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Solution 1.
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(ii) Constellation and Decision Regions (iii) Probability of Error

(a) Y1

Y2

c1

c2

c3

c4

c1 = (1, 0), c2 = (0, 1), c3 = (−1, 0), c4 = (0,−1)
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(4-QPSK constellation rotated by 45◦)
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2
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)
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(same constellation as (a), rotated by 45◦)

(c) Y1

Y2 c1

c2

c3

c4

c1 = (3, 3), c2 = (1, 1), c3 = (−1,−1), c4 = (−3,−3)

Pe =
3

2
Q

(
2√
N0

)
(4-PAM constellation)

(d) Y1

Y2

c1c2c3c4

c1 = (3, 1), c2 = (1, 1), c3 = (−1, 1), c4 = (−3, 1)

Pe =
3

2
Q

( √
2√
N0

)
(same as (c) contracted by a factor of 1√

2
)

Note: In each case, ci denotes the codeword corresponding to wi. The observation will be Y = ci + Z

where Z ∼ N (0, N0

2 I2) is white Gaussian noise, thus, the optimal decision is minimum distance decoding.



Solution 2.

(i) Since ξ(t) = tri(t− 1)− tri(t− 3), we have

ξF(f) = F{tri(t− 1)− tri(t− 3)} = e−j2πf sinc2(f)− e−j6πf sinc2(f)

= e−j4πf sinc2(f)[ej2πf − e−j2πf ] = 2e−j4πfj sin(2πf) sinc2(f) .

(ii) We firstly have that E[Xi] = E[D2i−1] + αE[D2i] = 0 and, since D2i−1 and D2i are
independent, E[|Xi|2] = E[D2

2i−1] + α2 E[D2
2i] = 1 + α2. Moreover Xi and Xj are

independent (for i 6= j), since (D2i−1, D2i) is independent of (D2j−1, D2j). Thus,

KX [k] = E[Xi+kX
∗
i ] =

{
E[|Xi|2] k = 0;

0 otherwise.
= (1 + α2)1{k = 0}.

Therefore,

SX(f) = |ξF(f)|2
∑
k

KX [k] exp(−j2πkf)

= (1 + α2)|ξF(f)|2 = 4(1 + α2) sin2(2πf) sinc4(f) .

The above vanishes at frequencies f = m
2

, m ∈ Z.

(iii) In this case we have

KX [k] = E[Xi+kX
∗
i ]

= E[Di−2+kDi−2] + αE[Di−2+kDi] + αE[Di+kDi−2] + α2 E[Di+kDi]

= (1 + α2)1{k = 0}+ α1{k = 2}+ α1{k = −2}.

Therefore,∑
k

KX [k] exp(−j2πkf) = (1 + α2) + α[ej4πf + e−j4πf ] = (1 + α2) + 2α cos(4πf),

and

SX(f) = |ξF(f)|2
∑
k

KX [k] exp(−j2πkf)

= 4[(1 + α2) + 2α cos(4πf)] sin2(2πf) sinc4(f) .

In addition to integer multiples of 1
2
, the above can be equal to zero at f such that

cos(4πf) = −1 + α2

2α
.

(iv) From the solution of (ii), it is obvious that SX(1
4
) = (1 + α2) sinc4(1

4
) > 0 regardless

of the value of α ∈ R.

However, in (iii) if we choose α = 1, we will have zeros at f = 2m+1
4

, m ∈ Z (including
f = 1

4
) since cos(4πf) = cos((2m+ 1)π) = −1 = −(1 + α2)/(2α).
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Solution 3. This is in fact the same convolutional code we considered in class, except
for the fact that the upper and lower branches are exchanged. Therefore the encoding
circuit (except for the switching of the even and odd bits), the detour flow diagram, and
the generating function counting detours are identical.

(i) The first 10 bits of the output are x1 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 1, x6 = 0, x7 =
1, x8 = 0, x9 = 1, x10 = 0, . . . .

(ii) We have T (I,D) = ID5

1−2ID . To check, we see that the first few terms are ID5+2I2D6+
4I3D7 + · · · . The very first term corresponds to the input of one 1 followed by two
0s.

(iii) As stated, we can assume that d is even, so that d/2 is an integer. In more detail the
derivation of the bound is the following.

P{u→ v}
(a)

≤
d∑

e=d/2

(
d

e

)
εe(1− ε)d−e

(b)
= (1− ε)d

d∑
e=d/2

(
d

e

)(
ε/(1− ε)

)e
(c)

≤ (1− ε)d(ε/(1− ε))d/2
d∑

e=d/2

(
d

e

)
(d)

≤ (1− ε)d(ε/(1− ε))d/22d/2
(e)
=

1

2

(
2
√

(1− ε)ε
)︸ ︷︷ ︸

B

d
.

Step (a) follows since we will make a mistake only if we flip at least d/2 of the bits
where u and v differ. For step (b) we just took out the common term (1− ε)d. Step
(c) follows since every term in the sum contains at least the factor (ε/(1 − ε))d/2

and ε/(1 − ε) < 1. Step (d) follows since
∑d

e=0

(
d
e

)
= 2d, the terms of this sum are

symmetric around e = d/2, and we include slightly more than half this total sum.
For step (e) we just collected terms to clean up the result.

(iv) The upper bound is identical to the one we derived during class for the AWGNC,
except that we have to use now for z the proper Bhattacharyya value, namely z =

2
√
ε(1− ε) (instead of z = e−

Es
2σ2 ), and that we can add a factor 1/2 if we want a

tighter bound. In total we get

Pb ≤
1

2

∂T (I,D)

∂I

∣∣∣
I=1;D=z

.
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Solution 4.

(i) Using the Parseval identity, 〈wE,0, wE,1〉 =
∫
t
wE,0(t)w

∗
E,1(t)dt =

∫
wE,0,F(f)w∗E,1,F(f)df ,

wE,0,F(f) = rect(f), and wE,1,F(f) = rect(f − f0). Thus if f0 ≥ 1, rect(f) and
rect(f − f0) do not overlap and wE,0 and wE,1 will be orthogonal.

(ii) We know that
under H = i : RE(t) = wE,i(t) +NE(t)

(where NE(t) is complex-valued white Gaussian noise). For the optimal decision one
has to project the received signal onto the orthonormal basis spanned by {wE,0, wE,1}.
In this case since wE,0 and wE,1 are orthogonal themselves (and both have unit norm)
the basis waveforms are simply {wE,0, wE,1}. For Y1 to be the projection of the
received signal on wE,0 we need to have

h1(t) = w∗E,0(1− t) = sinc(1− t).

For the similar reason,

h2(t) = w∗E,1(1− t) = exp(j2πf0(1− t)) sinc(1− t) = exp(−j2πf0t) sinc(1− t),

(since f0 = 1).

(iii) Using the matched filters we found in (ii) the hypothesis testing problem can be
formulated as

under H = i : (Y1, Y2) = ci + (Z1, Z2),

where Z = (Z1, Z2) ∼ NC(0, N0I2) and c1 = (1, 0) and c2 = (0, 1). Since the imaginary
parts of c1 and c2 are identical, the distribution of ={Y } = (={Y1},={Y2}) remains
the same under either hypothesis, thus, it is irrelevant. The MAP decision rule is
minimum distance (since the two hypotheses are equally likely):

ĤMAP(Y1, Y2) =

{
0 if <{Y1} ≥ <{Y2};
1 if <{Y1} ≤ <{Y2}.

(iv) The noiseless output of the Hilbert filter is ŵi(t) = wE,i(t) exp(j2πfct) (since wi(t) =√
2
2

[
wE,i(t) exp(j2πfct) + w∗E,i(t) exp(−j2πfct)

]
and the filter h>(t) removes the sec-

ond term because it lies on the negative part of the frequency spectrum). Thus, in
presence of a phase difference, the noiseless output of the demodulator equals

exp(−j(2πfct+ θ))ŵi(t) = exp(−jθ)wE,i(t)

Therefore,
under H = i : RE(t) = wE,i(t) exp(−jθ) +NE(t),

(where NE(t) is complex-valued white Gaussian noise). Hence,

under H = i : (Y1, Y2) = exp(−jθ)ci + (Z1, Z2), i = 0, 1,

and (since ci’s are real-valued),

under H = i : (<{Y1},<{Y2}) = cos(θ)ci + (Z1,R, Z2,R), i = 0, 1,
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where (Z1,R, Z2,R) ∼ N (0, N0

2
I2). Consequently,

Pr{error|H = 0} = Pr{cos(θ) + Z1,R ≤ Z2,R}
= Pr{Z2,R − Z1,R ≥ cos(θ)}
= Q(cos(θ)/

√
N0),

where the last equality follows since Z2,R − Z1,R ∼ N (0, N0). Similarly we get

Pr{error|H = 1} = Q(cos(θ)/
√
N0)

thus, Pe = Q(cos(θ)/
√
N0). We see that as θ → π

2
, Pe → Q(0) = 1

2
(this means that

the receiver is not performing better than a random coin-flip!).

(v) It is obvious that when we have perfect synchronization (i.e., θ = 0), the receiver
using | · | instead of <{·} cannot have a better performance than what we found in
(iii) because the latter is the MAP rule which is optimal.

(vi) Let us look at |Y1|2 under the hypothesis H = i:

|Y1|2 = 〈Y1, Y ∗1 〉
= 〈e−jθci,1 + Z1, e

jθci,1 + Z∗1〉
= c2i,1 + |Z1|2 + 2ci,1<{ejθZ1}

where we have used the fact that ci,1 ∈ R. In the above, the only term that depends
on θ is the last term. We argue that the distribution of 2<{ejθci,1Z1} is independent
of θ. Since Z1 = Z1,R + jZ1,I ,

2ci,1<{ejθZ1} = 2ci,1 [cos(θ)Z1,R − sin(θ)Z1,I ] .

As Z1,R and Z1,I are independent N (0, N0

2
) random variables, the term inside the

square brackets is a N (0, N0

2
) random variable (whose distribution is obviously in-

dependent of θ). A similar reasoning shows that the distribution of |Y2|2 is also
independent of θ. Since, conditioned on H = i, Y1 and Y2 are statistically indepen-
dent we conclude that the distribution of (|Y1|2, |Y2|2) does not depend on θ. Thus
this sub-optimal receiver is insensitive to phase offsets.
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