PROBLEM 1. Let R and Φ be independent random variables. R is distributed uniformly over the unit interval, Φ is distributed uniformly over the interval $[0, 2\pi)$.

(a) Interpret R and Φ as the polar coordinates of a point in the plane. It is clear that the point lies inside (or on) the unit circle. Is the distribution of the point uniform over the unit disk? Take a guess!

(b) Define the random variables

$$X = R \cos \Phi$$
$$Y = R \sin \Phi$$

Find the joint distribution of the random variables X and Y by using the Jacobian determinant.

(c) Does the result of part (b) support or contradict your guess from part (a)? Explain.

PROBLEM 2. One of the two signals $c_0 = -1$, $c_1 = 1$ is transmitted over the channel shown in the left figure below. The two noise random variables Z_1 and Z_2 are statistically independent of the transmitted signal and of each other. Their density functions are

$$f_{Z_1}(\alpha) = f_{Z_2}(\alpha) = \frac{1}{2} e^{-|\alpha|}$$

(a) Derive a maximum likelihood decision rule.

(b) Describe the maximum likelihood decision regions in the (y_1, y_2) plane. Describe also the “either choice” regions, i.e., the regions where it does not matter if you decide for c_0 or for c_1.

Hint: Use geometric reasoning and the fact that for a point (y_1, y_2) as shown in the right figure above, $|y_1 - 1| + |y_2 - 1| = a + b$.

(c) A receiver decides that c_1 was transmitted if and only if $(y_1 + y_2) > 0$. Does this receiver minimize the error probability for equally likely messages?
(d) What is the error probability of the receiver in (c)?

Hint: One way to do this is to use the fact that if \(W = Z_1 + Z_2 \), then \(f_W(w) = \frac{e^{-w}}{1 + \omega} \) for \(\omega > 0 \) and \(f_W(-\omega) = f_W(\omega) \).

Problem 3. Use the Gram–Schmidt procedure to find an orthonormal basis for the vector space spanned by the functions \(\{w_0(t), w_1(t)\} \) below.

\[
\begin{align*}
\quad & w_0(t) \\
\quad & w_1(t)
\end{align*}
\]

Problem 4.

(a) By means of the Gram–Schmidt procedure, find an orthonormal basis for the space spanned by the waveforms \(\{\beta_0(t), \beta_1(t), \beta_2(t)\} \) below.

\[
\begin{align*}
\quad & \beta_0(t) \\
\quad & \beta_1(t) \\
\quad & \beta_2(t)
\end{align*}
\]

(b) In your chosen orthonormal basis, let \(w_0(t) \) and \(w_1(t) \) be represented by the codewords \(c_0 = (3, -1, 1)^T \) and \(c_1 = (-1, 2, 3)^T \) respectively. Plot \(w_0(t) \) and \(w_1(t) \).

(c) Compute the (standard) inner products \(\langle c_0, c_1 \rangle \) and \(\langle w_0, w_1 \rangle \) and compare them.

(d) Compute the norms \(||c_0|| \) and \(||w_0|| \) and compare them.

Problem 5. Let \(N(t) \) be white Gaussian noise of power spectral density \(\frac{N_0}{2} \). Let \(g_1(t) \), \(g_2(t) \), and \(g_3(t) \) be waveforms as shown below. For \(i = 1, 2, 3 \), let \(Z_i = \int N(t)g_i^*(t)dt \), \(Z = (Z_1, Z_2)^T \), and \(U = (Z_1, Z_3)^T \).

\[
\begin{align*}
\quad & g_1(t) \\
\quad & g_2(t) \\
\quad & g_3(t)
\end{align*}
\]
(a) Determine the norm \(\|g_i\|, i = 1, 2, 3 \).

(b) Are \(Z_1 \) and \(Z_2 \) independent? Justify your answer.

Consider now the regions depicted below:

(c) Find the probability \(P_a \) that \(Z \) lies in the square of the left figure.

(d) Find the probability \(P_b \) that \(Z \) lies in the square of the middle figure.

(e) Find the probability \(Q_a \) that \(U \) lies in the square of the left figure.

(f) Find the probability \(Q_b \) that \(U \) lies in the square of the right figure.

Problem 6. Consider the four sinusoid waveforms \(w_k(t), k = 0, 1, 2, 3 \) represented in the figure below.

(a) Determine an orthonormal basis for the signal space spanned by these waveforms.

Hint: No lengthy calculations needed.

(b) Determine the codewords \(c_i, i = 0, 1, 2, 3 \) representing the waveforms.

(c) Assume a transmitter sends \(w_i \) to communicate a digit \(i \in \{0, 1, 2, 3\} \) across a continuous-time AWGN channel of power spectral density \(\frac{N_0}{2} \). Write an expression for the error probability of the ML receiver in terms of \(\mathcal{E} \) and \(N_0 \).