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Solution 1.

(a) The state diagram and detour flow graph are respectively shown below:

1, 1

−1, 1

−1,−1

1,−1

1/1, 1, 1

−
1/
−
1, 1,−

1

1/1,−1,−1−
1/
−
1,
−
1,
1

−1/1, 1,−1

1/
−
1, 1, 1

−1/1,−1, 1

1/
−
1,
−
1,
−
1

State diagram

1, 1 −1, 1

−1,−1

1,−1 1, 1
ID2

ID
2

D2

ID

D

ID

D3

Detour flow graph

(b) Let a, b, c, d, e respectively represent the states (1, 1), (−1, 1), (−1,−1), (1,−1) and (1, 1).
We have

Tb = TdID + TaID
2

Tc = TcID + TbID
2

Td = TbD
2 + TcD.



Substituting Tc = Tb
ID2

1−ID
in the third equation above,

Td = TbD
2 + Tb

ID3

1− ID

= Tb

(

D2 +
ID3

1− ID

)

= Tb

D2

1− ID

= Tbα,

with α = D2

1−ID
. The detour flow graph can thus be simplified to:
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In Tb = TdID + TaID
2, we substitute for Td to get

Tb = Ta

ID2(1− ID)

1− ID − ID3
.

It follows that

Td = Tb

D2

1− ID
= Ta

ID4

1− ID − ID3
,

and that

T (I,D) = Te = Ta

ID7

1− ID − ID3
.

Taking the derivative yields

∂T (I,D)

∂I
=

D7(1− ID − ID3)− ID7(−D −D3)

(1− ID − ID3)2
=

D7

(1− ID − ID3)2
.

Therefore, we find

Pb ≤
∂T (I,D)

∂I

∣

∣

∣

∣

I=1,D=z

=
z7

(1− z − z3)2
,

where z = e
− Es

N0 .

Solution 2.

(a) An implementation of the encoder will be as follows:
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(b) The state diagram is shown below. We use the following terminology: the state label
is x, y, where x is the “state of the even sub-sequence”, i.e. contains b2n−2, and y is the
“state of the odd sub-sequence”, i.e., contains b2n−1. On the arrows, we only mark the
outputs; the input required to make a particular transition is simply the next state,
therefore we omitted it. Transitions are labeled with the value of x3n, x3n+1, x3n+2.
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(c) We use

Pb ≤
1

k0

∂T (I,D)

∂I

∣

∣

∣

∣

I=1,D=z

,

where z = e
− Es

N0 and k0 is the number of inputs per section of the trellis. In this
problem, k0 = 2. Since there are three channel symbols per two source symbols, we
find that Es = 2Eb/3.

From the state diagram we can derive the generating functions of the detour flow graph:

T (I,D) = D3T−1,1 +D2T−1,−1 +DT1,−1

T1,−1 = IDT−1,1 + IT−1,−1 + ID3T1,−1 + ID2T1,1

T−1,−1 = I2DT−1,1 + I2D2T−1,−1 + I2DT1,−1 + I2D2T1,1

T−1,1 = IDT−1,1 + ID2T−1,−1 + IDT1,−1 + ID2T1,1.

Solving the system gives

T (I,D) = T1,1
D2I(D6I +D5I2 −D3 −D4I −D)

−D5I3 −D4I2 +D3I + 2D2I2 +D2I +DI3 +DI2 +DI − 1
,

on which we can apply the formula above.
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Solution 3.

(a) Since the state is (bj−1, bj−2), we need two shift registers. From the finite state machine,
we can derive a table that relates the state (bj−1, bj−2) and the current input bj with
the two outputs (x2j , x2j+1):

bj bj−1 bj−2 x2j x2j+1

1 1 1 1 1
1 1 −1 −1 1
1 −1 1 1 −1
1 −1 −1 −1 −1

−1 1 1 1 −1
−1 1 −1 −1 −1
−1 −1 1 1 1
−1 −1 −1 −1 1

We can easily notice that the column of x2j is the same as the column of bj−2. Therefore,
x2j = bj−2. On the other hand, we see that x2j+1 = bj−1 if bj = 1 and x2j+1 = −bj−1 if
bj = −1. Therefore x2j+1 = bj · bj−1, which gives us the following encoder.

bj−1 bj−2

×

bj x2j

x2j+1

(b) The detour flow graph (with respect to the all-one sequence) is given below:
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We have

Tb = TaID + TdID
2

Tc = TbI + TcID

Td = TcD
2 + TbD

Te = TdD

The solution of this system is Te = Ta
ID3

1−ID−ID3 . Hence,

Pb ≤
∂T (I,D)

∂I

∣

∣

∣

∣

I=1,D=z

=
D3(1− ID − ID3) + ID3(D +D3)

(1− ID − ID3)2
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=
z3

(1− z − z3)2
,

where z = e
−

Eb

2N0 .
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Solution 4.

(a) The decoder is the same as in the example we have seen in Chapter 6 once the following
isomorphic mapping is applied: {1 → 0,−1 → 1}. Figure 6.4 shows the trellis of the
encoder.

(b) Given the observation y = (y1, . . . , yn), the ML codeword is given by argmaxx∈C p(y|x)
where C represents the set of codewords (i.e., the set of all possible paths on the trellis).
Alternately, the ML codeword is given by argmaxx∈C

∑n

i=1 log p(yi|xi).

Hence, a branch metric for the BEC is

log p(yi|xi) =











log ǫ if yi =?,

log(1− ǫ) if yi = xi,

−∞ if yi = 1− xi.

(c) Given the observation (0, ?, ?, 1, 0, 1), one can compute the branch metric in the trellis.
Note that we do not need to further elaborate paths with a −∞ metric. The decoding
results (0, 1, 0).

0,0

1,0

0,1

1,1

log ǫ(1− ǫ)

−∞

−∞
log

ǫ(
1−

ǫ)

2 l
og
(1
−
ǫ)

−
∞

(d) We refer to the example shown in Chapter 6, where we have the same encoder, but a
different channel. We have seen that

Pb ≤
z5

(1− 2z)2
.

To determine z we use the Bhattacharyya bound, which in our case is

z =
∑

y∈{0,1,?}

√

P (y|1)P (y|0) = ǫ.

Thus we have the following bound:

Pb ≤
ǫ5

(1− 2ǫ)2
.
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