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Solution 1.

(a) Given that H11, H12, H21, H22, Z1, Z2 are i.i.d., then Y1 and Y2 are i.i.d. Moreover,
given x = (x1, x2), Yi = Hi1x1 +Hi2x2 + Zi is the sum of three independent Gaussian
random variables distributed asN (0, x21), N (0, x22) andN (0, 1). Hence, Yi is a Gaussian
random variable with zero mean and variance equal to 1+x21+x

2
2 = 1+‖x‖2. Therefore,

Y = (Y1, Y2) is distributed as N (0, (1 + ‖x‖2)I).

(b) We use the Neyman–Fisher factorization theorem to prove that T = Y1 + Y2 is a
sufficient statistic. For that we denote by H the hypothesis on the message. Hence,
the likelihood probability given that H = i can be written as

fY |H(y|i) =
1

2π (1 + ‖ci‖2)
exp

(

− ‖y‖2
2 (1 + ‖ci‖2)

)

︸ ︷︷ ︸

gi(Y 2

1
+Y 2

2 )

× 1
︸︷︷︸

h(Y )

(c)

P (T > t|H = i)
(a)
=

∫ ∫

D

f(Y1,Y2)|H(y1, y2|i)dy1dy2

=

∫ ∫

D

1

2π(1 + ‖ci‖2)
exp

(

− y21 + y22
2(1 + ‖ci‖2)

)

dy1dy2

(b)
=

∫ 2π

0

∫ ∞

√
t

r

2π(1 + ‖ci‖2)
exp

(

− r2

2(1 + ‖ci‖2)

)

dθdr

=

∫ ∞

√
t

r

1 + ‖ci‖2
exp

(

− r2

2(1 + ‖ci‖2)

)

dr

= exp

(

− t

2(1 + ‖ci‖2)

)

where,

• in (a), the region D is the region outside the yellow disk of radius
√
t as shown in

Fig. 1.

• in (b), we switch to polar coordinates in order to solve the integral.

(d) Since Pe1, Pe2, Pe3 and Pe4 are probabilities, then we know that 0 ≤ Pe1, Pe2, Pe3, Pe4 ≤
1. Moreover, given that the decision rule used is the MAP decoder then the probability
of error can’t be bigger than 1

2
. This is due to the fact that the MAP rule minimizes

the probability of error, and hence its corresponding probability of error (PMAP ) is less



than or equal than the probability obtained with random decision (PRND). Formally,

PMAP ≤ PRND

=
1

2
P(error occured|H = 0) +

1

2
P(error occured|H = 1)

=
1

2
× 1

2
+

1

2
× 1

2

=
1

2

Therefore, we get 0 ≤ Pe1, Pe2, Pe3, Pe4 ≤ 1
2
.

To order the above four probabilities, we will use the sufficient statistic T = Y 2
1 + Y 2

2

and the fact that the likelihood probabilities have exponential distributions: fT |H(t|i) =
1

2(1+‖ci‖2) exp
(

− t
2(1+‖ci‖2)

)

. Moreovoer, since the priors are equiprobable then the MAP

rule is equivalent to the ML rule.

• If c0 = (0, 0) and c1 = (5, 0), f
(1)
T |H(t|0) = 1

2
exp

(
− t

2

)
6= f

(1)
T |H(t|1) = 1

52
exp

(
− t

52

)
.

Hence, in this case Pe1 <
1
2
.

• If c0 = (5, 0) and c1 = (0, 5), f
(2)
T |H(t|0) = 1

52
exp

(
− t

52

)
= f

(2)
T |H(t|1) = 1

52
exp

(
− t

52

)
.

Hence, in this case Pe2 =
1
2
.

• If c0 = (5, 0) and c1 = (−5, 0), f
(3)
T |H(t|0) = 1

52
exp

(
− t

52

)
= f

(3)
T |H(t|1) = 1

52
exp

(
− t

52

)
.

Hence, in this case Pe3 = Pe2 =
1
2
.

• If c0 = (0, 0) and c1 = (4, 3), f
(4)
T |H(t|0) = 1

2
exp

(
− t

2

)
6= f

(4)
T |H(t|1) = 1

52
exp

(
− t

52

)
.

Hence, in this case Pe4 <
1
2
. Moreover, we notice that f

(1)
T |H(t|0) = f

(4)
T |H(t|0) and

f
(1)
T |H(t|1) = f

(4)
T |H(t|1). Therefore, in cases (1) and (4) we get the same decision

rule and thus the same error probability. Hence, Pe4 = Pe1.

Finally, 0 ≤ Pe1 = Pe4 < Pe2 = Pe3 =
1
2
.

Solution 2.

(a) The orthonormal basis is given in Fig. 2. From this figure, we see that v1(t) = v0(t−T )
and ‖v0(t)‖2 = ‖v1(t)‖2 = 1.

(b) The optimal receiver will use the matched filter v0(T − t) sampled at times T and 2T
as seen in Fig. 3.

Y1

Y2

√
t

Figure 1: Plotting the integration region of question (c)
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t

v0(t)

1√
T

T
t

v1(t)

1√
T

T 2T

Figure 2: Orthonormal basis of Exercise 2-(a)

v0(T − t)

T

2T

Figure 3: Block diagram for Exercise 2-(b)

(c)

w0(t) =
√
Tv0(t) +

√
Tv1(t)

w1(t) =
√
Tv0(t)−

√
Tv1(t)

w2(t) = −
√
Tv0(t)−

√
Tv1(t)

w3(t) = −
√
Tv0(t) +

√
Tv1(t)

Since the priors are equiprobable and the channel is AWGN then we know from the
course that the decision rule is minimum distance, as shown in the figure below.

•
c0

R0

•
c3

R3

•
c2

R2

•
c1

R1

y0

y1

−2
√
T −

√
T

√
T 2

√
T

−2
√
T

−
√
T

√
T

2
√
T

Hence the error probability is equal to the error probability given we have sent w0(t).

Formally, denoting Y
(i)
0 = 〈wi(t) + Z(t), v0(t)〉 and Y

(i)
1 = 〈wi(t) + Z(t), v1(t)〉, where
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Z(t) is the white noise with spectral density N0/2 and i = 0, 1, 2, 3, we have:

Pe = Pe(0) = 1− P(correct decision|H = 0)

= 1− P(Y
(0)
0 ≥ 0, Y

(0)
1 ≥ 0)

(a)
= 1− P(Y

(0)
0 ≥ 0)2

(b)
= 1−Q

(

−
√

2T

N0

)2

where (a) is due to the fact that Y
(0)
0 and Y

(0)
1 are i.i.d, and (b) is due to the fact that

Y0 ∼ N
(√

T ,N0/2
)

.

(d) In this case the receiver keeps applying the decision rule in part (b) but the received
signals are projected on delayed versions of the basis vectors, ṽ0(t) = v0

(
t− T

2

)
and

ṽ1(t) = v1
(
t− T

2

)
= v0

(
t− 3T

2

)
. The new constellation becomes

•
c̃0

R0

•
c̃3

R3

•
c̃2

R2

•
c̃1

R1

y0

y1

−2
√

T −
√
T

√
T 2

√
T

−2
√

T

−
√
T

√
T

2
√

T

By symmetry we see that the error probabilities given H = 0 and H = 2 are equal
(Pe(0) = Pe(2)) and that the error probabilities given H = 1 and H = 3 are also equal
(Pe(1) = Pe(3)). Therefore, the error probability is given by:

Pe =
1

2
Pe(0) +

1

2
Pe(1)

=
1

2
(1− P(correct decision|H = 0)) +

1

2
(1− P(correct decision|H = 1))

=
1

2

(

1− P

(

Y
(0)
0 ≥ 0

)

P

(

Y
(0)
1 ≥ 0

))

+
1

2

(

1− P

(

Y
(1)
0 ≥ 0

)

P

(

Y
(1)
1 ≤ 0

))

(a)
=

1

2

(

1−Q

(

−
√

2T

N0

)

Q

(

−
√

T

2N0

))

+
1

2

(

1−Q(0)Q

(

−
√

T

2N0

))

= 1− 1

2
Q

(

−
√

T

2N0

)(

1

2
+Q

(

−
√

2T

N0

))

where the equality in (a) is due to the fact that Y
(0)
0 ∼ N

(√
T ,N0/2

)

, Y
(0)
1 ∼

N
(√

T
2
, N0/2

)

, Y
(1)
0 ∼ N (0, N0/2) and Y

(1)
1 ∼ N

(

−
√
T
2
, N0/2

)

.
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(e) In this case we notice that the suppot of w̃i(t) is in the interval [0, T ]. The new
transmitted waveforms are

t

w̃0(t)

1

−1

T
t

w̃1(t)

1

−1

T

t

w̃2(t)

1

−1

T
t

w̃3(t)

1

−1

T

Since the support of v1(t) = v0(t − T ) is in [T, 2T ], then the projection of the above
waveforms on this vector is 0. Projecting the above waveforms on v0(t) we get the
following constellation

•
c̃0

R0

•
c̃3

R3

•
c̃2

R2

•
c̃1

R1

y0

y1

−2
√

T −
√
T

√
T 2

√
T

−2
√

T

−
√
T

√
T

2
√

T

By symmetry we see that the error probabilities given H = 0 and H = 2 are equal
(Pe(0) = Pe(2)) and that the error probabilities given H = 1 and H = 3 are also equal
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(Pe(1) = Pe(3)). Therefore, the error probability is given by:

Pe =
1

2
Pe(0) +

1

2
Pe(1)

=
1

2
(1− P(correct decision|H = 0)) +

1

2
(1− P(correct decision|H = 1))

=
1

2

(

1− P

(

Y
(0)
0 ≥ 0

)

P

(

Y
(0)
1 ≥ 0

))

+
1

2

(

1− P

(

Y
(1)
0 ≥ 0

)

P

(

Y
(1)
1 ≤ 0

))

(a)
=

1

2

(

1−Q

(

−
√

2T

N0

)

Q (0)

)

+
1

2
(1−Q(0)Q (0))

=
7

8
− 1

4
Q

(

−
√

2T

N0

)

where the equality in (a) is due to the fact that Y
(0)
0 ∼ N

(√
T ,N0/2

)

, Y
(0)
1 ∼

N (0, N0/2), Y
(1)
0 ∼ N (0, N0/2) and Y

(1)
1 ∼ N (0, N0/2).

Solution 3.

(a)

‖φ1(t) + φ2(t) + φ3(t)‖2 = 〈φ1(t) + φ2(t) + φ3(t), φ1(t) + φ2(t) + φ3(t)〉
= 〈φ1(t), φ1(t)〉+ 〈φ1(t), φ2(t)〉+ 〈φ1(t), φ3(t)〉
+ 〈φ2(t), φ1(t)〉+ 〈φ2(t), φ2(t)〉+ 〈φ2(t), φ3(t)〉
+ 〈φ3(t), φ1(t)〉+ 〈φ3(t), φ2(t)〉+ 〈φ3(t), φ3(t)〉
(a)
= 3− 6× 1

2
= 0

where (a) is due to the fact that ‖φi‖2 = 1 and 〈φi, φj〉 = −1
2
for i, j = 1, 2, 3 and i 6= j.

The above equality implies that φ1(t) +φ2(t) + φ3(t) = 0 which means that the signals
φ1(t), φ2(t), φ3(t) are not linearly independent.

(b) Since φ1(t), φ2(t), φ3(t) are linearly dependent, the space they span will have at most
dimension 2. Now let us apply Gram–Schmidt procedure to find a basis for this span

ψ1(t) = φ1(t)

φ2(t) =
φ2(t)− 〈φ2(t), φ1(t)〉ψ1(t)

‖φ2(t)− 〈φ2(t), φ1(t)〉ψ1(t)‖

=
φ2(t) +

1
2
φ1(t)

‖φ2(t) +
1
2
φ1(t)‖

Now,

‖φ2(t) +
1

2
φ1(t)‖2 = 〈φ2(t),

1

2
φ1(t)〉+ 〈φ2(t), φ2(t)〉+

1

2
〈φ1(t), φ2(t)〉+

1

4
〈φ1(t), φ1(t)〉

=
3

4
6= 0

So ψ2(t) =
2√
3
φ2(t) +

1√
3
φ1(t) 6= 0.

Hence the dimension n = 2.
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(c) We know that

φ1(t) = ψ1(t)

φ2(t) =

√
3

2
ψ2(t)−

1

2
ψ1(t)

φ3(t) = −φ1(t)− φ2(t)

= −ψ1(t)−
√
3

2
ψ2(t) +

1

2
ψ1(t)

= −1

2
ψ1(t)−

√
3

2
ψ2(t)

Hence,

wi(t) =
3∑

j=1

cijφj(t)

= ci1φ1 + ci2φ2 + ci3φ3

= ci1ψ1(t) + ci2

√
3

2
ψ2(t)−

ci2
2
ψ1(t)−

ci3
2
ψ1(t)−

√
3

2
ci3ψ2(t)

= ψ1(t)
(

ci1 −
ci2
2

− ci3
2

)

+ ψ2(t)

(√
3

2
(ci2 − ci3)

)

So c̃i =
((
ci1 − ci2

2
− ci3

2

)
,
√
3
2
(ci2 − ci3)

)

and

c̃0 = (0, 0)

c̃1 = (−3,
√
3)

c̃2 = (−3,−
√
3)

(d) Assuming the waveforms are chosen uniformly at random, the mean of the constellation
found in (c) is given by m = 1

3
c̃0 +

1
3
c̃1 +

1
3
c̃2 = (−2, 0). Hence the new constellation

becomes

ĉ0 = c̃0 −m = (2, 0)

ĉ1 = c̃1 −m = (−1,
√
3)

ĉ2 = c̃2 −m = (−1,−
√
3)
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(e)

f0(y)f1(y) =
1

(2πσ2)
d
2

exp

(

−‖y − µ0‖2
2σ2

)
1

(2πσ2)
d
2

exp

(

−‖y − µ1‖2
2σ2

)

=

(

1

(2πσ2)
d
2

)2

exp

(

− 1

2σ2

(
‖y − µ0‖2 + ‖y − µ1‖2

)
)

=

(

1

(2πσ2)
d
2

)2

exp

(

− 1

2σ2

(
yTy − 2yTµ0 + µT

0 µ0 + yTy − 2yTµ1 + µT
1 µ1

)
)

=

(

1

(2πσ2)
d
2

)2

exp

(

− 1

2σ2

(
2‖y‖2 − 2yT (µ0 + µ1) + ‖µ0‖2 + ‖µ1‖2

)
)

=

(

1

(2πσ2)
d
2

)2 [

exp

(

− 1

2σ2

(

‖y − µ0 + µ1

2
‖2
))]2

× exp

(

− 1

2σ2

(

‖µ0‖2 + ‖µ1‖2 −
‖µ0 + µ1‖2

2

))

= f(y)2 exp

(

− 1

2σ2

(

‖µ0‖2 + ‖µ1‖2 −
‖µ0 + µ1‖2

2

))

= f(y)2 exp

(

− 1

2σ2

(
1

2
‖µ0‖2 +

1

2
‖µ1‖2 − µT

0 µ1

))

= f(y)2 exp

(

−‖µ0 − µ1‖2
4σ2

)

where d is the dimension of the random vectors.

(f) First notice that we have three types of likelihood probabilities: fY |H(y|0) = f0(y)
which is the density function of the Gaussian random vector N

(
ĉ0,

1
2

)
, fY |H(y|1) =

f1(y) which is the density function of the Gaussian random vectorN
(
ĉ1,

1
2

)
, fY |H(y|2) =

f2(y) which is the density function of the Gaussian random vector N
(
ĉ2,

1
2

)
. Hence,

applying our previous result we get:

f0(y)f1(y) = fY0
(y)2 exp

(

−‖ĉ0 − ĉ1‖2
2

)

= fY0
(y)2 exp

(

−12

2

)

= fY0
(y)2 exp (−6)

where Y0 ∼ N
(
ĉ0+ĉ1

2
, 1
2

)
. Similarly,

f0(y)f2(y) = fY1
(y)2 exp

(

−‖ĉ0 − ĉ2‖2
2

)

= fY1
(y)2 exp (−6)

f1(y)f2(y) = fY2
(y)2 exp

(

−‖ĉ1 − ĉ2‖2
2

)

= fY2
(y)2 exp (−6)

where Y1 ∼ N
(
ĉ0+ĉ2

2
, 1
2

)
and Y2 ∼ N

(
ĉ2+ĉ1

2
, 1
2

)
.
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Assuming the priors are equiprobable and using the Bhattacharyya bound, the error
probability is bounded by:

Pe ≤
1

3

(∫

y∈R2

√

f0(y)f1(y)dy +

∫

y∈R2

√

f0(y)f2(y)dy +

∫

y∈R2

√

f1(y)f0(y)dy

+

∫

y∈R2

√

f1(y)f2(y)dy +

∫

y∈R2

√

f2(y)f0(y)dy +

∫

y∈R2

√

f2(y)f1(y)dy

)

=
2

3

(∫

y∈R2

√

f0(y)f1(y)dy +

∫

y∈R2

√

f0(y)f2(y)dy +

∫

y∈R2

√

f2(y)f1(y)dy

)

=
2

3

(∫

y∈R2

fY0
(y) exp (−3) dy +

∫

y∈R2

fY1
(y) exp (−3) dy +

∫

y∈R2

fY2
(y) exp (−3) dy

)

=
2

3
(3 exp(−3))

= 2 exp(−3)
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