
Chapter 2

Classical Circuit Models for
Computation

2.1 Introduction

A computation is ultimately performed by a physical device. Thus it is a
natural question to ask what are the fundamental limitations that the laws of
physics impose on a computation. An early work on such issues was that of
Landauer who argued that a “bit erasure” – a logically irreversible process –
is always accompanied by heat dissipation and is thus a thermodynamically
irreversible process. Consequently any computation using irreversible gates
(AND, OR, etc.) will dissipate heat. But is there a fundamental principle
that requires a minimum amount of heat dissipation? A negative answer
to this question was put forward by Bennett, Benioff and others. More
precisely (as we will see later) any logically irreversible computation can be
made logically reversible, with appropriate elementary gates, provided that
we are willing to increase the work space.

As we will see in the next chapter the quantum circuit model is a sort
of ”generalization“ (or in the language of physics one could perhaps say ”a
quantization“) of the classical reversible circuits.

2.2 Classical circuit model of computation

We begin with classical computations done with classical circuits. Consider
the basic net of logical gates acting on bits xi ∈ F2 = {0, 1}.

x1 -

x2 -
AND - x1 ∧ x2

x1 -

x2 -
OR - x1 ∨ x2
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x1 - NOT - x̄1 x - COPY
- x
- x

(COPY is also called FANOUT sometimes.)

Definition 1 A boolean circuit is a directed acyclic graph with n input bits
and m output bits. The input can always be initialized to (0 . . . 0) because
any (x1 . . . xm) is obtained by a series of appropriate NOT gates.

Directed	acyclic	graph	
with	AND,	OR,	NOT,	
COPY	at	the	ver:ces	

n	input	bits	 m	output	bits	

For example, the following figures illustrates the circuit of f(x1, x2, x3, x4) =
((x̄1 ∧ x2) ∨ (x̄3 ∧ x̄4), x̄3 ∧ x4):

1
1x1 0 - NOT -

x2 0 - -
AND - -

OR - 0

1 0
1 0x3 0 - NOT - -

x4 0 - - - -
OR - NOT - COPY

0
0

A celebrated theorem of Emil Post (circa 1950) says that for any function
f : Fn

2 → Fm
2 one can construct a Boolean circuit that computes it.

Theorem 2 For any functionf : Fn
2 → Fm

2 there exists a Boolean circuit that
maps inputs (x1 . . . xn) to outputs (y1 . . . ym) = f(x1 . . . xm). The Boolean
circuit is constructed out of NOT, AND, OR, COPY and is a directed acyclic
graph.

One says that the set of gates {NOT, AND, OR, COPY} is universal. Note
that AND, OR are not reversible. We come back later to the issue of re-
versibility.
Proof. A function f : Fn

2 → Fm
2 can be represented by component functions

fi : Fn
2 → F2 ,i = 1 . . .m. So if we can COPY the input m times, we just

need to show that there exists a Boolean circuit for each fi : Fn
2 → F2. The
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problem is then reduced to finding Boolean circuits for functions f : Fn
2 → F2.

For each ~a = (a1 . . . am) ∈ F we define

C~a(x1 . . . xn) = φ1(x1) ∧ φ2(x2) ∧ . . . φn(xn)

where {
φi(xi) = xi if ai = 0,

φi(xi) = x̄i if ai = 1.

This is built out of AND, NOT gates only, and since ∧ is associative it can be
done recursively (directed acyclic graph). We note that C~a(x1 . . . xn) = 1 if
(x1 . . . xn) = (a1 . . . an). Now given a function f : Fn

2 → F2 let {~a(1), . . . ,~a(k)}
be the set of inputs in Fn

2 for which f takes values 1. For all other input f
takes value 0. A little thought shows that

f(x1 . . . xm) = C~a(1)(x1 . . . xn) ∨ C~a(2)(x1 . . . xn) ∨ C~a(k)(x1 . . . xn)

It remains to see that ∨ is associative and can thus be done in a recursive
way (i.e., with a directed acyclic graph). So f is computed from OR and
COPY.

2.3 Reversibility versus irreversibility

The NOT gate is logically reversible. This means that from the output one
can recover the input. However the AND, OR gates are logically irreversible.
We will now show that any Boolean circuit can be simulated by a logically
reversible circuit. Moreover a universal set of reversible gates exists.

From f : Fm
2 → F2 we construct f̃ : Fm

2 ⊕ F2 → Fm
2 ⊕ F2 as follows :

f̃(x1 . . . xm, y) = (x1 . . . xm, f(x1 . . . xm)⊕ y)

Now, f̃ is invertible since from (x1 . . . xm, f(x1 . . . xm) ⊕ y) we can recover
x1 . . . xm and f(x1 . . . xm) [since we have a circuit for f ] and then

y = (f(x1 . . . xm)⊕ y)⊕ f(x1 . . . xm).

Thus any f can be computed in a reversible way from the circuit for f̃ . To
compute f reversibly we start with the input (x1 . . . xm, 0) compute

f̃(x1 . . . xm, 0) = (x1 . . . xm, f(x1 . . . xm)),

copy the last bit f(x1 . . . xm) and run back the computation to get

f̃−1(x1 . . . xm, f(x1 . . . xm)) = (x1 . . . xm, 0).



4 CHAPTER 2. CLASSICAL CIRCUIT MODELS FOR COMPUTATION

In this way we have f(x1 . . . xm) and the circuit is left in its initial state
(x1, . . . , xm, 0). So we can achieve logical reversibility. We want to show that
we can achieve physical reversibility (no heat dissipation).

What remains to be shown is that f̃ can be represented by a circuit
containing only irreversible elementary gates. We already know that f̃ can
be represented by a circuit containing AND, OR, NOT, COPY. We want to
replace AND, OR by a reversible gate. This can be achieved by using the
3 bit gate known as Toffoli gate which is a CCNOT (controlled-controlled
NOT):

x - • - x

y - • - y or T(x, y, z) = (x, y, z ⊕ xy).

z -
⊕

- z ⊕ xy.

This gate flips the target bit z if both control bits x and y are equal to
1. Otherwise z is left unchanged. The Toffoli gate is reversible because:

x - • - • - x

y - • - • - y or T2(x, y, z) = (x, y, z)

z -
⊕

-
⊕

- z

If we set z = 0, T (x, y, 0) = (x, y, xy) outputs x ∧ y in the third bit. Thus
the AND gates can be replaced by a Toffoli gate provided we increase our
workspace to have a target input bit z = 0 and the additional outputs x &
y. For the OR gate we can use

x̄x - NOT - • - x̄

ȳ
y - NOT - • - ȳ

1
0 - NOT -

⊕
- 1⊕x̄ȳ = x ∨ y =


1 ∨ 1 = 1

1 ∨ 0 = 1

0 ∨ 1 = 1

0 ∨ 0 = 0

Finally the COPY gate can be replaced by

x - • - x

0 -
⊕

- x
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which is a CNOT gate (reversible) with the target bit set to 0 in the input.
Note that the pure COPY gate, if reversed:

x -

x -
- x

erases a bit so there is heat dissipation. This is the reason why we replace it
by a CNOT.

Summarizing we have shown that a Boolean circuit made of the universal
set {AND,OR,COPY,NOT} can be simulated by a reversible circuit made
of the universal set {CNOT; Toffoli; NOT}.

The set {AND,OR,COPY,NOT} involves single and two bit gates. On
the other hand {CNOT,Toffoli,NOT} involves single, two and three bit
gates. Is it possible to build reversible circuits using only single and two
bit gates? It is possible to show that the answer to this question is no.
In fact it suffices to produce a counterexample: the Toffoli gate cannot be
simulated reversibly with single & two bit gates. We will see that (perhaps
surprisingly) in the quantum case single and two bit gates suffice for reversible
computation.


