ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Solution 1.

(a) We have:

$$
\operatorname{Pr}(H=0) \cdot f_{Y_{1}, Y_{2} \mid H}\left(y_{1}, y_{2}\right)= \begin{cases}\frac{1}{2} \cdot \frac{1}{16 \pi} & \text { if }\left(y_{1}, y_{2}\right) \in B([-1,-1], 4) \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\operatorname{Pr}(H=1) \cdot f_{Y_{1}, Y_{2} \mid H}\left(y_{1}, y_{2}\right)= \begin{cases}\frac{1}{2} \cdot \frac{1}{16 \pi} & \text { if }\left(y_{1}, y_{2}\right) \in B([1,1], 4) \\ 0 & \text { otherwise }\end{cases}
$$

Therefore, the MAP decision rule requires that:

- We decide $\hat{H}=0$ if $\left(y_{1}, y_{2}\right) \in B([-1,-1], 4) \backslash B([1,1], 4)$.
- We decide $\hat{H}=1$ if $\left(y_{1}, y_{2}\right) \in B([1,1], 4) \backslash B([-1,-1], 4)$.
- We can decide either $\hat{H}=0$ or $\hat{H}=1$ if $\left(y_{1}, y_{2}\right) \in B([-1,-1], 4) \cap B([1,1], 4)$ or $\left(y_{1}, y_{2}\right) \notin B([-1,-1], 4) \cup B([1,1], 4)$.

We conclude that the answers for (a) are:
(1) \mathbf{T}.
(2) \mathbf{T}.
(3) \mathbf{T}.
(b) Let $p=\operatorname{Pr}(H=0)$. We have:

$$
\operatorname{Pr}(H=0) \cdot f_{Y_{1}, Y_{2} \mid H}\left(y_{1}, y_{2}\right)= \begin{cases}p \cdot \frac{1}{16 \pi} & \text { if }\left(y_{1}, y_{2}\right) \in B([-1,-1], 4) \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\operatorname{Pr}(H=1) \cdot f_{Y_{1}, Y_{2} \mid H}\left(y_{1}, y_{2}\right)= \begin{cases}(1-p) \cdot \frac{1}{16 \pi} & \text { if }\left(y_{1}, y_{2}\right) \in B([1,1], 4) \\ 0 & \text { otherwise }\end{cases}
$$

Since $p>1-p$, the MAP decision rule requires that:

- We decide $\hat{H}=0$ if $\left(y_{1}, y_{2}\right) \in B([-1,-1], 4)$.
- We decide $\hat{H}=1$ if $\left(y_{1}, y_{2}\right) \in B([1,1], 4) \backslash B([-1,-1], 4)$.
- We can decide either $\hat{H}=0$ or $\hat{H}=1$ if $\left(y_{1}, y_{2}\right) \notin B([-1,-1], 4) \cup B([1,1], 4)$.

We conclude that the answers for (b) are:
(1) \mathbf{F}.
(2) \mathbf{F}.

(3) \mathbf{T}.

(c) Notice that for the case of (b), the two points $[0.5,0.5]$ and $[-2,3]$ satisfy $y_{1}+y_{2}=1$. However, the MAP decision rule requires that we decide $\hat{H}=0$ if we observe $[0.5,0.5]$, and it requires that we decide $\hat{H}=1$ if we observe $[-2,3]$. Therefore, no MAP decision rule can be based on the observation of $Y_{1}+Y_{2}$ alone, hence it is not a sufficient statistic. We conclude that the answer for (c) is \mathbf{F}.

Solution 2.

(a)

$$
\begin{aligned}
Z(p) & =\sum_{y} \sqrt{\operatorname{Pr}(Y=y \mid H=0) \operatorname{Pr}(Y=y \mid H=1)} \\
& =\sqrt{(1-p) p}+\sqrt{p(1-p)}=\sqrt{4 p(1-p)}
\end{aligned}
$$

(b) (1)

$$
\begin{aligned}
Z_{n}(p) & =\sum_{y_{1}, \ldots, y_{n}} \sqrt{\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n} \mid H=0\right) \operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n} \mid H=1\right)} \\
& =\sum_{y_{1}, \ldots, y_{n}} \sqrt{\left(\prod_{i=1}^{n} \operatorname{Pr}\left(Y_{i}=y_{i} \mid H=0\right)\right)\left(\prod_{i=1}^{n} \operatorname{Pr}\left(Y_{i}=y_{i} \mid H=1\right)\right)} \\
& =\sum_{y_{1}, \ldots, y_{n}} \prod_{i=1}^{n} \sqrt{\operatorname{Pr}\left(Y_{i}=y_{i} \mid H=0\right) \operatorname{Pr}\left(Y_{i}=y_{i} \mid H=1\right)} \\
& =\prod_{i=1}^{n}\left(\sum_{y_{i}} \sqrt{\operatorname{Pr}\left(Y_{i}=y_{i} \mid H=0\right) \operatorname{Pr}\left(Y_{i}=y_{i} \mid H=1\right)}\right)=Z(p)^{n}=(4 p(1-p))^{\frac{n}{2}}
\end{aligned}
$$

(2) Let $\left(y_{1}, \ldots, y_{n}\right)$ be the observation. The MAP decision rule is:

$$
\begin{gathered}
\operatorname{Pr}(H=0) \operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n} \mid H=0\right) \stackrel{\stackrel{\hat{H}=0}{\gtrless}}{\gtrless} \operatorname{Pr}(H=1) \operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n} \mid H=1\right) \\
\Leftrightarrow \frac{1}{2} p^{\sum_{i=1}^{n} y_{i}}(1-p)^{n-\sum_{i=1}^{n} y_{i}} \stackrel{\stackrel{H}{H}=0}{\gtrless} \frac{1}{\gtrless}(1-p)^{\sum_{i=1}^{n} y_{i}} p^{n-\sum_{i=1}^{n} y_{i}} \\
\Leftrightarrow\left(\frac{p}{1-p}\right)^{2 \sum_{i=1}^{n} y_{i}} \stackrel{\hat{H}=0}{\gtrless}\left(\frac{p}{\hat{H}=p}\right)^{n} \\
\Leftrightarrow \sum_{i=1}^{n} y_{i} \\
\stackrel{H}{\hat{H}=1} \underset{\hat{H}=0}{\gtrless} \frac{n}{2} .
\end{gathered}
$$

Therefore, a decision rule that minimizes the probability of error is:

$$
\hat{H}= \begin{cases}0 & \text { if } \sum_{i=1}^{n} Y_{i} \leq \frac{n}{2} \\ 1 & \text { if } \sum_{i=1}^{n} Y_{i}>\frac{n}{2}\end{cases}
$$

(c) For the decision rule in (b.2), we have:

$$
\operatorname{Pr}(\text { Error } \mid H=0)=\operatorname{Pr}\left(\left.\sum_{i=1}^{n} Y_{i}>\frac{n}{2} \right\rvert\, H=0\right) \stackrel{(*)}{=} \operatorname{Pr}\left(\sum_{i=1}^{n} X_{i}>\frac{n}{2}\right),
$$

where $(*)$ follows from the fact that given $H=0,\left(Y_{i}\right)_{1 \leq i \leq n}$ is distributed as $\left(X_{i}\right)_{1 \leq i \leq n}$. On the other hand,

$$
\begin{aligned}
& \operatorname{Pr}(\text { Error } \mid H=1)=\operatorname{Pr}\left(\left.\sum_{i=1}^{n} Y_{i} \leq \frac{n}{2} \right\rvert\, H=1\right)=\operatorname{Pr}\left(\left.\sum_{i=1}^{n}\left(1-Y_{i}\right) \geq \frac{n}{2} \right\rvert\, H=1\right) \\
& \stackrel{(* *)}{=} \operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq \frac{n}{2}\right) \geq \operatorname{Pr}\left(\sum_{i=1}^{n} X_{i}>\frac{n}{2}\right),
\end{aligned}
$$

where $(* *)$ follows from the fact that given $H=1,\left(1-Y_{i}\right)_{1 \leq i \leq n}$ is distributed as $\left(X_{i}\right)_{1 \leq i \leq n}$. Therefore,

$$
\operatorname{Pr}\left(\sum_{i=1}^{n} X_{i}>\frac{n}{2}\right) \leq \operatorname{Pr}(\text { Error }) \leq Z_{n}(p)=(4 p(1-p))^{\frac{n}{2}} .
$$

Solution 3.

(a)

(b)

(c) For (a), assume first that c_{0} was transmitted. The probability of a correct guess is:

$$
p_{c, 0}=\operatorname{Pr}\left(Z_{1} \geq-1, Z_{2} \geq-1\right)=Q\left(-\frac{1}{\sqrt{\frac{1}{2}}}\right)^{2}=(1-Q(\sqrt{2}))^{2}
$$

Therefore, the probability of error, assuming c_{0} was transmitted, is:

$$
p_{e, 0}=1-(1-Q(\sqrt{2}))^{2} .
$$

Now because of the symmetry between the regions, we have $p_{e, 1}=p_{e, 2}=p_{e, 3}=p_{e, 0}=$ $1-(1-Q(\sqrt{2}))^{2}$. Therefore, the probability of error is $p_{e}=1-(1-Q(\sqrt{2}))^{2}$.
For (b), assume first that c_{0} was transmitted. The probability of a correct guess is:

$$
\begin{aligned}
p_{c, 0}^{\prime} & =\operatorname{Pr}\left(Z_{1} \geq-1, Z_{2} \geq-1\right)=\operatorname{Pr}\left(Z_{1} \geq-1\right)^{2}=\left(1-\operatorname{Pr}\left(Z_{1}<-1\right)\right)^{2} \\
& =\left(1-\int_{-\infty}^{-1} \frac{1}{2} e^{-|z|} d z\right)^{2}=\left(1-\frac{1}{2} e^{-1}\right)^{2} .
\end{aligned}
$$

Therefore, the probability of error, assuming c_{0} was transmitted, is:

$$
p_{e, 0}^{\prime}=1-\left(1-\frac{1}{2} e^{-1}\right)^{2} .
$$

Because of the symmetry between the regions, we have $p_{e, 1}^{\prime}=p_{e, 2}^{\prime}=p_{e, 3}^{\prime}=p_{e, 0}^{\prime}=$ $1-\left(1-\frac{1}{2} e^{-1}\right)^{2}$. Therefore, the probability of error is $p_{e}^{\prime}=1-\left(1-\frac{1}{2} e^{-1}\right)^{2}$.
We know that for every $x \geq 0$, we have $Q(x) \leq \frac{1}{2} e^{-\frac{x^{2}}{2}}$. Thus, $Q(\sqrt{2}) \leq \frac{1}{2} e^{-1}$, hence $p_{e} \leq p_{e}^{\prime}$. We conclude that the probability of error in (a) is less than or equal to that in (b).

