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Solution 1.

(a)

Rξ(τ) =

∫ ∞
−∞

ξ(t+ τ)ξ∗(t) dt = 〈ξ(t+ τ), ξ(t)〉

(1)

≤ ‖ξ(t+ τ)‖ · ‖ξ(t)‖ = ‖ξ‖ · ‖ξ‖ = ‖ξ‖2 (2)
= Rξ(0),

where (1) follows from the Cauchy–Schwarz inequality and (2) from the fact that

Rξ(0) =

∫ ∞
−∞

ξ(t)ξ∗(t) dt = ||ξ||2.

(b)

Rξ(−τ) =

∫ ∞
−∞

ξ(t− τ)ξ∗(t) dt

=

(∫ ∞
−∞

ξ(t)ξ∗(t− τ)dt

)∗
t→t+τ

= R∗ξ(τ).

(c)

Rξ(τ) =

∫ ∞
−∞

ξ(t+ τ)ξ∗(t) dt

t→t−τ
=

∫ ∞
−∞

ξ(t)ξ∗(t− τ) dt

= ξ(τ) ? ξ∗(−τ).

(d) By Parseval’s identity, we have

Rξ(τ) = 〈ξ(t+ τ), ξ(t)〉
= 〈ξF(f)ej2πfτ , ξF(f)〉

=

∫ ∞
−∞

ξF(f)ξ∗F(f)ej2πfτ df

=

∫ ∞
−∞
|ξF(f)|2ej2πfτ df,

which is the inverse Fourier transform of |ξF(f)|2.



Solution 2.

(a) We have

y(t) =

∫ ∞
−∞

w(τ)ψ(τ − t)dτ.

The samples of this waveform at multiples of T are

y(mT ) =

∫ ∞
−∞

w(τ)ψ(τ −mT )dτ

=

∫ ∞
−∞

[
K∑
k=1

dk ψ(τ − kT )

]
ψ(τ −mT )dτ

=
K∑
k=1

dk

∫ ∞
−∞

ψ(τ − kT )ψ(τ −mT )dτ

=
K∑
k=1

dk1{k = m}

= dm.

(b) Let w̃(t) be the channel output. Then, ỹ(t) is w̃(t) filtered by ψ(−t). We have

w̃(t) = w(t) + ρw(t− T )

and

ỹ(t) =

∫ ∞
−∞

w̃(τ)ψ(τ − t)dτ.

The samples of this waveform at multiples of T are

ỹ(mT ) =

∫ ∞
−∞

w̃(τ)ψ(τ −mT )dτ

=

∫ ∞
−∞

[w(τ) + ρw(τ − T )]ψ(τ −mT )dτ

=

∫ ∞
−∞

[
K∑
k=1

dk ψ(τ − kT )

]
ψ(τ −mT )dτ +

ρ

∫ ∞
−∞

[
K∑
k=1

dk ψ(τ − T − kT )

]
ψ(τ −mT )dτ

=
K∑
k=1

dk1{k = m}+ ρ
K∑
k=1

dk1{k = m− 1}

= dm + ρdm−1.

(c) From the symmetry of the problem, we have

Pe = Pe(1) = Pe(−1).
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Pe(1) = Pr{D̂k = −1|Dk = 1, Dk−1 = −1}Pr{Dk−1 = −1}+

Pr{D̂k = −1|Dk = 1, Dk−1 = 1}Pr{Dk−1 = 1}

=
1

2
(Pr{Yk < 0|Dk = 1, Dk−1 = −1}+ Pr{Yk < 0|Dk = 1, Dk−1 = 1})

=
1

2
(Pr{1− α + Zk < 0}+ Pr{1 + α + Zk < 0})

=
1

2
(Pr{Zk < −1 + α}+ Pr{Zk < −1− α})

=
1

2

[
Q

(
1− α
σ

)
+Q

(
1 + α

σ

)]
.

Solution 3.

(a) We can easily see that

E[Xi|Xi−1] =
1

2
Xi−1 +

1

2
(−Xi−1) = 0.

Consequently (using the law of total expectation)

E[Xi] = E[E[Xi|Xi−1]] = 0.

Therefore,
KX [k] = E[(Xi − E[Xi])(Xi−k − E[Xi−k])

∗] = E[XiX
∗
i−k]

Moreover, using the fact that Xi = Xi−1 × (−1)Di repeatedly, we can write

Xi = Xi−k ×
i∏

j=i−k+1

(−1)Dj

Thus,

KX [k] = E[XiX
∗
i−k]

= E

[
Xi−k

i∏
j=i−k+1

(−1)DjX∗i−k

]
(a)
= E[Xi−kX

∗
i−k]

i∏
j=i−k+1

E[(−1)Dj ]

= E
i∏

j=i−k+1

E[(−1)Dj ]

(b)
=

{
E if k = 0,

0 otherwise.

where (a) follows from the independence of data bits {Di} and (b) since E[(−1)Di ] = 0.

(b) By sampling the signal at the output of the matched filter, Y (t), at multiples of T , we
obtain

Y (iT ) = Xi + Zi,
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where Zi is normally distributed with zero mean and variance N0/2. By looking at the
definition of Xi, we see that it is equal to Xi−1 if Di = 0 and equal to −Xi−1 if Di = 1.
Therefore a simple decoder estimates that D̂i = 0 if Yi and Yi−1 have the same sign,
and D̂i = 1 otherwise. This is equivalent to

YiYi−1
D̂i=0

R
D̂i=1

0.

(c) We first compute the error probability when Di = 0. If Xi−1 =
√
E , then Xi =

√
E .

When we decode, we will make an error if the signal (Yi−1, Yi)
T is in the second or

fourth quadrants (shaded regions in the following figure).

Xi−1

Xi

(
√
E ,
√
E)T

Due to the symmetry of the problem, the probability for this to happen is two times
the probability for (Yi−1, Yi)

T to be in the second quadrant:

Pr{Zi−1 < −
√
E ∩ Zi > −

√
E} = Q

(√
E

N0/2

)
Q

(
−

√
E

N0/2

)
,

so,

Pe(Di = 0|Di−1 = 0) = 2Q

(√
E

N0/2

)
Q

(
−

√
E

N0/2

)
.

Again, due to the symmetry of the problem,

Pe(Di = 0|Di−1 = 1) = Pe(Di = 0|Di−1 = 0) = Pe(Di = 0),

and
Pe(Di = 1) = Pe(Di = 0);

hence

Pe = 2Q

(√
E

N0/2

)
Q

(
−

√
E

N0/2

)
.

Solution 4. Because ψ(t) is real, its Fourier transform is conjugate symmetric (ψF(f) =
ψ∗F(−f)).

From the condition
∫
ψ(t−kT )ψ(t− lT )dt = 1{k = l} for every pair k, l, it follows that

|ψF(f)|2 satisfies Nyquist’s criterion with parameter T ,
∑

k∈Z |ψF(f − k/T )|2 = T . On the
other hand, since ψF(f) = 0 for |f | > 1

T
, |ψF(f)|2 must have band-edge symmetry.

Putting everything together, we obtain the complete plot of |ψF(f)|2.
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1
T− 1

T

Solution 5. From Theorem 5.6, we know that {ψ(t− jT )}∞j=−∞ is an orthonormal set if
and only if ∑

k∈Z

|ψF(f − k

T
)|2 = T.

(a) ∑
k∈Z

T1[ k
T
− 1

2T
, k
T
+ 1

2T ](f) = T ⇒ The Nyquist criterion is satisfied

⇒ ψ(t) is orthonormal to its time-translates by multiples of T .

(b) ∑
k∈Z

T

2
1[ k−1

T
, k+1

T ](f) = T ⇒ The Nyquist criterion is satisfied

⇒ ψ(t) is orthonormal to its time-translates by multiples of T .

(c) Because |ψF(f)|2 vanishes outside
[
− 1
T
, 1
T

]
, we verify whether the band-edge symmetry

is fulfilled, which is the case. Hence, the Nyquist criterion is satisfied and ψ(t) is
orthonormal to its time-translates by multiples of T . Note: the same reasoning can be
applied to (b).

(d) ψF(f) is a sinc function, therefore ψ(t) is a box function, equal to 1
T
1[−T

2
,T
2 ](t). This

is orthogonal to its time-translates by multiples of T , but does not have unit norm
(unless T = 1):

∫∞
−∞ |ψ(t)|2 dt = 1

T
.

Solution 6.

(a) We pass R(t) through a whitening filter h(t) such that the output R′(t) looks like the
output of an AWGN channel. After this step we are facing a familiar situation and can
implement a matched filter receiver. The receiver architecture is shown below:

w′0(T − t)

w′1(T − t)

w′i(T − t)

h(t)
R(t) R′(t)

...

t = T Y1

t = T Y2

t = T Yi

Select
argmaxi Yi −

‖w′i‖2
2

Ĥ...
...
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Let N ′(t) =
∫
N(α)h(t− α) dα be the noise at the output of the whitening filter. We

want to select the filter h(t) such that N0

2
= G(f)|hF(f)|2, i.e.,

|hF(f)|2 =
N0

2G(f)
.

The output of the filter is

R′(t) =

∫
R(α)h(t− α) dα =

∫
wi(α)h(t− α) dα +

∫
N(α)h(t− α) dα

= w′i(t) +N ′(t),

where N ′(t) is white Gaussian noise and w′i(t) =
∫
wi(α)h(t−α) dα. We need to design

the matched filter for the signals w′i(t).

(b) To minimize both the noise and the energy of the signal, we need to select an antipodal
signal pair that is frequency-limited to [a, b] and has energy E .
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