ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 18	Principles of Digital Communications
Midterm Exam	Apr. 12, 2017

- 3 problems, 75 points, 165 minutes
- This is a closed book exam.
- Only one two-sided handwritten A4 page of summary allowed.

Good Luck!

PLEASE WRITE YOUR NAME ON EACH SHEET OF YOUR ANSWERS

PLEASE WRITE THE SOLUTION OF EACH PROBLEM ON A SEPARATE SHEET

PROBLEM 1. (20 points) Suppose that the relationship between the input $(x_1, x_2) \in \mathbb{R}^2$ and output $(Y_1, Y_2) \in \mathbb{R}^2$ of a communication channel is given by

$$Y_1 = H_{11}x_1 + H_{12}x_2 + Z_1,$$

$$Y_2 = H_{21}x_1 + H_{22}x_2 + Z_2,$$

where $H_{11}, H_{12}, H_{21}, H_{22}, Z_1, Z_2$ are i.i.d., and $\mathcal{N}(0, 1)$.

- (a) Show that when $x = (x_1, x_2)$ is the input, the output $Y = (Y_1, Y_2)$ is distributed as $\mathcal{N}(0, (1 + ||x||^2)I)$, where $||x||^2 = x_1^2 + x_2^2$.
- (b) Suppose *m* messages are mapped to *m* codewords c_0, \ldots, c_{m-1} to be inputs to the channel above. Show that $T = Y_1^2 + Y_2^2$ is a sufficient statistic.
- (c) Show that when c_i is sent, T is exponentially distributed with rate $\lambda_i = \frac{1}{2(1 + ||c_i||^2)}$. (I.e., $\Pr(T > t | H = i) = e^{-\lambda_i t}$ for every $t \ge 0$.)

Consider now the following four constellations to transmit 1 bit of information over this channel:

$$1: c_0 = (0, 0), c_1 = (5, 0).$$

$$2: c_0 = (5, 0), c_1 = (0, 5).$$

$$3: c_0 = (5, 0), c_1 = (-5, 0).$$

$$4: c_0 = (0, 0), c_1 = (4, 3).$$

Let P_{e1} , P_{e2} , P_{e3} , P_{e4} be the error probabilities of the these four constellations when the bit sent is equally likely to be 0 or 1.

(d) What can you say about the ordering of P_{e1} , P_{e2} , P_{e3} , P_{e4} , $0, \frac{1}{2}$ and 1. I.e., what equality and inequality relations are there between P_{ei} and P_{ej} , and how each probability of error compare to $0, \frac{1}{2}$ and 1 respectively? PROBLEM 2. (25 points) Consider the following set of waveforms to send two bits of information:

The waveforms are sent over an AWGN channel with noise spectral density $N_0/2$. The four waveforms are equiprobable.

- (a) Find an orthonormal basis for the span of $\{w_0, w_1, w_2, w_3\}$ in which the basis functions are time shifts of each other.
- (b) Draw an optimal receiver implementation that uses only a single matched filter.
- (c) Find the error probability (in terms of T and N_0) of the implementation in (b).
- (d) Suppose that the receiver's clock is wrong by T/2 seconds and the matched filter output is sampled with T/2 seconds delay, but the receiver is unaware of this fact. Find the error probability.
- (e) Suppose that the receiver's clock is correct, but the transmitter's clock runs at twice the rate, i.e., the transmitted signals are $\tilde{w}_i(t) = w_i(2t)$ instead of $w_i(t)$. Find the error probability.

PROBLEM 3. (30 points) Suppose we have a constellation with m = 3 points:

$$c_0 = (0, 0, 0), c_1 = (-2, 2, 0) \text{ and } c_2 = (-2, 0, 2).$$

As usual, transmitted waveforms are given by

$$w_i(t) = \sum_{j=1}^3 c_{ij}\phi_j(t).$$

However, while $\|\phi_1\| = \|\phi_2\| = \|\phi_3\| = 1$, the signals ϕ_1, ϕ_2, ϕ_3 are not orthogonal, and we have $\langle \phi_i, \phi_j \rangle = -1/2$ for $i \neq j$.

- (a) Find $\|\phi_1 + \phi_2 + \phi_3\|^2$. Are ϕ_1, ϕ_2, ϕ_3 linearly independent?
- (b) Apply the Gram-Schmidt procedure on $\{\phi_1, \phi_2, \phi_3\}$ to find a basis $\{\psi_i : i = 1, ..., n\}$. What is the dimension *n* that results from this procedure?
- (c) What is the signal constellation $\tilde{c}_0, \tilde{c}_1, \tilde{c}_2$ in the ψ -basis? (I.e., find $\tilde{c}_i = (\tilde{c}_{i1}, \dots, \tilde{c}_{in})$ so that $w_i(t) = \sum_{j=1}^n \tilde{c}_{ij} \psi_j(t)$.)
- (d) Find a translation of the constellation so that it has minimum average energy.
- (e) Suppose $f_0(y)$, $f_1(y)$, f(y) are the probability density functions of Gaussian random vectors $N(\mu_0, \sigma^2 I)$, $N(\mu_1, \sigma^2 I)$ and $N\left(\frac{\mu_0 + \mu_1}{2}, \sigma^2 I\right)$. Show that

$$f_0(y)f_1(y) = f(y)^2 \exp\left(-\frac{\|\mu_0 - \mu_1\|^2}{4\sigma^2}\right).$$

(f) Assuming that the three waveforms are equiprobable, and assuming that the transmission takes place over an AWGN channel with noise spectral density 1/2, find an upper bound on the probability of error of the constellation in (d) using the union Bhattacharyya bound.