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In the course we discussed in some detail the AMP algorithm in the framework of
compressive sensing when the prior is unknown and we use the Lasso estimator. The aim
of this project is to explore another estimation problem called rank one factorization with
a known prior. Various versions of this problem have applications in community detection
and also is of interest in statistics.

1 Formulation of matrix factorization problem: Bayesian

setting

Let s(0) = (s
(0)
1 , · · · , s(0)n )T be a binary column vector with s

(0)
i ∈ {+1,−1}. These are the

hidden variables that we will have to estimate. The observation model is

yij =

√
λ

n
s
(0)
i s

(0)
j + zij, i, j = 1, · · · , n

where zij is a symmetric matrix with iid Gaussian elements such that zij ∼ N (0, 1) for

i ̸= j and zii ∼ N (0, 2). In vector form we have y =
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observations of a rank one matrix. We assume further that the prior on the binary vector
components is iid uniform on {−1,+1}. Thefore it is natural to use a Bayesian setting.
The posterior is
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Expanding the squares and simplifying terms independent of s distribution can also be
written as
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This is a random spin system on a complete graph with random iid “coupling constants”
zij and s

(0)
i . The average MSE of an estimator ŝi is by definition
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and it is minimized by the MMSE estimator ŝmmse
i = ⟨si⟩ which is the magnetization.

Instead of computing this optimal estimator we set in for a suboptimal solution using the
AMP estimator.



2 AMP equations

Consider first the “scalar” estimation problem y =
√
γs(0)+ z where s(0) = ±1, γ is the snr

and z ∼ N (0, 1).

(i) Show that the MMSE estimator for this scalar problem is

ŝ = ⟨s⟩ = tanh(γs(0) + z)

and that the MMSE: Ez,s(0) [(s− ⟨s⟩)2] = mmse(γ) where

mmse(γ) ≡ 1− Ez[(tanh(γ +
√
γz))2]

(ii) Write down the BP equations for the model (1). Use the same parametrizations as in
class used for binary spins.

(iii) Deduce in the large n limit the AMP equations by going through the necessary simpli-
cations. Hint: silmilar derivations are done in Chap 7 on the Sherrington-Kirkpatrick model
that we did not treat in class this year. You should find the following AMP (TAP-like)
equations for the AMP estimates at time t: ŝti = mt
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(iii) Explain heuristically how to find the correct state evolution equation for the MSEt
amp ≡

1− q2t at iteration t. This equation is:

q2t+1 = 1−mmse(λqt), q0 = 1− ϵ

Note that in this problem we do not initialize with σ0 = 1 otherwise state evolution
does not start, so we take ϵ small positive representing a small prior bias on the signal.
(Correspondingly you also have to be careful how you initialize AMP above).

3 Numerical implememtation

Independently from your derivations above, we ask you to implement numerically the AMP
algorithm and state evolution.

(i) Investigate the fixed points and threshold λc of state evolution.

(ii) Run AMP above and below the threshold and check that the empirical MSEamp agrees
with the one predicted by state evolution (as a function of λ).

(iii) In the heuristic derivation of state evolution one supposes that√
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has a Gaussian distribution (as if the CLT applied). Check this assertion numerically.

Check also that this is not true for
√

λ
n
(Y mt−1)i if the Onsager term is not present.
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