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Problem 1. A communication system uses bit-by-bit on a pulse train to communicate at
1 Mbps using a rectangular pulse. The transmitted signal is of the form∑

j

Bj1[0,Ts)(t− jTs),

where Bj ∈ {±b}. Determine the value of b needed to achieve bit-error probability Pb =
10−5 knowing that the channel corrupts the transmitted signal with additive white Gaussian
noise of power spectral density N0

2
= 10−2 W/Hz.

Problem 2. A discrete memoryless source produces bits at a rate 106 bps. The bits,
which are uniformly distributed and i.i.d., are grouped into pairs. Each pair is mapped
into a distinct waveform and sent over the AWGN channel of noise power spectral density
N0

2
. Specifically, the first two bits are mapped into one of the four waveforms shown below

with Ts = 2× 10−6 seconds, the next two bits are mapped onto the same set of waveforms
delayed by Ts, etc.
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(a) Describe an orthonormal basis for the inner product space W spanned by wi(t), i =
0, 1, 2, 3 and plot the signal constellation in Rn, where n is the dimensionality of W .

(b) Determine an assignment between pairs of bits and waveforms such that the bit-error
probability is minimized and derive an expression for Pb.

(c) Draw a block diagram of the receiver that achieves the above Pb using a single causal
filter.

(d) Determine the energy per bit Eb and the power of the transmitted signal.



Problem 3. m-ary frequency-shift keying (m-FSK) is a signaling method that uses signals
of the form

wi(t) =

√
2E
T

cos (2π (fc + i∆f) t)1[0,T )(t), i = 0, . . . ,m− 1,

where E , T, fc,∆f are fixed parameters, with ∆f � fc.

(a) Determine the average energy E . (You can assume fcT ∈ N.)

(b) Assuming fcT ∈ N, find the smallest value of ∆f that makes wi(t) orthogonal to wj(t)
when i 6= j.

(c) In practice the signals wi(t), i = 0, . . . ,m − 1 can be generated by changing the fre-
quency of a single oscillator. In passing from one frequency to another, a phase shift
θ is introduced. Again, assuming fcT ∈ N, determine the smallest value of ∆f that
ensures orthogonality between cos (2π (fc + i∆f) t+ θi) and cos (2π (fc + j∆f) t+ θj)
whenever i 6= j, regardless of θi and θj.

(d) Sometimes we do not have complete control over fc either, in which case it is not
possible to set fcT ∈ N. Argue that if we choose fcT � 1, then for all practical
purposes the signals will be orthogonal to one another if the condition found in part
(c) is met.

(e) Give an approximate value for the bandwidth occupied by the signal constellation.
How does the WT product behave as a function of k = log2(m)?

Problem 4. Consider using antipodal signaling, i.e. w0(t) = −w1(t), to communicate 1
bit across a Rayleigh fading channel that we model as follows. When wi(t) is transmitted
the channel output is

R(t) = Awi(t) +N(t),

where N(t) is white Gaussian noise of power spectral density N0

2
and A is a random variable

of probability density function

fA(a) = 2ae−a
2

1{a ≥ 0}.

We assume that, unlike the transmitter, the receiver knows the realization of A. We also
assume that the receiver implements a maximum likelihood decision, and that the signal’s
energy is Eb.

(a) Describe the receiver.

(b) Determine the error probability conditioned on the event {A = a}.

(c) Determine the unconditional error probability Pf . (The subscript stands for fading.)

(d) Compare Pf to the error probability Pe achieved by an ML receiver that observes
R(t) = mwi(t) +N(t), where m = E[A]. Comment on the different behavior of the two
error probabilities. For each of them, find the Eb

N0
value necessary to obtain the error

probability 10−5.
Hint: Use 1

2 exp
(
− 1

2x
2
)
as an approximation of Q(x).
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Problem 5. Consider the signal set shown below. Each signal is equally likely to be chosen
for transmission over an AWGN channel with power spectral density N0

2
.
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(a) Represent the signal set using the four basis signals given by ψ1(t) = ψ(t), ψ2(t) =
ψ(t− 1), ψ3(t) = ψ(t− 2), ψ4(t) = ψ(t− 3), where

ψ(t) =

{
1 0 ≤ t ≤ 1

0 otherwise

(b) Use the union bound to find an upper bound to the error probability for the optimal
receiver.

(c) Transform the four signals by a translation in order to obtain a minimum energy signal
set. Sketch the new signal set {w̃1(t), w̃2(t), w̃3(t), w̃4(t)}.

(d) Use the Gram–Schmidt procedure to find an orthogonal basis for {w̃1(t), w̃2(t), w̃3(t),
w̃4(t)}.

(e) Find the exact error probability of an optimal receiver designed for {w̃1(t), w̃2(t), w̃3(t),
w̃4(t)}.

(f) Based on your answer to (e), what can you say about the error probability of the
receiver in (b)?

Problem 6. This exercise complements what we have learned in Example 4.3 of the book.
Consider using the m-PAM constellation

{±a,±3a,±5a, . . . ,±(m− 1)a}

to communicate across the discrete-time AWGN channel of noise variance σ2 = 1. Our
goal is to communicate at some level of reliability, say with error probability Pe = 10−5.
We are interested in comparing the energy needed by PAM versus the energy needed by a
system that operates at channel capacity, namely at 1

2
log2

(
1 + Es

σ2

)
bits per channel use.

(a) Using the capacity formula, determine the energy per symbol ECs (k) needed to transmit
k bits per channel use. (The superscript C stands for channel capacity.) At any
rate below capacity, it is possible to make the error probability arbitrarily small by
increasing the codeword length. This implies that there is a way to achieve the desired
error probability at energy per symbol ECs (k).
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(b) Using single-shot m-PAM, we can achieve an arbitrarily small error probability by
making the parameter a sufficiently large. As the size m of the constellation increases,
the edge effects become negligible, and the average error probability approaches 2Q

(
a
σ

)
,

which is the probability of error conditioned on an interior point being transmitted.
Find the numerical value of the parameter a for which 2Q

(
a
σ

)
= 10−5.

Hint: Use 1
2 exp

(
− 1

2x
2
)
as an approximation of Q(x).

(c) Having fixed the value of a, we can use equation (4.1) of the book to determine the
average energy EPs (k) needed by PAM to send k bits at the desired error probability.
(The superscript P stands for PAM.) Find and compare the numerical values of EPs (k)
and ECs (k) for k = 1, 2, 4.

(d) Find limn→∞
ECs (k+1)
ECs (k)

and limn→∞
EPs (k+1)
EPs (k)

.

(e) Comment on PAM’s efficiency in terms of energy per bit for small and large values of
k. Comment also on the relationship between this exercise and Example 4.3.
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