alice and Bob each have in mind to reach these two
equations.

2) Under what condition on α and β are the two equations equivalent? What does this
mean with respect to cloning?

Exercise 2 Quantum bank note

In 1970’s Wiesner had the idea of quantum bank notes that cannot be copied. A quantum
bank note consists of one serial number S and of N small cavities each storing one quantum
bit (say a polarized photon, or some magnetic moment). Each quantum bit is in a definite
state

|φi〉 ∈
{
|0〉 ; |0〉+ |1〉√

2

}
, i = 1 . . . N.

The serial number S (say S = COM309HW6ISFUN) indicates to the bank the preparation

p1, . . . , pN of the quantum bits where pi = 0 if |φi〉 = |0〉 and pi = 1 if |φi〉 = |0〉+|1〉√
2

. There

is a mapping f(S) = (p1 . . . pN) that only the bank knows. Therefore the bank has access to
the information p1, . . . , pN by reading S; but no one else has.

We decide to counterfeit the bill as follows. We first observe the state of each qubit using
measurements in the Z or X basis at random (since we have no information about pi). This

necessarily leaves each qubit in a state ∈ {|0〉 , |1〉} or in a state ∈
{
|0〉+|1〉√

2
, |0〉−|1〉√

2

}
. If the

measured qubit is left in state |0〉 or |0〉+|1〉√
2

we just copy it (with the correct copy machine!).

If the measured qubit is left in state |1〉 then we prepare a new state as |0〉+|1〉√
2

, and if it is

left in the state |0〉−|1〉√
2

we prepare a new state |0〉.
We thus get a “counterfeited” bill which we bring to the bank.
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1) First suppose that a honest person brings a true bank note (not counterfeited) to the
bank. Describe how the bank proceeds to make measurements in order to verify the bank
note in such a way that the bank note is not destroyed.

2) Suppose that we bring a counterfeited note to the bank. Show that the probability the
bank detects a problem is 1− (7/8)N .

Exercise 3 Copying or unitary attack from Eve in BB84

Consider the BB84 protocol. Suppose the i-th qubit sent by Alice is |0〉+|1〉√
2

and is captured
by Eve. Eve wants to make a copy of the qubit and sends one of the copies to Bob. However
she does not know what the preparation basis of Alice was: here we suppose that Eve uses
the wrong machine UZ to copy this bit. Recall that UZ is defined by

UZ |0〉 ⊗ |b〉 = |0〉 ⊗ |0〉 , UZ |1〉 ⊗ |b〉 = |1〉 ⊗ |1〉 .
Eve then keeps one of the photons and sends the other one to Bob. Suppose now that Bob
uses the X-basis to measure the state of the photon. During the public communication phase
Alice and Bob notice that their preparation and measurement basis were the same so they
conclude that the i-th bit (of their secret key) must be the same under the hypothesis that
Eve is not present (they don’t know yet that Eve is present).

The goal of this problem is to show that there is a probability 1/2 that the bit of Alice
and Bob differs due to the presence of Eve. Therefore repeated such attacks of Eve over
many qubits will be detectable (with probability close to one) during the security test.

1) What is the state of the two photons in the lab of Eve just after she made the copying
operation.

2) The measurement process of Bob (we suppose Eve does not measure at this stage) is
modeled by the two projectors:

Π+ = I ⊗
(
|0〉+ |1〉√

2

)(
〈0|+ 〈1|√

2

)
, Π− = I ⊗

(
|0〉 − |1〉√

2

)(
〈0| − 〈1|√

2

)
where I =

(
1 0
0 1

)
expresses the fact that Eve does not measure and the second term of

the tensor product expresses the fact that Bob’s measurement basis is
{
|0〉+|1〉√

2
, |0〉−|1〉√

2

}
.

a) What are the possible resulting states in Bob’s lab? Hint: no calculation.

b) Compute now p± the probability of these outcoming states by using the appropriate
form of the measurement postulate.

Hint: It will be a good idea to expand Π± by writing I = |0〉 〈0| + |1〉 〈1|. For example
you should check this kind of identity:

Π+ = (|0〉 〈0|+ |1〉 〈1|)⊗
(
|0〉+ |1〉√

2

)(
〈0|+ 〈1|√

2

)
= (|0〉 〈0|+ |1〉 〈1|)⊗

(
|0〉 〈0|+ |0〉 〈1|+ |1〉 〈0|+ |1〉 〈1|

2

)
=

1

2

(
|00〉 〈00|+ |00〉 〈01|+ |01〉 〈00|+ |01〉 〈01|

+ |10〉 〈10|+ |10〉 〈11|+ |11〉 〈10|+ |11〉 〈11|
)

2


