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SOLUTION 1.

(a) We have a binary hypothesis testing problem: The hypothesis H is the answer you will

select, and your decision will be based on the observation of H; and Hp. Let H take
value 1 if answer 1 is chosen, and value 2 if answer 2 is chosen. In this case, we can
write the MAP decision rule as follows:

H=1
Pr{H=1H,=1,Hp=2} = Pr{H=2/H, =1 Hp=2}
H=2

From the problem setting we know the priors Pr{H = 1} and Pr{H = 2}; we can
also determine the conditional probabilities Pr{H, = 1|H = 1}, Pr{H, = 1|H = 2},
Pr{Hp = 2|H = 1} and Pr{Hp = 2|H = 2} (we have Pr{H, = 1|H = 1} = 0.9 and
Pr{H, = 1|H = 2} = 0.1). Introducing these quantities and using the Bayes rule we
can formulate the MAP decision rule as

Pr{H, =1 Hzp=2H=1}Pr{H =1} "' Pr{H, =1 Hp=2|H =2} Pr{H =2}

PT{HL: 1,]:]3:2} ﬁ<:2 PI"{]:IL: ]-7HR:2}

Now, assuming that the event {H, = 1} is independent of the event {Hz = 2} and
simplifying the expression, we obtain
) ) =1
Pr{H, =1|H =1}Pr{Hr =2|H =1} Pr{H =1} =
=2

Pr{H, = 1|H = 2} Pr{Hp = 2|H = 2} Pr{H = 2},
which is our final decision rule.

Evaluating the previous decision rule, we have

=1
09x03%x0.25 = 0.1x0.7x0.75,
H=2
which gives
=1
0.0675 = 0.0525
=2

This implies that the answer H is equal to 1.



SOLUTION 2.

(a) We can write the MAP decision rule in the following way:

Py(yll) "= Py(0)

Pyi(ylo) =, Pa(l)
Plugging in, we find
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Taking logarithms on both sides does not change the direction of the inequalities,

therefore
)\ H=1
ylog 21 = log _Po Mo
>‘0 g<:0 ]-_pO

Attention: the term log(\;/)g) can be negative, and if it is, then dividing by it involves
changing the direction of the inequality.

and then
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Suppose A; > Ag. Then, log(A;/Ag) > 0, and the decision rule becomes

; A=A

S log<%el 0) ot
y o= N = 0

A=0 log (,\—é>

(b) We compute

P.(0) = Pr{Y >0lH=0}= > Pyu(yl0)

y=[0]

0] \y

= 1- —Oe’)‘o,
y=0 v
and by analogy
6]
P(1) = Pr{Y <6|H=1} =) Pyu(yl1)

y=0
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Thus, the probability of error becomes

6] |y 6]

A A
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y=0 7~ y=0



Now, suppose that A\; < Ag. Then, log(\;/)g) < 0, and we have to swap the inequality
sign, thus
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The rest of the analysis goes along the same lines, and finally, we obtain
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y=0 <’

H=1
The case A\g = A; yields log(A;1/A\g) = 0, so the decision rule becomes 0 E 0, regardless
H=0
of y. Thus, we can exclude the case Ay = \; from our discussion.
(c) Here, we are in the case A\; > Ao, and we find 0 ~ 4.54. We thus evaluate

4
! Zzy i 2Z 10 0\
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y=0

(d) We find 0 ~ 7.5163
7
_ 1 22@/ —2 22 207 20\
Pe = g(l—yoyle >+§y0 (?6 )~0000885

The two Poisson distributions are much better separated than in (c); therefore, it
becomes considerably easier to distinguish them based on one single observation .

SOLUTION 3. We use the Fisher-Neyman factorization theorem.

(a) Since Y is an i.i.d. sequence,

)\Zk 1Yk
PY|H y| HPYk\H ?/k| Hk (yk)
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(b) Since Zy, ..., Z, are i.i.d. additive noise samples,
Sy (yi) HkalH yp — 0 H)\e w007 Ly, > 6,
_ éyen)\igie— z(%Zﬁzl yk)]]_ {min{yh o 7yn} > 01}4
0:(T(w))
with h(y) =



SOLUTION 4.

(a) It is straightforward to check that wg(¢) has unit norm, i.e., ||wo(t)|| = 1, thus ¢y (t) =
wo(t). With 14 (t) we can reproduce the first portion of w;(t) (for ¢ between 0 and 1).
With 1, (t) we need to be able to describe the remaining part of wy (). Clearly 1q(t) is
as illustrated below. With v (t) and ¢9(t) we also describe the part of wsy(t) between
t =0 and t = 2. Hence ¢5(t) is selected as the unit-norm function that matches the
part of ws(t) between ¢ = 2 and ¢ = 3. We immediately see that ws(t) is also a linear
combination of ¥;(t), i = 1,2,3.

(1) Pa(t) ¥3(1)
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(b) Using the basis {11 (t), ¥o(t),¥3(t)}, one can give the following representation for the
waveforms w;(t), 1 =0,...,3:

wo = (1,0,0)", w; = (=1,1,0) ", wy = (1,1, 1), w3 = (1,1, —1)7

SOLUTION 5. (Mismatched receiver)

(a) The optimal solution is to pass R(t) through the matched filter w (7T — t) and sample
the result at ¢ = T' to get a sufficient statistic denoted by Y. (In this problem, 7' = 1.)
Note that Y = S + N, where S and N are random variables denoting the signal and
the noise components respectively. Under H = i, Y ~ N(ay, Ny/2), where aq, ..., a3
are 3¢, ¢, —c and —3c respectively.

Let X be the recovered signal value at the receiver. Based on the nearest neighbor
decision rule, the receiver chooses the value of X in the following fashion:

Sy
[
SR

(b) The probability of error is given by

3
1
P, = Z 2 Pr{error|H = i}
i=0
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(¢) In this case under H =i , Y ~ N(ay, No/2), where ay, . ..

9¢ 3c =3¢
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respectively. Using the decision rule in (1), the probability of error is given by

P. = Z Pr{error|H =i}
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(d) The noise process N (t
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is a stationary Gaussian random process. So the noise compo-
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nent N (which is the sample of match-filter output at time 7') is a Gaussian random

variable with mean

:E[/_ZN(t)wt

dt] —E [/OIN(t)dt] =0

Because the process N(t) is stationary, without loss of generality we choose the bound-
aries of the integral to be 0 and T where in this problem T = 1.

Now, let us calculate the noise variance.

var(N) = E[N
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Thus the new probability of error is given by
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