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Chapter 1

Overview

1.1 Digital data transmission

Most of us have used communication devices, either by talking on a telephone, or browsing the internet
on a computer. This course is about the mechanisms that allows such communications to occur. The
focus of this class is on how “bits” are transmitted through a “communication” channel. The overall
communication system is illustrated in Figure 1.1

Figure 1.1: Communication block diagram.

1.2 Communication system blocks

Communication Channel: A communication channel provides a way to communicate at large dis-
tances. But there are external signals or “noise” that effects transmission. Also ‘channel’ might behave
differently to different input signals. A main focus of the course is to understand signal processing tech-
niques to enable digital transmission over such channels. Examples of such communication channels
include: telephone lines, cable TV lines, cell-phones, satellite networks, etc. In order to study these
problems precisely, communication channels are often modelled mathematically as illustrated in Figure
1.2.

Source, Source Coder, Applications: The main reason to communicate is to be able to talk, listen
to music, watch a video, look at content over the internet, etc. For each of these cases the “signal”

9



10 CHAPTER 1. OVERVIEW

Figure 1.2: Models for communication channels.

respectively voice, music, video, graphics has to be converted into a stream of bits. Such a device is called
a quantizer and a simple scalar quantizer is illustrated in Figure 1.3. There exists many quantization
methods which convert and compress the original signal into bits. You might have come across methods
like PCM, vector quantization, etc.

Channel coder: A channel coding scheme adds redundancy to protect against errors introduced by
the noisy channel. For example a binary symmetric channel (illustrated in Figure 1.4) flips bits randomly
and an error correcting code attempts to communicate reliably despite them.

256 LEVELS ≡ 8 bits

LEVELS

SOURCE

0

1

2

3

4

Figure 1.3: Source coder or quantizer.

Signal transmission: Converts “bits” into signals suitable for communication channel which is typi-
cally analog. Thus message sets are converted into waveforms to be sent over the communication channel.
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BSC

0 0

1 1

Pe

Pe

1 − Pe

1 − Pe

Figure 1.4: Binary symmetric channel.

This is called modulation or signal transmission. One of the main focuses of the class.

Signal detection: Based on noisy received signal, receiver decides which message was sent. This proce-
dure called “signal detection” depends on the signal transmission methods as well as the communication
channel. Optimum detector minimizes the probability of an erroneous receiver decision. Many signal
detection techniques are discussed as a part of the main theme of the class.

Local to Base

Base Station

Local To Base

Remote 

Remote

Local To Mobile
Co-channel mobile

Figure 1.5: Multiuser wireless environment.

Multiuser networks: Multiuser networks arise when many users share the same communication chan-
nel. This naturally occurs in wireless networks as shown in Figure 1.5. There are many different forms
of multiuser networks as shown in Figures 1.6, 1.7 and 1.8.
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Figure 1.6: Multiple Access Channel (MAC).

Figure 1.7: Broadcast Channel (BC).

1.3 Goals of this class

• Understand basic techniques of signal transmission and detection.

• Communication over frequency selective or inter-symbol interference (ISI) channels.

• Reduced complexity (sub-optimal) detection for ISI channels and their performances.

• Multiuser networks.

• Wireless communication - rudimentary exposition.

• Connection to information theory.

Complementary classes

• Source coding/quantization (ref.: Gersho & Gray, Jayant & Noll)

• Channel coding (Modern Coding theory, Urbanke & Richardson, Error correcting codes, Blahut)

• Information theory (Cover & Thomas)

Figure 1.8: Adhoc network.
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1.4 Class organization

These are the topics covered in the class.

• Digital communication & transmission

• Signal transmission and modulation

• Hypothesis testing & signal detection

• Inter-symbol interference channel - transmission & detection

• Wireless channel models: fading channel

• Detection for fading channels and the tool of diversity

• Multiuser communication - TDMA, CDMA

• Multiuser detection

• Connection to information theory

1.5 Lessons from class

These are the skills that you should know at the end of the class.

• Basic understanding of optimal detection

• Ability to design transmission & detection schemes in inter-symbol interference channels

• Rudimentary understanding of wireless channels

• Understanding wireless receivers and notion of diversity

• Ability to design multiuser detectors

• Connect the communication blocks together with information theory
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Chapter 2

Signals and Detection

2.1 Data Modulation and Demodulation

MESSAGE

SOURCE ENCODER

VECTOR
MODULATOR

MESSAGE

SINK

VECTOR

CHANNEL

DETECTOR
DEMODULATOR

{m } {x }

{m }
^

i

i i

Figure 2.1: Block model for the modulation and demodulation procedures.

In data modulation we convert information bits into waveforms or signals that are suitable for trans-
mission over a communication channel. The detection problem is reversing the modulation, i.e., finding
which bits were transmitted over the noisy channel.

Example 2.1.1. (see Figure 2.2) Binary phase shift keying. Since DC does not go through channel, this
implies that 0V, and 1V, mapping for binary bits will not work. Use:

x0(t) = cos(2π150t), x1(t) = − cos(2π150t).

Detection: Detect +1 or -1 at the output.
Caveat: This is for single transmission. For successive transmissions, stay tuned!

15
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100 200Frequency

Figure 2.2: The channel in example 1.

2.1.1 Mapping of vectors to waveforms

Consider set of real-valued functions {f(t)}, t ∈ [0, T ] such that

∫ T

0

f2(t)dt <∞

This is called a Hilbert space of continuous functions, i.e., L2[0, T ].

Inner product

< f, g >=

∫ T

0

f(t)g(t)dt.

Basis functions: A class of functions can be expressed in terms of basis functions {φn(t)} as

x(t) =

N∑

n=1

xnφn(t), (2.1)

where < φn, φm >= δn−m. The waveform carries the information through the communication channel.

Relationship in (2.1) implies a mapping x =




x1

...
xN


 to x(t).

Definition 2.1.1. Signal Constellation The set of M vectors {xi}, i = 0, . . . ,M−1 is called the signal
constellation.

01 00

01

11

10

Binary Antipodal Quadrature Phase−Shift Keying

Figure 2.3: Example of signal constellations.

The mapping in (2.1) enables mapping of points in L2[0, T ] with properties in RI N . If x1(t) and x2(t)
are waveforms and their corresponding basis representation are x1 and x2 respectively, then,

< x1, x2 >=< x1,x2 >



2.1. DATA MODULATION AND DEMODULATION 17

where the left side of the equation is < x1, x2 >=
∫ T
0 x1(t)x2(t)dt and the right side is < x1,x2 >=∑N

i=1 x1(i)x2(i).

Examples of signal constellations: Binary antipodal, QPSK (Quadrature Phase Shift Keying).

Vector Mapper: Mapping of binary vector into one of the signal points. Mapping is not arbitrary,
clever choices lead to better performance over noisy channels.
In some channels it is suitable to label points that are “close” in Euclidean distance to map to being
“close” in Hamming distance. Examples of two alternate labelling schemes are illustrated in Figure 2.4.

00

01

00

01

11

10
11

10

Figure 2.4: A vector mapper.

Modulator: Implements the basis expansion of (2.1).

x(t)

φ1(t)

x1

xN

φN (t)

Figure 2.5: Modulator implementing the basis expansion.

Signal Set: Set of modulated waveforms {xi(t)}, i = 0, . . . ,M − 1 corresponding to the signal constel-

lation xi =




xi,1
...

xi,N


 ∈ RN .

Definition 2.1.2. Average Energy:

Ex = E[||x||2] =

M−1∑

i=0

||xi||2px(i)

where px(i) is the probability of choosing xi.
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The probability px(i) depends on,

• Underlying probability distribution of bits in message source.

• The vector mapper.

Definition 2.1.3. Average power: Px = Ex

T (energy per unit time)

Example 2.1.2. Consider a 16 QAM constellation with basis functions:

���
�

���
�
���
�

���
�

��	
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�
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���
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���
�
���
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���
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���
�

Figure 2.6: 16 QAM constellation.

φ1(t) =

√
2

T
cos

πt

T
, φ2(t) =

√
2

T
sin

πt

T

For 1
T = 2400Hz, we get a rate of log(16) × 2400 = 9.6kb/s.

Gram-Schmidt procedure allows choice of minimal basis to represent {xi(t)} signal sets. More on this
during the review/exercise sessions.

2.1.2 Demodulation

The demodulation takes the continuous time waveforms and extracts the discrete version. Given the
basis expansion of (2.1), the demodulation extracts the coefficients of the expansion by projecting the
signal onto its basis as shown below.

x(t) =

N∑

k=1

xkφk(t) (2.2)

=⇒
∫ T

0

x(t)φn(t)dt =

∫ T

0

N∑

k=1

xkφk(t)φn(t)dt

=

N∑

k=1

xk

∫ T

0

φk(t)φn(t)dt =

N∑

k=1

xkδk−n = xn

Therefore in the noiseless case, demodulation is just recovering the coefficients of the basis functions.

Definition 2.1.4. Matched Filter: The matched filter operation is equivalent to the recovery of the

coefficients of the basis expansion since we can write as an equation:
∫ T
0
x(t)φn(t)dt == x(t) ∗ φn(T −

t)|t=T = x(t) ∗ φn(−t)|t=0.

Therefore, the basis coefficients recovery can be interpreted as a filtering operation.
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y(t)

ϕ1(T − t)

ϕN (T − t)

x1

xN

Figure 2.7: Matched filter demodulator.

∑
xnϕn(t)

{b0, b1, ..., b2RT }

x̂

Message
Modulator Channel

x
Vector Map

Demodulator

Figure 2.8: Modulation and demodulation set-up as discussed up to know.

2.2 Data detection

We assume that the demodulator captures the “essential” information about x from y(t). This notion of
“essential” information will be explored in more depth later.
In discrete domain:

PY (y) =
M−1∑

i=0

pY |X(y|i)pX(i)

This is illustrated in Figure 2.9 showing the equivalent discrete channel.

Example 2.2.1. Consider the Additive White Gaussian Noise Channel (AWGN). Here y = x + z, and

MAPPER

VECTOR
CHANNEL

m x

P
Y|X

y

Figure 2.9: Equivalent discrete channel.
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hence pY |X(y|x) = pZ(y − x) = 1√
2πσ

e−
(y−x)2

2σ2 .

2.2.1 Criteria for detection

Detection is guessing input x given the noisy output y. This is expressed as a function m̂ = H(y).
If M = m was the message sent, then

Probability of error = Pe
def
= Prob(m̂ 6= m).

Definition 2.2.1. Optimum detector: Minimizes error probability over all detectors. The probability
of observing Y=y if the message mi was sent is,

p(Y = y | M = mi) = pY|X(y | i)

Decision Rule: H : Y → M is a function which takes input y and outputs a guess on the transmitted
message. Now,

P(H(Y) is correct) =

∫

y

P[H(y) is correct | Y = y]pY(y)dy (2.3)

Now H(y) is a deterministic function of ybf which divides the space RI N into M regions corresponding
to each of the possible hypotheses. Let us define these decision regions by

Γi = {y : H(y) = mi}, i = 0, . . . ,M − 1. (2.4)

Therefore, we can write (2.3) as,

P(H(Y) is correct) =

M−1∑

j=0

P(x = xj)P(H(·) = mj |x = xj) (2.5)

=

M−1∑

j=0

P(x = xj)

∫

y∈Γj

PY|X(y | xj)dy

=
M−1∑

j=0

P(x = xj)

∫

y

11{y∈Γj}PY|X(y | xj)dy

=

∫

y



M−1∑

j=0

P(x = xj)11{y∈Γj}PY|X(y | xj)


 dy

(a)

≤
∫

y

max
j=0,...M−1

[
P(x = xj)PY|X(y | xj)

]
dy

=

∫

y

{max
j

PX|Y[X = xj | y]}pY(y)dy

= P(HMAP (Y) is correct) (2.6)

where 11{y∈Γj} is the indicator function which is 1 if y ∈ Γj and 0 otherwise. Now (a) follows because H(·)
is a deterministic rule, and hence 11{y∈Γj} can be 1 for only exactly one value of j for each y. Therefore,
the optimal decision regions are:

ΓMAP
i = {y : i = arg max

j=0,...,M−1
PX|Y[X = xj | y]}, i = 0, . . . ,M − 1. (2.7)



2.2. DATA DETECTION 21

Implication: The decision rule

HMAP (y) = argmax
i

PX|Y[X = xi | y]

maximizes probability of being correct, i.e., minimizes error probability. Therefore, this is the optimal
decision rule. This is called the Maximum-a-posteriori (MAP) decision rule.

Notes:

• MAP detector needs knowledge of the priors pX(x).

• It can be simplified as follows:

pX|Y(xi | y) =
pY|X[y | xi]pX(xi)

pY(y)
≡ pY|X[y | xi]pX(xi)

since pY(y) is common to all hypotheses. Therefore the MAP decision rule is equivalently written
as:

HMAP (y) = arg max
i

pY|X[y | xi]pX(xi)

An alternate proof for MAP decoding rule (binary hypothesis)

Let Γ0,Γ1 be the decision regions for the messages m0,m1 as given in (2.4).

For π0 = PX(x0) and π1 = PX(x1)

P[error] = P[H(y)is wrong] = π0P[y ∈ Γ1 | H0] + π1P[y ∈ Γ0 | H1] (2.8)

= π0

∫

Γ1

PY|X(y | x0)dy + π1

∫

Γ0

PY|X(y | x1)dy

= π0

∫

Γ1

PY|X(y | x0)dy + π1

[
1 −

∫

Γ1

PY|X(y | x1)dy

]

= π1 +

∫

Γ1

[
π0PY|X(y | x0) − π1PY|X(y | x1)

]
dy

= π1 +

∫

RN

11{y∈Γ1}
[
π0PY|X(y | x0) − π1PY|X(y | x1)

]
dy

︸ ︷︷ ︸
to make this term the smallest, collect all the negative area

Therefore, in order to make the error probability smallest, we choose on y ∈ Γ1 if

π0PY|X(y | x0) < π1PY|X(y | x1)

That is, Γ1 is defined as,

PX(x0)PY|X(y | x0)

PY(y)
<

PX(x1)PY|X(y | x1)

PY(y)

or y ∈ Γ1, if,

PX|Y(x0 | y) < PX|Y(x1 | y)

i.e., the MAP rule!
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π0PY|X(y | x0) − π1PY|X(y | x1)

y →

Figure 2.10: Functional dependence of integrand in (2.8).

Maximum Likelihood detector: If the priors are assumed uniform, i.e., pX(xi) = 1
M then the MAP

rule becomes,

HML(y) = arg max
i

pY|X[y | xi]

which is called the Maximum-Likelihood rule. This because it chooses the message that most likely
caused the observation (ignoring how likely the message itself was). This decision rule is clearly inferior
to MAP for non-uniform priors.

Question: Suppose the prior probabilities were unknown, is there a “robust” detection scheme?
One can think of this as a “game” where nature chooses the prior distribution and the detection rule is
under our control.

Theorem 2.2.1. The ML detector minimizes the maximum possible average error probability when the
input distribution is unknown and if the conditional probability of error p[HML(y) is incorrect | M = mi]
is independent of i.

Proof: Assume that Pe,ML|m=mi
is independent of i.

Let

Pe,ML|m=mi
= PML

e (i)
def
= P

ML

Hence

Pe,ML(Px) =
M−1∑

i=0

PX(i)Pe,ML|m=mi
= P

ML (2.9)

Therefore

max
PX

Pe,ML = max
PX

M−1∑

i=0

PX(i)Pe,ML|m=mi
= P

ML



2.2. DATA DETECTION 23

For any hypothesis test H,

max
PX

Pe,H = max
PX

M−1∑

i=0

PX(i)Pe,H|m=mi

(a)

≥
M−1∑

i=0

1

M
Pe,H|m=mi

(b)

≥
M−1∑

i=0

1

M
Pe,ML|m=mi

= Pe,ML

where (a) is because a particular choice of PX can only be smaller than the maximum. And (b) is because
the ML decoder is optimal for the uniform prior.
Thus,

max
PX

Pe,H ≥ Pe,ML = P
ML,

since due to (2.9)
Pe,ML = P

ML, ∀Px.

�

Interpretation: ML decoding is not just a simplification of the MAP rule, but also has some canonical
“robustness” properties for detection under uncertainty of priors, if the regularity condition of theorem
2.2.1 is satisfied. We will explore this further in Section 2.2.2.

Example 2.2.2. The AWGN channel:
Let us assume the following,

y = xi + z ,

where
z ∼ N (0, σ2I), x,y, z ∈ R

N

Hence

pZ(z) =
1

(2πσ2)
N
2

e
−||z||2

2σ2

giving
pY|X(y | x) = pZ(y − x)

MAP decision rule for AWGN channel

pY|X[y | xi] = 1

(2πσ2)
N
2
e

−||y−xi||2

2σ2

pX|Y[X = xi | y] =
pY|X[y|xi]pX(xi)

pY(y)

Therefore the MAP decision rule is:

HMAP (y) = arg max
i

{
pX|Y[X = xi | y]

}
= arg max

i

{
pY|X[y | xi]pX(xi)

}

= arg max
i

{
pX(xi)

1

(2πσ2)
N
2

e
−||y−xi||2

2σ2

}

= arg max
i

{
log[pX(xi)] −

||y − xi||2
2σ2

}

= arg min
i

{ ||y − xi||2
2σ2

− log[pX(xi)]

}
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ML decision rule for AWGN channels

HML(y) = argmax
i

{
pY|X[y | X = xi]

}

= argmax
i

{
1

(2πσ2)
N
2

e
−||y−xi||2

2σ2

}

= argmax
i

{
−||y − xi||2

2σ2

}

= argmin
i

{ ||y − xi||2
2σ2

}

Interpretation: The maximum likelihood decision rule selects the message that is closest in Euclidean
distance to received signal.

Observation: In both MAP and ML decision rules, one does not need y, but just the functions,
‖ y−xi ‖2, i ∈ 0, ...,M−1 in order to evaluate the decision rule. Therefore, there is no loss of information
if we retain scalars, {‖ y − xi ‖2} instead of y. In this case, it is moot, but in continuous detection, this
reduction is important. Such a function that retains the “essential” information about the parameter of
interest is called a sufficient statistic.

2.2.2 Minmax decoding rule

The MAP decoding rule needs the knowledge of the prior distribution {PX(x = xi)}. If the prior is
unknown we develop a criterion which is “robust” to the prior distribution. Consider the criterion used
by nature

max
PX

min
H
Pe,H (px)

and the criterion used by the designer
min
H

max
PX

Pe,H (px)

where Pe,H(px) is the error probability of decision rule H, i.e.,

P[H(y) is incorrect] explicitly depends on PX(x)

‖
Pe,H(pX)

For the binary case,

Pe,H (pX) = π0 P[y ∈ Γ1 | x0]︸ ︷︷ ︸
does not depend on π1,π0

+π1 P[y ∈ Γ0 | x1]︸ ︷︷ ︸
does not depend on π1,π0

= π0

∫

Γ1

PY|X(y | x0)dy + (1 − π0)

∫

Γ0

PY|X(y | x1)dy

Thus for a given decision rule H which does not depend on px, Pe,H (pX) is a linear function of PX(x).
A “robust” detection criterion is when we want to

min
H

max
π0

Pe,H (π0).

Clearly for a given decision rule H,

max
π0

Pe,H(π0) = max{P[y ∈ Γ1 | H0], P[y ∈ Γ0 | H1]} (2.10)
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π0
1

Pe,H(π0) = π0P[y ∈ Γ1 | H0] + (1 − π0)P[y ∈ Γ0 | H1]

Pe,H(π0)

P[y ∈ Γo | H1]

P[y ∈ Γ1 | H0]

Figure 2.11: Pe,ML(π0) as a function of the prior π0.

Now let us look at the MAP rule for every choice of π0.
Let V (π0) = PMAP

e (π0) i.e., the error probability of the MAP decoding rule as a function of PX(x) (or
π0).

1π∗
0

π00

π∗
0 ≡ worst prior

Pe,MAP (π0)

Figure 2.12: The average error probability Pe,ML(π0) of the MAP rule as a function of the prior π0.

Since the MAP decoding rule does depend on PX(x), the error probability is no longer a linear function
and is actually concave (see Figure 2.12, and HW problem). Such a concave function has a unique
maximum value and if it is strictly concave has a unique maximizer π∗

0 . This value V (π∗
0) is the largest

average error probability for the MAP detector and π∗
0 is the worst prior for the MAP detector.

Now, for any decision rule that does not depend on PX(x), Pe,H (px) is a linear function of π0 (for the
binary case) and this is illustrated in Figure 2.11. Since Pe,H (px) ≥ Pe,MAP (px) for each px. The line
always lies above the curve V (π0). The best we could do is to make it tangential to V (π0) for some π̃0,
as shown in Figure 2.13. This means that such a decision rule is the MAP decoding rule designed for
prior π̃0. If we want the max

PX

Pe,H(px) to be the smallest it is clear that we want π̃0 = π∗
0 , i.e., design

the robust detection rule as the MAP rule for π∗
0 . Since π∗

0 is the worst prior for the MAP rule, this is
the best one could hope for. Since the tangent to V (π0) at π∗

0 has slope 0, such a detection rule has the
property that Pe,H(π0) is independent of π0.
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1π∗
0

π0

Minmax rule
Pe,H(π0)

π̃0

Figure 2.13: Pe.H (π0) and Pe,MAP (π0) as a function of prior π0.

Therefore, for the minmax rule H∗, we would have

PH∗ [y ∈ Γ1 | H0] = PH∗ [y ∈ Γ0 | H1]

Therefore for the minmax rule,

Pe,H∗(π0) = π0PH∗ [y ∈ Γ1 | H0] + (1 − π0)PH∗ [y ∈ Γ0 | H1]

= PH∗ [y ∈ Γ1 | H0] = PH∗ [y ∈ Γ0 | H1]

is independent of π0.
Hence Pe,H|x=x0

= Pe,H|x=x1
, i.e., the error probability conditioned on the message are the same. Note

that this was the regularity condition we used in Theorem 2.2.1. Hence regardless of the choice of π0, the
error probability (average) is the same! If π∗

0 = 1
2 (i.e., px is uniform), then the maximum likelihood rule

is the robust detection rule as stated in Theorem 2.2.1. Note that this is not so if π∗
0 6= 1

2 , then the MAP
rule for π∗

0 becomes the robust detection rule. Also note that the minmax rule makes the performance of
all priors as bad as the worst prior.
Note: If π∗

0 = 1
2 , or P ∗

X(x) is uniform then minmax is the same as ML, and this occurs in several cases.

Prob. of error

π0

V (π0) = Error prob. of Bayes rule

Figure 2.14: Pe,H (π0) Minmax detection rule.

Since minmax rule becomes Bayes rule for the worst prior, if the worst prior is uniform then clearly the
minmax rule is the ML rule. Clearly if ML satisfies PML[error | Hj ] independent of j then the ML rule
is the robust detection rule.
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2.2.3 Decision regions

Given the MAP and ML decision rules, we can divide RN into regions which correspond to different
decisions.
For example, in the AWGN case, the ML decoding rule will always decide to choose mi if

‖ y − xi ‖2<‖ y − xj ‖2, ∀j 6= i

Therefore, we can think of the region Γi as the decision region for mi where,

ΓML
i = {y ∈ R

N : ‖ y − xi ‖2<‖ y − xj ‖2, ∀j 6= i}

The MAP rule for the AWGN channel is a shifted region:

Figure 2.15: Voronoi regions for {xi}, for uniform prior. Hence here the ML and MAP decision regions
coincide.

ΓMAP
i = {y ∈ R

N :
‖ y − xi ‖2

2σ2
− log[pX(xi)] <

‖ y − xj ‖2

2σ2
− log[pX(xj)], ∀j 6= i}

The ML decision regions have a nice geometric interpretation. They are the Voronoi regions of the set
of points {xi}. That is, the decision region associated with mi is the set of all points in RN which are
closer to xi than all the rest.
Moreover, since they are defined by Euclidean norms ‖ y − xi ‖2, the regions are separated by hyper
planes. To see this observe the decision regions are:

‖ y − xi ‖2 ≤ ‖ y − xj ‖2, ∀j 6= i

⇒ −2 < y,xi > + ‖ xi ‖2 ≤ −2 < y,xj > + ‖ xj ‖2

⇒< y,xj − xi > ≤ 1

2
(‖ xj ‖2 − ‖ xi ‖2)

⇒< y − 1

2
(xj + xi),xi − xj > ≥ 0 ∀j 6= i

Hence the decision regions are bounded by hyperplanes since they are determined by a set of linear
inequalities. The MAP decoding rule still produces decision regions that are hyper planes.
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2.2.4 Bayes rule for minimizing risk

Error probability is just one possible criterion for choosing a detector. More generally the detectors
minimize other cost functions. For example, let Ci,j denote the cost of choosing hypothesis i when
actually hypothesis j was true. Then the expected cost incurred by some decision rule H(y) is:

Rj(H) =
∑

i

Ci,jP[H(Y) = mi | M = mj ]

Therefore the overall average cost after taking prior probabilities into account is:

R(H) =
∑

j

PX(j)Rj(H)

Armed with this criterion we can ask the same question:
Question: What is the optimal decision rule to minimize the above equation?
Note: The error probability criterion corresponds to a cost assignment:

Ci,j = 1, i 6= j, Ci,j = 0, i = j.

Consider case M=2, i.e., distinguishing between 2 hypotheses. Rewriting the equation for this case:

R(H) = Px(0)R0(H) + PX(1)R1(H)

where,

Rj(H) = C0,jP[H(Y) = m0 | M = mj ] + C1,jP[H(Y) = m1 | M = mj ], j = 0, 1

= C0,j{1− P[H(Y) = m1 | M = mj ]} + C1,jP[H(Y) = m1 | M = mj ], j = 0, 1

Let PX(0) = π0, PX(1) = 1 − π0

R(H) = π0C0,0P[y ∈ Γ0 | x = x0] + π0C1,0P[y ∈ Γ1 | x = x0]

+ π1C0,1P[y ∈ Γ0 | x = x1] + π1C1,1P[y ∈ Γ1 | x = x1]

= π0C0,0 − π0C0,0P[y ∈ Γ1 | x = x0] + π0C1,0P[y ∈ Γ1 | x = x0]

+ π1C0,1 − π1C0,1P[y ∈ Γ1 | x = x1] + π1C1,1P[y ∈ Γ1 | x = x1]

= π0C0,0 + π1C0,1 + π0(C1,0 − C0,0)

∫

y∈Γ1

PY|X(y | x = x0)dy

+ π1(C1,1 − C0,1)

∫

y∈Γ1

PY|X(y | x = x1)dy

=
1∑

j=0

πjC0,j +

∫

y∈Γ1




1∑

j=0

πj(C1,j − C0,j)PY|X(y | x = xj)


 dy

Now, just like in the alternate proof for the MAP decoding rule, (see (2.8)) we want to minimize the last

term. As seen in Figure 2.10 this is done by collecting the negative area in the function
∑1
j=0 πj(C1,j −

C0,j)PY|X(y | x = xj) as a function of y. Therefore we get the decision rule,

Γ1 = {y ∈ R
N :

1∑

j=0

PX(j)(C1,j − C0,j)PY|X(y | xj) < 0}
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Likelihood ratio: Surprisingly, in all the detection criteria we have seen the likelihood ratio defined as,

PY|X(y | x0)

PY|X(y | x1)

seems to appear as a part of the decision rule.
For example, if C1,1 < C0,1, then we have,

Γ1 = {y ∈ R
N : PY|X(y | x1) > τPY|X(y | x0)}

where τ =
PX(0)(C1,0−C0,0)

PX(1)(C0,1−C1,1)

For C0,0 = C1,1 = 0 and C0,1 = C1,0 = 1, we get the MAP rule, i.e., τ = PX(0)

PX(1)
which minimizes average

error probability.

2.2.5 Irrelevance and reversibility

An output may contain parts that do not help to determine the message. These irrelevant components
can be discarded without loss of performance. This is illustrated in the following example.

Example 2.2.3. As shown Figure 2.16 if z1 and z2 are independent then clearly y2 is irrelevant.

Z1 Z2

Y2

Y1

+X +

Figure 2.16: Example 2.2.3.

Theorem 2.2.2. If y =

[
y1

y2

]
, and we have either of the following equivalent conditions:

• PX|Y1,Y2
= PX|Y1

• PY2|Y1,X = PY2|Y1

then y2 is irrelevant for the detection of X.

Proof: If PX|Y1,Y2
= PX|Y1

, then clearly the MAP decoding rule ignores Y2, and therefore it

is irrelevant almost by definition. The question is whether the second statement is equivalent. Let
PY2|Y1,X = PY2|Y1

PY2|Y1
=

PY1,Y2

PY1

(2.11)

PY2|Y1,X =
PY1,Y2|X

PY1|X
(2.12)



30 CHAPTER 2. SIGNALS AND DETECTION

Hence,

PY2|Y1,X = PY2|Y1
⇔

PY1,Y2

PY1

=
PY1,Y2|X

PY1|X

⇔
PY1,Y2|X
PY1,Y2

=
PY1|X
PY1

(2.13)

⇔
PY1,Y2|XPX

PY1,Y2

=
PY1|XPX

PY1

⇔ PX|Y1,Y2
= PX|Y1

�

Note: The irrelevance theorem is summarized by a Markov chain relationship

X ↔ Y1 ↔ Y2

which means that conditioned on Y1, Y2 is independent of X .

Application of Irrelevance theorem

Theorem 2.2.3. (Reversibility theorem) The application of an invertible mapping on the channel
output vector y, does not affect the performance of the MAP detector.

Proof: Let y2 be the channel output, and y1 = G(y2), where G(·) is an invertible map. Then
y2 = G−1(y1). Clearly [

y1

y2

]
=

[
y1

G−1(y1)

]

and therefore,

PX|Y1,Y2
= PX|Y1

and hence by applying the irrelevance theorem, we can drop y2.

�

2.2.6 Complex Gaussian Noise

Let z be real Gaussian noise i.e., Z = (z1 . . . zn), and

Pz(z) =
1

(2πσ2)
N/2

e
−||z||2

2σ2

Let Complex Gaussian random variable be Zc = R+ jI . R, I are real and imaginary components, (R, I)
is jointly Gaussian.

K =

[
E[R2] E[RI ]
E[IR] E[I2]

]

Rz
(c) = E[ZcZc∗] = E[|Zc|2] = E[R]2 + E[I ]2

E[ZcZc] = E[R2] + j2E[I2] + 2jE[RI ] = E[R2] − E[I2] + 2jE[RI ]
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Circularly symetric Gaussian random variable:

E[Z(C)Z(C)] = 0 ⇔ E[R2] = E[I2]

E[RI ] = 0

For complex Gaussian random vectors:

E[Z
(C)
i Z

(C)∗
j ] = E[RiRj ] + E[IiIj ] − jE[RiIj ] − jE[RjIi]

Circularly symmetric: E[Z
(C)
i Z

(C)∗
j ] = 0 for all i, j.

Complex noise processes arise due to passband systems, we will learn more on them shortly.

2.2.7 Continuous additive white Gaussian noise channel

Let us go through the entire chain for a continuous (waveform) channel.
Channel: y(t) = x(t) + z(t), t ∈ [0,T]
Additive White Gaussian Noise: Noise process z(t) is Gaussian and “white” i.e.,

E [z(t)z(t− τ)] =
N0

2
δ(τ)

Vector Channel Representation: Let the basis expansion and vector encoder be represented as,

x(t) =

N−1∑

n=0

xnφn(t).

Therefore, one can write,

y(t) =

N−1∑

n=0

xnφn(t) + z(t)

Let
yn =< y(t), φn(t) >, zn =< z(t), φn(t) >, n = 0, . . . , N − 1

Consider vector model,

y =




y0
...

yN−1


 = x + z

Note:

ẑ(t)
def
=

N−1∑

n=0

znφn(t) 6= z(t) =⇒ ŷ(t)
def
=

N−1∑

n=0

ynφn(t) 6= y(t)

Lemma 2.2.1. (Uncorrelated noise samples) Given any orthonormal basis functions {φn(t)}, and
white Gaussian noise z(t). The coefficients {zn} =< z, φn > of the basis expansion are Gaussian and
independent and identically distributed, with variance N0

2 , i.e. E[znzk] = N0

2 δn−k.

Therefore, if we extend the orthonormal basis {φn(t)}N−1
n=0 to span {z(t)}, the coefficients of the expansion

{zn}N−1
n=0 would be independent of the rest of the coefficients.

Let us examine,

y(t) = ŷ(t) + ỹ(t) =

N−1∑

n=0

(xn + zn)φn(t)

︸ ︷︷ ︸
ŷ(t)

+ z(t) − ẑ(t)︸ ︷︷ ︸
ỹ(t)
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Therefore, in vector expansion, ỹ is the vector containing basis coefficients from φn(t), n = N, . . ..
These coefficients can be shown to be irrelevant to the detection of x, and can therefore be dropped.
Hence for the detection process the following vector model is sufficient.

y = x + z

Now we are back in “familiar” territory. We can write the MAP and ML decoding rules as before.
Therefore the MAP decision rule is:

HMAP(y) = arg min
i

[ ||y − xi||2
2σ2

− log[PX(xi)]

]

And the ML decision rule is:

HML(y) = argmin
i

[ ||y − xi||2
2σ2

]

Let px(xi) = 1
M i.e. uniform prior.

Here ML ≡MAP ≡ optimal detector.

P̄e =
M−1∑

i=0

Pe|x=xi
Px(xi) = 1 −

M−1∑

i=0

Pc|x=xi
Px(xi)

P̄
uniform prior
e,ML =

1

M

M−1∑

i=0

Pe,ML|x=xi
= 1 − 1

M

M−1∑

i=0

Pc|x=xi

The error probabilities depend on chosen signal constellation. More soon...

2.2.8 Binary constellation error probability

Y = Xi + Z, i = 0, 1, Z ∼ N (0, σ2IN )

Hence, conditional error probability is:

Pe,ML|x=x0
= P[||y − x0|| ≥ ||y − x1||], since y = x0 + z, (2.14)

⇒ Pe,ML|x=x0
= P[||z|| ≥ ||(x0 − x1) + z||]
= P[||z||2 ≥ ||(x1 − x0) − z||2]
= P[||z||2 ≥ ||x1 − x0||2 + ||z||2 − 2 < (x1 − x0), z >] (2.15)

= P[
< (x1 − x0), z >

||x1 − x0||
≥ ||x1 − x0||

2
]

But < (x1 − x0), z > is a Gaussian i.e. U = (x1−x0)
t

||x1−x0||Z is Gaussian, with E[U ] = 0, E[|U |2] = σ2

⇒ Pe,ML|x=x0
=

∫ ∞

||x1−x0||
2

1

(2πσ2)
1
2

e−
1

2σ2 ||U ||2dU (2.16)

=

∫ ∞

||x1−x0||
2σ

1

(2π)
1
2

e−
|| eU||2

2 dŨ (2.17)

def
= Q

( ||x1 − x0||
2σ

)
(2.18)

⇒ Pe,ML = Px{x0}P{e,ML|x = x0} + Px{x1}P{e,ML|x = x1} = Q

( ||x1 − x0||
2σ

)
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2.3 Error Probability for AWGN Channels

2.3.1 Discrete detection rules for AWGN

AWGN Channel: Y = X + Z, Y ∈ CN , x ∈ CN , Z ∼ C .

X Y
+

Z

Let px(xi) = 1
M i.e. uniform prior, hence the ML is equivalent to MAP detector.

Detection Rule:

Γi = {y ∈ CN : ||y − xi||2 ≤ ||y − xj ||2, j 6= i}

Pe =

M−1∑

i=0

Pe|x=xi
Px(xi) = 1 −

M−1∑

i=0

Pc|x=xi
Px(xi)

P uniform prior
e,ML =

1

M

M−1∑

i=0

Pe,ML|x=xi
= 1 − 1

M

M−1∑

i=0

Pc|x=xi

Hence, for M > 2, the error probability calculation could be difficult. We will develop properties and
bounds that might help in this problem.

2.3.2 Rotational and translational invariance

Rotational Invariance

Theorem 2.3.1. If all the data symbols are rotated by an orthogonal transformation, i.e. X̃i = Qxi,
∀i ∈ {0, . . . ,M − 1}, where Q ∈ CN×N , Q∗Q = I, then the probability of error of the MAP/ML receiver
remains unchanged over an AWGN channel.

Proof: Let

Ỹ = X̃ + Z (2.19)

⇒ Q∗Ỹ︸ ︷︷ ︸
Y

= Q∗X̃︸ ︷︷ ︸
X

+Q∗Z︸︷︷︸
eZ

(2.20)

⇒ Y = X + Z̃

but Z̃ is Gaussian (linear transformation of Gaussian Z) and E[Z̃Z̃∗] = Q∗σ2IQ = σ2I ⇒ Z̃ is proba-
bilistically equivalent to Z ∼ N (0, σ2I).
Hence (2.19) is the same as Y = X + Z since Q is an invertible transform ⇒ Probability of error is
unchanged.

�

Translational Invariance

If all data symbols in a signal constellation are translated by constant vector amount, i.e X̃i = Xi +a, ∀i
then the probability of error of the ML decoder remains the same on an AWGN channel.
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Minimum energy translate: Substract E[X] from every signal point. In other words, among equiv-
alent signal constellations, a zero mean signal constellation has minimum energy.

2.3.3 Bounds for M > 2

As mentioned earlier, the error probability calculations for M > 2 can be difficult. Hence in this section
we develop upper bounds for the error probability which is applicable for any constellation size M .

Theorem 2.3.2. Union bound

Pe,ML|x=xi
≤

∑

j 6=i
P2(xi, xj)

=
∑

j 6=i
Q

( ||xi − xj ||
2σ

)

Pe,ML ≤ (M − 1)Q(dmin

2σ ) where dmin
def
= mini6=j ||xi − xj ||

Proof: For x = xi, i.e. y = xi + z

Pe,ML|x=xi
= P


⋃

j 6=i
{||y − xi|| > ||y − xj ||}




≤UB
∑

i6=j
P [||y − xi|| > ||y − xj ||] =

∑

i6=j
P2(xi, xj)

≤
∑

i6=j
Q

( ||xi − xj ||
2σ

)

≤ (M − 1)Q

(
dmin
2σ

)

since Q(.) is a monotonously decreasing function. Therefore

Pe,ML =

M−1∑

i=0

Px(xi)P (e,ML|x = xi)

≤
M−1∑

i=0

Px(xi)(M − 1)Q

(
dmin
2σ

)

= (M − 1)Q

(
dmin
2σ

)

�

Tighter Bound (Nearest Neighbor Union Bound)
Let Ni be the number of points sharing a decision boundary Di with xi.

Suppose xk does not share a decision boundary with xi, but ||y − xi|| > ||y − xk || then ∃xj ∈ Di
s.t. ||y − xi|| > ||y − xj || where Di is a set of points sharing the same decision boundary. Hence
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If y /∈ Γi, an error occurs

Γi

Pr[
⋃
j 6=i{||y − xj || < ||y − xi||}] = Pr[y /∈ Γi]

Figure 2.17: Decision regions for AWGN channel and error probability.

||y − xk|| < ||y − xi|| ⇒ ∃xj ∈ Di such that ||y − xj || < ||y − xi||

⇒ P[
⋃

j 6=i
{||y − xj || < ||y − xi||}]

= P[
⋃

j∈Di

{||y − xj || < ||y − xi||}]

≤ NiQ

(
dmin
2σ

)

Pe,ML =

M−1∑

i=0

Px(xi)P (e,ML|x = xi)

≤
M−1∑

i=0

Px(xi)Q

(
dmin
2σ

)
Ni

⇒ Pe,ML ≤ NeQ

(
dmin
2σ

)
where Ne =

∑

i

NiPx(xi)

Hence we have proved the following result,

Theorem 2.3.3. Nearest Neighbor Union bound (NNUB)

Pe,ML ≤ NeQ(
dmin
2σ

)

where

Ne =
∑

NiPx(xi)

and Ni is the number of constellation points sharing a decision boundary with xi.
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xi

y ∈ Γk

xk

D

D
xj

Figure 2.18: Figure illustrating geometry when xk ∈ Di, then there is a xj ∈ Di such that y is closer to
xi.

2.4 Signal sets and measures

2.4.1 Basic terminology

In this section we discuss the terminology used i.e., the rate, number of dimensions etc. and discuss what
would be fair comparisons between constellations.

If signal bandwidth is approximately W and is approximately time-limited to T, then a deep theorem
from signal analysis states that the space has dimension N which is

N = 2WT

If b bits are in a constellation in dimension N .

⇒ b̄ =
b

N
= # of bits/dimension

R = rate =
b

T
= # bits/unit time

R

W
= 2b̄ = # bits/sec/Hz

Ēx = Average energy per dimension =
Ex
N

Px = Average power =
Ex
T

Ēx useful in compound signal sets with different # of dimension.
Signal to noise ratio (SNR)

SNR =
Ex
σ2

=
Energy/dim

Noise energy/dim
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Constellation figure of merit (CFM)

ζx
def
=

(dmin/2)2

Ēx

As ζx increases we get better performance (for same # of bits per dimension only).
Fair comparison: In order to make a fair comparison between constellations, we need to make a multi-
parameter comparison across the following measures.

Data rate (R) bits/dim (b̄)
Power (Px) Energy/dim (Ēx)
Total BW (W ) OR Normalized probability of error (P̄e)
Symbol period (T )
Error probability (Pe)

2.4.2 Signal constellations

Cubic constellations

x =

N−1∑

i=0

Uiei

where N is the number of dimensions, and ei ∈ RN is,

ei(k) =

{
1 if k = i
0 else

where Ui ∈ {0, 1} depending on “bit sequence”. Hence the number of constellation points is, M = 2N .

Orthogonal constellations

M = αN . Example: Bi-orthogonal signal set →M = 2N and xi = ±ei ⇒ 2N signal points.

Circular constellations

M th root of unity
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8 PSK

Example 2.4.1. Quadrature Phase-Shift Keying (QPSK):

φ1(t) =

√
2

T
cos(

2πt

T
) 0 ≤ t ≤ T,

φ2(t) =

√
2

T
sin(

2πt

T
) 0 ≤ t ≤ T

The constellation consists of x =

(
x1

x2

)
, where xi ∈ {−

√
Ex

2 ,
√

Ex

2 }

⇒ d2
min = 2Ex, ζx =

[
√

2εx

2 ]2

εx

2

= 1.

Note that, d2
min = 4Ex for BPSK.

Error Probability:

Pcorrect =

3∑

i=0

Pcorrect|iPx(i) = Pcorrect|0

= [1 −Q(
dmin
2σ

)]2

⇒ Perror = 2Q(
dmin
2σ

) − [Q(
dmin
2σ

)]2 < 2Q(
dmin
2σ

) → NNUB

Where 2Q(dmin

2σ ) is the NNUB. Hence for dmin reasonably large the NNUB is tight.

Example 2.4.2. M-ary Phase-Shift Keying (MPSK)

dmin = 2
√
Ex sin(

π

M
), ζx =

[
√Ex sin( πM )]2

εx

2

= 2 sin2 π

M

Error Probability: Pe < 2Q(
√
Ex sin( π

M )

σ )

2.4.3 Lattice-based constellation:

A lattice is a “regular” arrangement of points in an N-dimensional space.

x = Ga, ai in Z

where G ∈ RN×N is called the generator matrix.
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dmin2π/M

π/M

Figure 2.19: Figure for M-ary Phase-Shift keying.

Example 2.4.3. Integer lattice: G = I ⇒ x ∈ ZN

If N=1 we get the “Pulse Amplitude Modulation” (PAM) constellation.

For this, Ex = d2

12 (M2 − 1). Thus,

d2
min =

12Ex
M2 − 1

, ζx =
3Ex

M2 − 1

−3d/2 −d/2 0 d/2 3d/2

Figure 2.20: PAM constellation.

Error Probability:

Pcorrect =
M − 2

M
[1 − 2Q(

dmin
2σ

)] +
2

M
[1 −Q(

dmin
2σ

)]

⇒ Pe = 2(1 − 1

M
)Q(

dmin
2σ

)

Number of nearest neighbors: Nj = 2 for interior points, and Nj = 1 for end points.

Ne =
M − 2

M
2 +

2

M
= 2(1 − 1

M
)

Note: Hence NNUB is exact.

Curious fact: For a given minimum distance d,

M2 = 1 +
12Ex
d2

⇒ b̄ = logM =
1

2
log(1 +

12Ex
d2

)

Is this familiar? If so, is this a coincidence? More about this later...
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Other lattice based constellations

Quadrature Amplitude Modulation (QAM): “Cookie-slice” of 2-dimensional integer lattice. Other
constellations are carved out of other lattices (e.g. hexagonal lattice).

Other performance measures of interest

• Coding gain: γ = ζ1
ζ2

• Shaping gain of lattice.

• Peak-to-average ratio.

2.5 Problems

Problem 2.1

Consider a Gaussian hypothesis testing problem with m = 2. Under hypothesis H = 0 the transmitted
point is equally likely to be a00 = (1, 1) or a01 = (−1,−1), whereas under hypothesis H = 1 the
transmitted point is equally likely to be a10 = (−1, 1) or a11 = (1,−1). Under the assumption of uniform
priors, write down the formula for the MAP decision rule and determine geometrically the decision
regions.

Problem 2.2

[ Minimax ] Consider a scalar channel

Y = X + Z (2.21)

where X = ±1 (i.e. X ∈ {−1, 1}) and Z ∼ N (0, 1) (and Z is a real Gaussian random variable).

1. Let P[X = −1] = 1
2 = P[X = 1], find the MAP decoding rule. Note that this is also the ML

decoding rule. Now, let P[X = −1] = Π0 and P[X = 1] = 1 − Π0. Now, compute the error
probability associated with the ML decoding rule as a function of Π0. Given this calculation
can you guess the worst prior for the MAP decoding rule? (Hint: You do not need to calculate
Pe,MAP (Π0) for this)

2. Now, consider another receiver DR, which implements the following decoding rule (for the same
channel as in (2.21)).

DR,1 = [ 12 ,∞) , DR,−1 = (−∞, 1
2 )

That is, the receiver decides that 1 was transmitted if it receives Y ∈ [ 1
2 ,∞) and decides that -1

was transmitted if Y ∈ (−∞, 1
2 ).

Find Pe,R(Π0), the error probability of this receiver as a function of Π0 = P[X = −1]. Plot Pe,R(Π0)
as a function of Π0. Does it behave as you might have expected?

3. Find maxΠ0 Pe,R(Π0), i.e. what is the worst prior for this receiver?

4. Find out the value Π0 for which the receiver DR specified in parts (2) and (3) corresponds to the
MAP decision rule. In other words, find for which value of Π0, DR is optimal in terms of error
probability.
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Problem 2.3

Consider the binary hypothesis testing problem with MAP decoding. Assume that priors are given by
(π0, 1 − π0).

1. Let V (π0) be average probability of error. Write the expression for V (π0).

2. Show that V (π0) is a concave function of π0 i.e.

V (λπ0 + (1 − λ)π′
0) ≥ λV (π0) + (1 − λ)V (π′

0),

for priors (π0, 1 − π0) and (π′
0, 1 − π′

0).

3. What is the implication of concavity in terms of maximum of V (π0) for π0 ∈ [0, 1]?

Problem 2.4

Consider the Gaussian hypothesis testing case with non uniform priors. Prove that in this case, if y1

and y2 are elements of the decision region associated to hypothesis i then so is αy1 + (1 − α)y2, where
α ∈ [0, 1].

Problem 2.5

Suppose Y is a random variable that under hypothesis Hj has density

pj(y) =
j + 1

2
e−(j+1)|y|, y ∈ R, j = 0, 1.

Assume that costs are given by

Cij =





0 if i = j,
1 if i = 1 and j = 0,
3/4 if i = 0 and j = 1.

1. Find the MAP decision region assuming equal priors.

2. Recall that average risk function is given by:

RH(π0) =

1∑

j=0

πjC0,j +

1∑

j=0

πj(C1,j − C0,j)P [H(Y) = m1|M = mj ].

Assume that costs are given as above. Show that RMAP(π0) is a concave function of π0. Find the
minimum, maximum value of RMAP(π0) and the corresponding priors.

Problem 2.6

Consider the simple hypothesis testing problem for the real-valued observation Y :

H0 : p0(y) = exp(−y2/2)/
√

2π, y ∈ R

H1 : p1(y) = exp(−(y − 1)2/2)/
√

2π, y ∈ R

Suppose the cost assignment is given by C00 = C11 = 0, C10 = 1, and C01 = N . Find the minmax rule
and risk. Investigate the behavior when N is very large.
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Problem 2.7

Suppose we have a real observation Y and binary hypotheses described by the following pair of PDFs:

p0(y) =

{
(1 − |y|), if |y| ≤ 1
0, if |y| > 1

and

p1(y) =

{
1
4 (2 − |y|), if |y| ≤ 2
0, if |y| > 2

Assume that the costs are given by

C01 = 2C10 > 0
C00 = C11 = 0.

Find the minimax test of H0 versus H1 and the corresponding minimax risk.

Problem 2.8

In the following a complex-valued random vector is defined as:

U = UR + jUI

and we define the covariance matrix of a zero mean complex-valued random vector as :

KU = E[UU†]

We recall that a complex random vector is proper iff KUR = KUI and KUIUR = −KT
UIUR

. We want to
prove that if U is a proper complex n-dimensional Gaussian zero mean random vector with covariance
Λ = E[UU†]], then the pdf of U is given by:

pU(u) =
1

πn det(Λ)
exp{−u†Λ−1u}

1. Compute Φ =Cov
[[UR

UI

]
,

[
UR

UI

] ]

2. A complex Gaussian random vector is defined as a vector with jointly Gaussian real and imaginary
parts. Write pURUI

(uR,uI).

3. Show the following lemma: Define the Hermitian n × n matrix M = MR + MI + j(MIR −MT
IR)

and the symmetric 2n× 2n matrix Ψ = 2

[
MR MRI

MIR MI

]
, then the quadratic forms E = u†Mu and

E ′ =
[
uTR uTI

]
Ψ

[
uR
uI

]
are equal for all u = uR + juI iff MI = MR and MIR = −MT

IR

4. Suppose that Λ−1 = 1
2∆−1(I − jΛIRΛ−1

R ) where ∆ = ΛR + ΛIRΛ−1
R ΛIR. Apply the lemma given

above to Ψ = 1
2Φ−1 and M = 1

2∆−1(I− jΛIRΛ−1
R ) in order to show that pU(u) and pURUI

(uR,uI)
have the same exponents. Use the matrix inversion formulae.

5. Show that det

[
A B
C D

]
= det(AD −BD−1CD).

6. Using the result above show that 2n
√

det Φ = det Λ
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Problem 2.9

Consider the following signals:

x0(t) =

{ 2√
T

cos
(

2πt
T + π

6

)
if t ∈ [0, T ]

0 otherwise

x1(t) =

{ 2√
T

cos
(

2πt
T + 5π

6

)
if t ∈ [0, T ]

0 otherwise

x2(t) =

{ 2√
T

cos
(

2πt
T + 3π

2

)
if t ∈ [0, T ]

0 otherwise

(a) Find a set of orthonormal basis functions for this signal set. Show that they are orthonormal.
Hint : Use the identity for cos(a+ b) = cos(a) cos(b) − sin(a) sin(b).

(b) Find the data symbols corresponding to the signals above using the basis functions you found in
(a).

(c) Find the following inner products:

(i) < x0(t), x0(t) >

(ii) < x0(t), x1(t) >

(iii) < x0(t), x2(t) >

Problem 2.10

Consider an additive-noise channel y = x+ n, where x takes on the values ±3 with P (x = 3) = 1/3 and
where n is a Cauchy random variable with PDF:

pn(z) =
1

π(1 + z2)
.

Determine the decision regions of the MAP detector. Compare the decision regions found with those of
the MAP detector for n ∼ N (0, 1). Compute the error probability in the two cases (Cauchy and Gaussian
noise).

Problem 2.11

Consider the following constellation to be used on an AWGN channel with variance σ2:

x0 = (−1,−1)

x1 = (1,−1)

x2 = (−1, 1)

x3 = (1, 1)

x4 = (0, 3)

1. Find the decision region for the ML detector.

2. Find the union bound and nearest neighbor union bound on Pe for the ML detector on this signal
constellation.
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Problem 2.12

A set of 4 orthogonal basis functions {φ1(t), φ2(t), φ3(t), φ4(t)} is used in the following constellation.
In both the first 2 dimensions and again in the second two dimensions: The constellation points are
restricted such that a point E can only follow a point E and a point O can only follow a point O. The
points {1, 1}, {−1,−1} are labeled as E and {1,−1}, {−1, 1} are labeled as O points. For instance, the
4- dimensional point [1, 1,−1,−1] is permitted to occur, but the point [1, 1,−1, 1] can not occur.

1. Enumerate all M points as ordered-4-tuples.

2. Find b, b.

3. Find Ex and Ex (energy per dimension) for this constellation.

4. Find dmin for this constellation.

5. Find Pe and P e for this constellation using the NNUB if used on an AWGN with σ2 = 0.1.

Problem 2.13

Consider an additive-noise channel y = x+n, where x takes on the values ±A with equalprobability and
where n is a Laplace random variable with PDF:

pn(z) =
1√
2σ
e−|z|

√
2/σ

Determine the decision regions of the MAP detector. Compare the decision regions found with those
of the MAP detector for n ∼ N (0, σ2). Compute the error probability in the two cases (Laplace and
Gaussian noise) and compare the resulting error probabilities for the same SNR (SNR is defined as

SNR = E[|x|2]
E[|n|2] ). What is the worst-case noise in the high SNR ?

Problem 2.14

Consider the general case of the 3-D Ternary Amplitude Modulation (TAM) constellation for which the
data symbols are,

(xl, xm, xn) =

(
d

2
(2l − 1 −M

1
3 ),

d

2
(2m− 1 −M

1
3 ),

d

2
(2n− 1 −M

1
3 )

)

with l = 1, 2, . . . ,M
1
3 , m = 1, 2, . . . ,M

1
3 , n = 1, 2, . . . ,M

1
3 . Assume that M

1
3 is an even integer.

1. Show that the energy of this constellation is

Ex =
1

M


3M

2
3

M
1
3∑

l=1

x2
l


 .

2. Now show that

Ex =
d2

4
(M

2
3 − 1).

3. Find b and b.

4. Find Ex and the energy per bit Eb.
5. For an equal number of bits per dimension b = b

N , find the figure of merit for PAM, QAM and
TAM constellations with appropriate sizes of M . Compare your results.
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Problem 2.15

[ Binary Communication Channel]
Let X ∈ {0, 1} and Zi ∈ {0, 1},

Yi = X ⊕ Zi, i = 1, . . . , n,

where ⊕ indicates a modulo-2 addition operation, i.e.,

0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1⊕ 0 = 1, 1 ⊕ 1 = 0.

Let X and Zi be independent and for ε < 0.5

X =

{
0 w.p. π0

1 w.p. π1
(2.22)

Zi =

{
0 w.p. 1 − ε
1 w.p. ε

(2.23)

{Zi}ni=1 is an independent and identically distributed binary process, i.e.,

Pz(Z1, . . . , Zn) =

n∏

i=1

Pz(Zi)

where Pz(Zi) is specified in (2.23).

1. Given observations {Y1, . . . , Yn} find the MAP rule for detecting X . Note here that X is a scalar,
i.e., a binary symbol transmitted n consecutive times over the channel. Hint: You can state the
decision rule in terms of the number of ones in {Yi}, i.e. in terms of

∑n
i=1 Yi.

2. Find the error probability of detecting X as a function of the prior π0.

3. What is the minmax rule for detecting X when the prior is unknown?

4. Assume now that π0 = π1 = 1
2 . Let

Y =



Y1

...
Yn




︸ ︷︷ ︸
Y

=



X1

...
Xn




︸ ︷︷ ︸
X

⊕



Z1

...
Zn




︸ ︷︷ ︸
Z

where ⊕ is again the modulo-2 addition aperator and the addition is done component-wise.

Here X is a vector and has the following two possible hypotheses

X =

{
0 w.p. 1

2 −→ Hypothesis H0

S w.p. 1
2 −→ Hypothesis H1

where 0 = [0, . . . , 0] and S = [S1, . . . , Sn] is an i.i.d. process with

PS(Si) =

{
1
2 Si = 0
1
2 Si = 1

.

Given n observations Y1, . . . , Yn, we want to decide between the two hypotheses. Find the maximum
likelihood rule to decide if X = 0 or X = S, i.e. hypothesis H0 or H1. Again, you can state the
decision rule in terms of the number of ones in {Yi}.
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Transmitter
Lausanne Channel 1 Aubonne

Repeater
Channel 2

Decoder 
Geneva

� ������� �
	������ ��
	������ ��������� � �

Figure 2.21: Block diagram for repeater channel

Problem 2.16

[ Repeater channel]
We want to lay down a communication line from Lausanne to Geneva. Unfortunately due to the distance,
we need a repeater in Aubonne. Luckily we get to design the repeater in Aubanne and use this to transmit
the signal X̂1(t). In Geneva we are left with the task of detecting the transmitted bits. Let

Y1(t) = X(t) + Z1(t),

Y2(t) = X̂1(t) + Z2(t).

We assume that Z1(t) and Z2(t) are independent and identically distributed real zero-mean Gaussian
noise processes with E

[
Z1(t)

2
]

= E
[
Z2(t)

2
]

= σ2. Let

X(t) = bφ(t).

where φ(t) is a normalized function, i.e.,
∫
|φ(t)|2dt = 1 and

b =

{ √Ex w.p. 1
2

−√Ex w.p. 1
2

1. Let the receiver is Aubonne attempt to detect the bit using a ML detector and then sends the signal

X̂1(t) = b̂1φ(t), (2.24)

on wards to Geneva. Let it use a decoder such that

p1 = P

[
b̂1 =

√
Ex|b = −

√
Ex
]

p0 = P

[
b̂1 = −

√
Ex|b =

√
Ex
]

where 0 < p0, p1 <
1
2 . Find the decoder in Geneva that minimizes

P(error) = P

[
b̂ 6= b

]

and find an expression for the minimum P(error) in terms of p0 and p1.

2. Show that to minimize P(error) the decoder in Aubonne must be chosen to minimize P

(
b̂1 6= b

)
.

Specify the optimal decoder in Aubonne and the overall error probability in Geneva, i.e.,

P

(
b̂ 6= b

)
,

given this decoder in Aubonne.



Chapter 3

Passband Systems

In most communication systems the transmission occurs at a frequency band which is not at base band,
but centered at a higher frequency. An example is that of wireless transmission, where the signal is
centered around 1GHz or more. Other examples include TV broadcast, cordless phones, satellite com-
munication, etc. In order to understand transmission over such channels we study representations of
passband systems.

3.1 Equivalent representations

|X(f)|

fc−fc

Figure 3.1: Passband transmission centered at frequency fc.

Let carrier modulated signal x(t) be given by,

x(t) = a(t) cos[ωct+ θ(t)]

the quadrature decomposition is

x(t) = xI (t) cos(ωct)︸ ︷︷ ︸
in−phase

− xQ(t) sin(ωct)︸ ︷︷ ︸
quadrature−phase

Thus, a(t) =
√
x2
I (t) + x2

Q(t) , θ(t) = tan−1
[
xQ(t)
xI(t)

]
.

The baseband-equivalent signal is

xbb(t)
def
= xI(t) + jxQ(t) (3.1)

47
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Note that in (3.1) there is no reference to ωc.
The analytic equivalent signal is,

xA(t) = xbb(t)e
jωct

Hence,

x(t) = Re[xA(t)]

Let

x̆(t) = Im[xA(t)]

Then

xbb(t) = xA(t)e−jωct = [x(t) + jx̆(t)]e−jωct

Hence

xbb(t) = [x(t) cos(ωct) + x̆(t) sin(ωct)]︸ ︷︷ ︸
xI(t)

+j [x̆(t) cos(ωct) − x(t) sin(ωct)]︸ ︷︷ ︸
xQ(t)

Representation of passband signals Equivalent representations for x(t) = a(t) cos[ωx(t) + θ(t)] are,

1. Magnitude and phase: a(t), θ(t)

2. In-phase and quadrature phase: xI(t), xQ(t)

3. Complex baseband equivalent: xbb(t)

4. Analytic signal: xA(t)

3.2 Frequency analysis

We assume that the signal bandwidth is such that

XQ(ω) = 0
XI(ω) = 0

}
|ω| > ωc

xA(t) = xbb(t)e
jωct = x(t) + jx̆(t)

Now

F [x(t)] = F [xI(t) cosωct− xQ(t) sinωct]

Where F(·) is the Fourier transform.
Hence

X(ω) =
1

2
[ XI(ω − ωc)︸ ︷︷ ︸
6=0 only forω>0

+ XI(ω + ωc)︸ ︷︷ ︸
6=0 only for ω<0

] − 1

2j
[ XQ(ω − ωc)︸ ︷︷ ︸
6=0 only for ω>0

− XQ(ω + ωc)︸ ︷︷ ︸
6=0 only for ω<0

]

Let sgn(x) be the function as defined in Figure 3.2.
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−1

+1

sgn(x)

sgn(x) =





1, x > 0
0, x = 0
−1, x < 0

Figure 3.2: The sgn(·) function.

Now consider

−jsgn(ω)X(ω) =
−j
2

[XI(ω − ωc) −XI(ω + ωc)] +
j

2j
[XQ(ω − ωc) +XQ(ω + ωc)]

=
1

2j
[XI(ω − ωc) −XI(ω + ωc)] +

1

2
[XQ(ω − ωc) +XQ(ω + ωc)]

Therefore

F−1{−jsgn(ω)X(ω)} = xI (t) sinωct+ xQ(t) cosωct = Im[xA(t)]

⇒ F{Im[xA(t)]} = F [x̆(t)] = X̆(ω) = −jsgn(ω)X(ω)

Hence we have

XA(ω) = X(ω) + j(−jsgn(ω))X(ω) = [1 + sgn(ω)]X(ω)

Fourier relationships:

x(t) = xI cosωct− xQ(t) sinωct

x(t)
F⇐⇒ X(ω)

xbb(t) = xI(t) + jxQ(t)
F⇔ Xbb(ω)

xA(t) = xbb(t)e
jωct F⇔ Xbb(ω − ωc) = XA(ω) = [1 + sgn(ω)]X(ω)

⇒ Xbb(ω − ωc) = [1 + sgn(ω)]X(ω)

or Xbb(ω) = [1 + sgn(ω + ωc)]X(ω + ωc) = XA(ω + ωc)
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Xbb(w)

2
⇒

wc + B

1

X(w)

0 B−B−wc + B wc − B−wc − B −wc wc

Figure 3.3: Passband and baseband signal representation.

3.3 Channel Input-Output Relationships

Given a passband channel H(ω), we can rewrite the channel output as,

Y (ω) = H(ω)X(ω)

⇒ Y (ω)[1 + sgn(ω)] = H(ω)[1 + sgn(ω)]X(ω)

YA(ω)
(a)
= H(ω)XA(ω)

YA(ω)
(b)
=

1

2
[1 + sgn(ω)]H(ω)XA(ω)

⇒ YA(ω) =
1

2
HA(ω)XA(ω)

Where (a) follows from derivation of XA(ω), (b) is because XA(ω) is non-zero only for ω > 0 and hence
1
2 [1 + sgn(ω)] = 1 for these frequencies. Now,

Ybb(ω) = YA(ω + ωc) =
1

2
HA(ω + ωc)XA(ω + ωc)

Ybb(ω) =
1

2
Hbb(ω)Xbb(ω)

Also,
Ybb(ω) = H(ω + ωc)Xbb(ω) for ω > −ωc

y(t)x(t) h(t)

X(ω)

−ωc ωc

Y (ω)

ωc−ωc

H(ω)

−ωc ωc

Figure 3.4: Representation for passband channels.
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2
1

2

Xbb(ω) Hbb(ω)

Ybb(ω)

Figure 3.5: Representation with baseband signals.

SUMMARY of signal representations.

Passband y(t) = x(t) ∗ h(t)
Y (ω) = X(ω)H(ω)

Analytic equivalent yA(t) = xA(t) ∗ 1
2hA(t)

YA(ω) = XA(ω)H(ω) = XA(ω) 1
2HA(ω)

Baseband ybb(t) = xbb(t) ∗ 1
2hbb(t)

Ybb(ω) = Xbb(ω)H(ω + ωc)

3.4 Baseband equivalent Gaussian noise

Let the noise process be z(t).

Sz(ω) = E[|Z(ω)|]2 =

{
N0

2 ωc −W < |ω| < ωc +W
0 elsewhere

Sz(ω)

N0/2 N0/2

ωc−ωc +W−ωc

Figure 3.6: Bandlimited noise spectral density.

We can write,
zA(t) = z(t) + jz̆(t).

The correlation function is,
E[z(t)z(t− τ)] = rz(τ)
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Hence the power spectral density Sz(ω) is given by,

Sz(ω) = F{rz(τ)}
Note that formally Sz(ω) = E[| Z(ω) |2], though these are technicalities which make this a formal rather
than a precise relationship.
Therefore,

E[|Z̆(ω)|2] = E[|Z(ω)|2] = Sz(ω)

Sz̆(ω) = Sz(ω)

Hence we get the fact that
rz(τ) = rz̆(τ) (3.2)

almost everywhere (i.e., except over a set of measure zero). Now let the Hilbert transform ~(t) be,

H(ω) = −jsgn(ω)

m F−1

~(t) =

{
1
πt t 6= 0
0 t = 0

This is because sgn(ω) = u(ω) − u(−ω) where u(·) is the unit-step function1. Since F−1(u(ω)) =
− 1
j2πt + 1

2δ(t), we can derive the expression for ~(t). Hence we have,

z̆(t) = ~(t) ∗ z(t)
Now,

rzz̆ = E[z(t)z̆(t− τ)] = ~
∗(−τ) ∗ rz(τ) = −~(τ) ∗ rz(τ) = −r̆z(τ)

rz̆z = E[z̆(t)z(t− τ)] = ~(τ) ∗ rz(τ) = r̆z(τ)

Hence for,

zA(t) = z(t) + jz̆(t)

We have 2,

rzA(τ) = E[zA(t)z∗A(t− τ)]

= E[z(t)z∗(t− τ)] − jE[z(t)z̆∗(t− τ)] + E[z̆(t)z∗(t− τ)] − j2E[z̆(t)z̆(t− τ)]

= rz(τ) − j(−r̆z(τ)) + jr̆z(τ) + rz(τ)

Therefore we get,

rzA(τ) = 2[rz(τ) + jr̆z(τ)]

which implies

F [rzA(τ)] = SzA(ω)

= 2[1 + sgn(ω))]Sz(ω)

=

{
4Sz(ω) ω > 0
0 elsewhere

1The unit step function is u(t) = 1, t > 0, u(t) = 0, t < 0. At t = 0, there is a discontinuity, and usually u(0) = 1
2

is

used. Also F(u(t)) = 1
jω

+ πδ(ω), where δ(ω) is the Dirac delta function.
2We denote the complex conjugate by Z∗.
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This gives us

SzA(ω) = 4Sz(ω) for ω > 0

that is,

SzA(ω) =

{
2N0 ωc −W ≤ ω ≤ ωc +W
0 elsewhere

Since zA(t) = zbb(t)e
jωct, this implies that rza(τ) = rzbb

(τ)ejωcτ , and we get (3.3),

Szbb
(ω) = SzA(ω + ωc)

⇒ Szbb
(ω) =

{
2N0 |ω| < W
0 elsewhere

(3.3)

Here is where the messy factor of 2 arises!

1√
2

ez(t)z(t)
×

Figure 3.7: The factor of two in noise process.

Define,

z̃(t) =
1√
2
z(t)

⇒ Sz̃(ω) =

{
N0

4 |ω| < ωc +W
0 elsewhere

⇒ Sz̃A(ω) =

{
N0 ωc −W ≤W ≤ ωc +W
0 elsewhere

and

⇒ Sz̃bb
(ω) =

{
N0 |ω| < W
0 elsewhere

giving the same energy as the passband noise spectrum.

Example 3.4.1. Let

xbb(t) =
√

2(x1 + jx2)ϕ(t)

if

x(t) = x1ϕ1(t) + x2ϕ2(t)

where,

ϕ1(t) =
√

2ϕ(t) cosωct

ϕ2(t) = −
√

2ϕ(t) sinωct

If ϕ(t) is normalized, i.e. ||ϕ|| = 1, then if

ϕ1(t) =
√

2ϕ(t) cosωct, ϕ2(t) =
√

2ϕ(t) sinωct
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x

+

+

H(ω + ωc)

H(ω + ωc)

1√
2

y(t)

ỹbb(t)

ỹbb(t)

ỹbb(t)

xbb(t)√
2

S̄n(f) = N0/2

(x1 + jx2)ϕ̃

1√
2
nbb(t)

Phase splitter

Figure 3.8: Representation of additive noise channel.

⇒ ||ϕ1|| = ||ϕ2|| = 1

So under modulation
√

2 factor is needed.
Verification: Let us verify that indeed ϕ1 and ϕ2 are normalized.

Φ1(ω) =
√

2[
1

2
Φ(ω − ωc) +

1

2
Φ(ω + ωc)] =

1√
2
[Φ(ω − ωc) + Φ(ω + ωc)],

where Φi(ω) = F(ϕi), i = 1, 2. Hence, it is normalized, i.e.,

||Φ1|| =
1

2
[||Φ|| + ||Φ||] = 1

Note: Scaling is really for analytical convenience, since scaling does not change SNR since it is after
received signal.
Therefore to be precise when XA(w) = [1 + sgn(w)]X(w)

⇒ XA(ω) =





2X(ω) ω > 0
X(ω) ω = 0
0 ω < 0

3.5 Circularly symmetric complex Gaussian processes

Let Z = R+ jI where I and R denote real and imaginary components respectively.

Z complex Gaussian ⇒ R, I are jointly Gaussian

Now if we think of

(
R
I

)
as a vector then

E

[(
R
I

)(
R I

)]
=

(
E
[
R2
]

E [RI ]
E [IR] E

[
I2
]
)
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Note that since E [IR] = E [RI ], there are three degrees of freedom.
Let

Rz = E [ZZ∗] = E
[
R2
]
+ E

[
I2
]

Clearly this has only one degree of freedom. Hence, this is not sufficient to specify the Gaussian random
variable Z.
Define

R̃z = E [ZZ] = E
[
R2
]
− E

[
I2
]
+ 2jE [RI ]

Thus we have 2 degrees of freedom here.

Definition 3.5.1. Circularly symmetric complex Gaussian variables. A random variable Z is

circularly symmetric iff ⇒ R̃z = 0, i.e.

{
E
[
R2
]

= E
[
I2
]

E [RI ] = 0

This can be generalized to vectors,

Z =




z1
...
zN


 ∈ CN

is a complex Gaussian circularly symmetric random variable, iff,

E
[
ZZt

]
= 0

This implies,

E [zizj ] = 0 ∀i, j

Therefore the complex covariance matrix Rz for zero mean random variables is,

Rz = E [zz∗]

Complex Gaussian vectors The probability density function (pdf) is,

Pz(z) =
1

|πRz|
e−(z−µ)∗Rz

−1
(z−µ)

where E [z] = µ, and Rz = E
[
(z − µ)(z − µ)∗

]
.

3.5.1 Gaussian hypothesis testing - complex case

y = x + z

where x,y,z ∈ CN and z is a circularly symmetric complex Gaussian random vector with Rz = σ2I ,



56 CHAPTER 3. PASSBAND SYSTEMS

µ = 0.

HMAP (y) = argmax
i

Px|y(xi|y)

= argmax
i

Px(xi)Py|x(y|xi)
= argmax

i
Px(xi)Pz(y − xi)

= argmax
i

Px(xi)
1

(πσ2)
N
e−

||y−xi||2

σ2

= argmax
i

[
ln Px(xi) −

||y − xi||2
σ2

]

= argmax
i

[
ln Px(xi) −

||y||2
σ2

− ||xi||2
σ2

+
2< < y, xi >

σ2

]

⇒ HMAP (y) = argmax
i

[
ln Px(xi) +

2< < y, xi >

σ2
− ||xi||2

σ2

]

where < y, x >= y∗x
Similarly

HML(y) = arg max
i

[−||y − xi||2]

= arg max
i

[2< < y, xi > −||xi||2]

= arg min
i

[||y − xi||2]

3.6 Problems

Problem 3.1

Let the transmitted bandpass signal be given by

x(t) = a cos
(
2π(fc + 1

T )t
)

+ b cos
(
2π(fc + 2

T )t
)

t ∈ [0, T ]

and a ∈ {0, A}, b ∈ {0, A}.
1. Find the baseband equivalent signal xbb(t) for the transmitted signal.

2. Find the vector representation of the baseband signal and draw the corresponding signal constella-
tion.

3. If a =

{
0 w.p. 1

2
A w.p. 1

2

and b =

{
0 w.p. 1

2
A w.p. 1

2
find the average energy of the baseband signal. Is this a minimum energy configuration? If not how
will you modify the constellation so that it is of minimum energy?

Problem 3.2

Consider the following passband waveform:

x(t) = sinc(t)(1 +A sin(4πt)) cos
(
ωct+

π

4

)
,

where ωc >> 4π.
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1. Find xbb(t) and xA(t), the baseband and analytical equivalents of x(t).

2. Let x(t) is passed through a channel with impulse response h(t) = δ(t) − δ(t− 1). Let the output
be y(t). Find ybb(t) and yA(t).

Problem 3.3

[Passband Systems] Let the transmitted bandpass signal be given by

x(t) = a cos
(
2π(fc + 1

T )t
)

+ b cos
(
2π(fc + 2

T )t
)

t ∈ [0, T ]

and a ∈ {0, A}, b ∈ {0, A}.

1. Find the baseband equivalent signal xbb(t) for the transmitted signal.

2. Find the vector representation of the baseband signal and draw the corresponding signal constella-
tion.

3. If a =

{
0 w.p. 1

2
A w.p. 1

2

and b =

{
0 w.p. 1

2
A w.p. 1

2
find the average energy of the baseband signal. Is this a minimum energy configuration? If not how
will you modify the constellation so that is is minimum energy?

Problem 3.4

A baseband-equivalent waveform (wc > 2π)

x̃bb(t) = (x1 + jx2)sinc(t)

is convolved with the complex filter
w1(t) = δ(t) − jδ(t− 1)

1. Find
y(t) = w1(t) ∗ x̃bb(t).

2. Suppose y(t) is convolved with the imaginary filter

w2(t) = 2jsinc(t)

to get

z(t) = w2(t) ∗ y(t)
= w2(t) ∗ w1(t) ∗ x̃bb(t)
= w(t) ∗ x̃bb(t).

Find z(t). Note that sinc(t) ∗ sinc(t− k) = sinc(t− k), k an integer.

3. Let
z̃(t) = <{z(t)ejwct} = w̃(t) ∗ x(t)

where x(t) = <{x̃bb(t)ejwct}. Show that

w̃(t) = 4 sinc(t− 1) cos(wct) − 4 sinc(t) sin(wct)

when convolved with the passband x(t) will produce z̃(t). Hint: use baseband calculations.
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Problem 3.5

For the AWGN channel with transfer function,

H(f) =

{
1 75MHz ≤ |f | ≤ 175MHz
0 otherwise

a transmitted signal cannot exceed 1 mW and the power spectral density is also limited according to
Sx(f) ≤ −83 dBm/Hz (two sided psd). The two-sided noise power spectral density is σ2 = −98 dBm/Hz.
The carrier frequency is fc = 100 MHz for QAM transmission. The probability of error is Pe = 10−6.
(P dBm = 10P/10 mW.)

1. Find the base band channel model Hbb(f)
2 (after the scaling).

2. Find the largest symbol rate that can be used with the 100 MHz carrier frequency.

3. What is the maximum signal power at the channel output with QAM?

4. What QAM data rate can be achieved with the symbol rate of part 2?

Problem 3.6

[ Whitening passband random processes]
Let us consider a real valued passband random process

X(t) = XI(t) cos(ωct) −XQ(t) sin(ωct), (3.4)

at a carrier frequency of ωc. The processes {XI(t)} and {XQ(t)} are independent stationary zero-mean
Gaussian random processes with,

E [XI(t)XI(t− τ)] = rI (τ)

and E [XQ(t)XQ(t− τ)] = rQ(τ).

We assume that

rI (τ) = rQ(τ) = e−2|τ |

and E [XI(t)XQ(t− τ)] = 0 ∀τ.

1. Find rx(τ) = E [X(t)X(t− τ)] in terms of rI (τ) = rQ(τ) as a function of ωc.

2. Find the correlation function for the baseband equivalent of X(t) in equation (3.4), i.e., find

E [Xbb(t)X
∗
bb(t− τ)] = rbb(τ).

Also find the correlation function of the analytic equivalent signal E [XA(t)X∗
A(t− τ)].

3. We sample Xbb(t) at times t = k, i.e., at integer times,

Y (k) = Xbb(k).

Hence
E [Y (k)Y ∗(k − l)] = E [Xbb(k)X

∗
bb(k − l)] = rbb(l).

We want to find a baseband filter to whiten this {Y (k)} process. Compute such a causal whitening
filter.
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Chapter 4

Inter-symbol Interference and
optimal detection

The main focus till now was one “one-shot” transmission, i.e., transmission of one of M messages using a
N dimensional symbol. Typically, a transmission system sends a sequence of messages. If the channel is
memoryless, i.e., successive transmissions do not interfere with each other, then the analysis up to now
is sufficient. More formally, a channel is memoryless if

P(y1, y2, . . . , yt|x1, x2, . . . , xt) =

t∏

k=1

P(yk|xk)

where {yk}tk=1 are symbols received over t successive time periods. In practice, symbols do interfere with
each other causing Inter-Symbol-Interference (ISI).

4.1 Successive transmission over an AWGN channel

First, let us examine successive transmission over a memoryless AWGN channel. If we reuse the channel
we send one out of M messages every T seconds. If T is the symbol period then 1

T is the symbol rate.
Then the data rate R is defined as

R
def
=

log2M

T
bits/second.

In order to transmit k successive messages, we send

x(t) =

K−1∑

k=0

xk(t− kT ) (4.1)

where k indicates time index (i.e., message transmitted at kth time instant). We also define

xk(t) =

N−1∑

n=0

xk,nφn(t)

Thus if we want to express x(t) in terms of its basis functions we have,

x(t) =

K−1∑

k=0

xk(t− kT ) =

K−1∑

k=0

N−1∑

n=0

xk,n φn(t−KT )︸ ︷︷ ︸
ψk,n(t)

(4.2)
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Where the equivalent basis {ψk,n(t)} has two indices, one indicating the symbol time and other for the
basis coefficient, for the symbol time. One can form the optimal receiver by thinking of (4.1) as a one-shot
problem with Mk possible messages and therefore decode optimally. If the channel is memoryless, the
problem decouples and instead of Mk, we get k, M -dimensional independently solvable problems and the
dimensionality of the problem does not go up exponentially i.e., the complexity does not grow as M k.
Notes:

1. Even though < ϕn, ϕk >= δn−k, < ϕn(t− kT ), ϕk(t− lT ) > need not be δn−k for k 6= l.

However, if < ϕn(t−kT ), ϕk(t− lT ) >= δn−k again the problem decouples and we can do “symbol-
by-symbol” detection.

2. The inherent assumption is that the successive messages are independent. However, if there is de-
pendance, then clearly “symbol-by-symbol” detection is not optimal even for memoryless channels.

4.2 Inter-symbol Interference channel

The inter-symbol interference channel we will focus on is illustrated in Figure 4.1.

h(t)
x̃(t)

+ ỹ(t)x(t)

z(t)

Figure 4.1: The inter symbol interference channel.

The transmitted waveform is,

x̃(t) =

K−1∑

k=0

N−1∑

n=0

xk,n [ϕn(t− kT ) ∗ h(t)]︸ ︷︷ ︸
pn(t−kT )

,

and the received waveform is with Gaussian noise,

ỹ(t) = x̃(t) + z(t) =

K−1∑

k=0

N−1∑

n=0

xk,n [ϕn(t− kT ) ∗ h(t)]︸ ︷︷ ︸
pn(t−kT )

+z(t), (4.3)

where z(t) is additive Gaussian noise.
Therefore the nth pulse response is,

pn(t) = ϕn(t) ∗ h(t)

Definition 4.2.1. We define the normalized pulse response ϕ̃n(t) as,

ϕ̃n(t) =
pn(t)

||pn||

where ||pn|| = < pn, pn >
1/2.



4.2. INTER-SYMBOL INTERFERENCE CHANNEL 63

Hence, we can rewrite the transmitted waveform as,

x̃(t) =

K−1∑

k=0

N−1∑

n=0

xk,n||p||︸ ︷︷ ︸
scaled version of symbol

ϕ̃n(t− kT )

Now consider an isolated symbol transmitted over the channel, i.e., not successive transmission. This
means that xk = x0δ(k), and the waveform y(t) is observed in order to detect x0. Therefore, this
“one-shot” transmission specifies a lower bound to the error probability of i.i.d. symbols. Therefore the
SNR of this channel is an upper bound to the SNR of successive data transmission over the ISI channel.
Therefore, this is called the matched filter bound.

Definition 4.2.2. The SNRMFB is the SNR of a single shot transmission over the channel given in
(4.3) and is given by,

SNRMFB =
Ex||p||2
N0

, (4.4)

where Ex = E[||xk||2] and N0 = E[|z(t)|2].
The main question we first address is, what should the optimum receiver structure be for successive
transmission over the channel given in Figure 4.1. In the sequel, we consider N = 1 for simplicity. Hence
we will drop the subscript from ϕn(t) and use it as ϕ(t). Clearly all the discussion can be extended to
the case when N > 1 complex dimensions.

4.2.1 Matched filter

In this section we derive a set of sufficient statistics for the ISI channel.

Theorem 4.2.1. The set of discrete-time samples {y(kT )}k∈(−∞,∞) where y(kT ) = ỹ(t) ∗ ϕ̃∗(−t)|t=kT
are a set of sufficient statistics for the detection of {xk} over a continuous-time ISI channel whose output
is ỹ(t), i.e.,

ỹ(t) = h(t) ∗
∑

n

xnϕ(t− nT ) + z(t)︸︷︷︸
AWGN

and ϕ̃(t)
def
= h(t)∗ϕ(t)

||h∗ϕ||

Notes:

1. Here we have assumed N = 1, and hence the subscript of ϕ has been dropped for convenience.

2. The result indicates that the following detector structure incurs no loss of optimality.

Detector

h(t)

z(t)

ϕ(t)

kT
{y(kT )}

xk

{x̂k}

ϕ̃∗(−t)

+
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Proof: Consider the following problem

ỹ(t) =
∑

k

xk ||p||ϕ̃(t− kT ) + z(t), t ∈ (−∞,∞)

This is like transmitting symbols {x̆k}, where x̆k = xk||p|| using modulating functions {ϕ̃k(t)} where

ϕ̃k(t) = ϕ̃(t− kT ) (4.5)

We can use a Gram-Schmidt orthogonalization process, for example, to create an orthonormal basis for
the space spanned by {ϕ̃k}. We can call this orthonormal basis {ψ̃k} which can be obtained by an
invertible transformation Γ. That is

{ψ̃k} = Γ({ϕ̃k})
{ϕ̃k} = Γ−1({ψ̃k})

Therefore one can write
ỹ(t) =

∑

k

ukψ̃k(t) + z(t) (4.6)

where {uk} is the coefficients of
∑

k xkϕ̃k(t) in the new basis. From “single shot” transmission, we know
that for white Gaussian noise, the optimal receiver projects onto the orthonormal basis directions, i.e.,
{< ỹ, ψ̃k >} form a set of sufficient statistics for detecting {uk}.
Now if we apply an invertible transform Γ−1 to recover {uk} expressed in their orthogonal basis {ϕk}
(which may not be orthonormal), then we obtain {< ỹ, ϕ̃k >} as the set of outputs we process. In other
words, {uk} expresses x̃(t) in terms of the basis {ϕ̃k} (see (4.6) above), and we can do a change of basis
to express x̃(t) in terms of {ϕ̃k} which yields the basis coefficients {< ỹ, ϕ̃k >}. Since, the transform is
invertible, by the reversibility theorem we are done.

�

Alternate (more explicit) proof:
Let us consider a finite number of transmissions, i.e., k = 0, . . . ,K − 1.

ỹ(t) =
K−1∑

k=0

xk||p||ϕ̃(t− kT ) + z(t), t ∈ (−∞,∞)

Optimal receiver projects onto subspace spanned by signal when noise is white. That is, let ỹE = P(ỹ),
where P projects onto the signal space. Therefore the projections are,

< ỹ,
∑

xk||p||ϕ̃k >=
∑

< ỹ, ϕ̃k > (xk||p||)

Hence,

yk =< ỹ, ϕ̃k >= ỹ(t) ∗ ϕ̃k(−t)|t=kT
form a set of sufficient statistics.

4.2.2 Noise whitening

As a result of the matched filtering operation illustrated in Figure 4.2, the noise observed after sampling
need not be white. Consider the output of the matched filter which projects the signal onto the basis,
i.e.,

y(kT ) =< ỹ, ϕ̃k >
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ϕ̃(t)

sample at times kT

z(t)

ϕ̃∗(−t)+

x̆k = ||p||xk

Figure 4.2: Colored noise at the output of the matched filter.

Let us define,

y(kT )
def
= yk =

∑

n

xn||p|| < ϕ̃n, ϕ̃k > + < z, ϕ̃k > (4.7)

Now,

< ϕ̃n, ϕ̃k > =

∫
ϕ̃(t− nT )ϕ̃∗(t− kT )dt

=

∫
ϕ̃(t)ϕ̃∗(t− (k − n)T )dt

Hence

< ϕ̃n, ϕ̃k > = < ϕ̃0, ϕ̃k−n >

Let
ql =< ϕ̃0, ϕ̃l >

Clearly q∗l = q−l and hence {ql} has conjugate symmetry.
From (4.7),

yk =
∑

n

x̆nqk−n+ < z, ϕ̃k >

=
∑

n

x̆k−nqn+ < z, ϕ̃k >

Consider the noise process

zn
def
= < z, ϕ̃n >

The spectrum of this noise is,

E[znz
∗
n−k] = E

[∫ ∫
{z(t)ϕ̃∗(t− nT )dt} {z∗(t)ϕ̃(τ − (n− k)T )dτ}

]

=

∫

t

∫

τ

ϕ̃∗(t− nT )ϕ̃(τ − (n− k)T )E[z(t)z∗(τ)]dtdτ

=

∫

t

∫

τ

ϕ̃∗(t− nT )ϕ̃(τ − (n− k)T )N0δ(t− τ)dtdτ

= N0

∫

t

ϕ̃∗(t− nT )ϕ̃(t− (n− k)T )dt

= N0 < ϕ̃n−k, ϕ̃n >= qkN0
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zn wng(n)

Figure 4.3: The noise whitening filter.

Hence {zk} is not in general white. Therefore, after filtering, we have a colored noise process. Ideally, we
would like to work with white noise, and hence we would like to “whiten” it as illustrated in Figure 4.3.
To avoid confusion of lots of z’s floating around, the D-transform is the Z-transform with D = z−1

Definition 4.2.3. (The D-transform)
If H(z) is the z-transform of the sequence {hn}, i.e.,

H(z) =
∑

n

hnz
−n,

then the D-transform of {hn} is

H(D) =
∑

n

hnD
n

and we denote the transform pair by

{hn} D⇔ H(D)

Now, given the review class, we know that the power spectral density of a random (stationary) process is

Sz(D) = D{E[zkz
∗
k−n]}

And passing a random process (stationary) through a linear filter {gn} (i.e., with D-transform G(D))
results in

Sw(D) = G(D)G∗(
1

D∗ )Sz(D)

Now we use the spectral factorization theorem.

Theorem 4.2.2. (Spectral factorization theorem) A power spectrum S(D), can be factorized into S(D) =
F (D)F ∗( 1

D∗ ) where F (D) is causal, stable and minimum phase (i.e., F (D), F−1(D) are analytic for
D < 1), iff the Paley-Wiener condition holds, i.e.,

1

2π

∫ π

−π
| ln[S(ejω)]|dω <∞

We assume, that this holds for the process that we deal with. Now, armed with this we can write

Sz(D) = N0Q(D) = F̆ (D)F̆ ∗(
1

D∗ )

And therefore the filtering {zk} through G(D) gives,

Sw(D) = G(D)G∗(
1

D∗ )F̆ (D)F̆ ∗(
1

D∗ )

By choosing G(D) =
√
N0

F̆∗( 1
D∗ )

, we see that Sw(D) = N0, i.e., white noise! Now,what happens to our

receiver? Note that Sz(D) = N0D{qn}, hence we have in D-transform notation

Y (D) = Q(D) ‖ p ‖ X(D) + Z(D)

=
1

N0
Sz(D) ‖ p ‖ X(D) + Z(D)



4.3. MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION (MLSE) 67

Therefore,

G(D)Y (D) =

√
N0

F̆ ∗( 1
D∗ )

F̆ (D)F̆ ∗( 1
D∗ )

N0
‖ p ‖ X̆(D) +W (D)

=
1√
N0

F̆ (D) ‖ p ‖ X(D) +W (D)

So, it is like converting the channel into F̆ (D)√
N0

. A natural question to ask is whether this procedure gives

any advantage.
The spectral factorization can be arranged such that Sz(D) = F̆ (D)F̆ ∗( 1

D∗ ) has a causal factor F̆ (D).
Hence we have not only whitened the noise but have converted our channel into a causal sequence. This
combination of ϕ̃∗(−t) and G(D) together is called the whitened matched filter .

Now we have the following problem at hand. Detect sequence {x̆k} when we observe

Ỹ (D)
def
= G(D)Y (D) =

1√
N0

F̆ (D) ‖ p ‖ X(D) +W (D) (4.8)

Or in time domain,

ỹk =
∑

n≥0

xk−n fn︸︷︷︸
D−1( ‖p‖F̆(D)√

N0
)

+wk

when wk is now white Gaussian noise and {fn} is a causal sequence. Given the problem stated in (4.8),
we would now like to derive efficient detection algorithms while retaining optimality. A naive detection
scheme would incur a complexity of MK where M is the constellation size and K the time window of
detection. Clearly we would need better methods than exponential and the next two sections give efficient
ML and MAP decoders for this problem.

4.3 Maximum Likelihood Sequence Estimation (MLSE)

Consider again1,
Y (D) = F (D)X(D) + Z(D) (4.9)

where F (D) = f0 + f1D+. . .+fνD
ν i.e. a finite length response.

Let

S̄z(D) =
N0

2

def
= σ2

Note that the signal to noise ratio (SNR) is given by,

E

[
|y(k) − z(k)|2

]

E

[
|z(k)|2

] =
||f ||2E

[
|x(k)|2

]

σ2
=

Ex
σ2

||f ||2

We make the following assumptions,

• Uniform priors

• ν <∞ ⇒ finite impulse response

Implication: {y(k)} is the output of a finite state machine operating over C (see Figure 4.4), with
additive i.i.d. noise process w(k).

1We revert back to using z(k) as the notation for noise. In the previous notation this was w(k) and we use z(k) as white
noise. Also, we drop the Ỹ notation and use Y (D) instead of Ỹ (D) used in equation (4.8).
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. . .

x x x x x

D D D

f0 f1 f2 fν−1 fν

+

. . .

y(k)

Z(k)

x(k) x(k − 1) x(k − ν + 1) x(k − ν)

Figure 4.4: Finite state machine representation of output of WMF.

Definition 4.3.1. We define the state of the finite state machine as S(k) where, let,

s(k) =




x(k − 1)
x(k − 2)

...
x(k − ν)


 ∈ Cν

Hence y(k) depends only on states s(k), s(k + 1) and noise z(k).

4.3.1 Viterbi Algorithm

The Maximum Likelihood detection criterion yields,

{x̂(D)} = arg max
X(D)

P{Y (D)|X(D)}

Notes:

• This could deal with sequences that are semi-infinite.

• Since there is a one-to-one map between s(D) and X(D), we can equivalently pose the problem as
estimating the state from noisy observations.

• Now, the form of the problem is similar to the decoding of convolutional codes, i.e., employ the
Viterbi algorithm (dynamic programming).

• Let us denote u(D) = f(D)x(D). Hence u(k) depends only on s(k) and s(k + 1).
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Since z(k) is i.i.d. Gaussian, the log-likelihood splits up as

log P{y(D)|s(D)} =
∑

k

log Pz{y(k) − u(k)}

=
∑

k

[
log(2πσ2) − |y(k) − u(k)|2

]

Let us denote

Γ[s(D)]k2k1
def
=

k2−1∑

k=k1

log Pz [y(k) − u(s(k), s(k + 1))]

u(s(k), s(k + 1)) shows explicit dependence of u(k) on s(k), s(k + 1).

Dynamic programming principle: Suppose, for the moment, we knew that the state s(k) at time
k was Sj (one particular choice out of M ν choices). Then, for any allowable state sequence s(D), that
starts with s(0) = 0 and passes through state Sj at time k, the log likelihood would break up into two
independent parts,

Γ[s(D)]
K
0 = Γ[s(D)]

k
0 + Γ[s(D)]

K
k

If ŝj(D) be any allowable state sequence from time 0 to k, that has maximum log-likelihood Γ[s(D)]
k
0

among all the allowable state sequences starting from s(0) = 0 and ending at s(K) = S j . We call ŝj(D),
the survivor at time k corresponding to state Sj .
Therefore, ŝj(D) must be the initial segment of the maximum likelihood state sequence, if indeed the true
state sequence was Sj at time k. We do not know the state sequence s(k) but clearly it has to be one of
a finite set of sizeMν . Consequently, we store survivor sequences for each state and their corresponding
log-likelihoods Γ[ŝj(D)]

k
0 for j ∈ {1,. . . ,Mν}.

Thus we store Mν sequences ŝj(D) and their log-likelihoods Γ[ŝj(D)]k0 and update them as follows:

1. For each of the M allowable extensions of ŝj(D) to time k+1, compute for each of the M ν survivors:

Γ[sj(D)]k+1
0 = Γ[ŝl(D)]k0 + ln Pz[y(k) − u(S l,Sj)] ∀j ∈ {1, . . . ,Mν}

where l ∈ {1,. . . ,Mν}. This needs MνM = Mν+1 additions.

2. For each state j, compare the log likelihoods Γ[sj(D)]
k+1
0 of the M extensions that end in state Sj ,

and select the largest as the corresponding survivor. This needs M ν , M -ary comparisons.

This summarizes the Viterbi algorithm, which in principle terminates only at k → ∞. However, we can
make a decision on a particular state (dynamic programming for ISI channel), if all the survivors agree on
that state. Moreover in practice, typically good decisions can be made with a finite time horizon. Note
that such a sequence estimation can also work if x(D), itself was the result of the finite state machine
(e.g., convolutional code). In this case the state machine can be augmented and one can obtain an
optimal joint equalization and decoding of the channel code.

4.3.2 Error Analysis

A correct state sequence and an erroneous one are illustrated in Figure 4.5.
Error event: An error event extends from time k1 to k2 if the estimated state sequence ŝ(D) is equal to
the correct state sequence s(D) at times k1 and k2 but nowhere in between. Hence ŝ(k1) = s(k1), ŝ(k2) =
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correct state sequence

incorrect state sequence

Figure 4.5:

s(k2), ŝ(k) 6= s(k), k1 < k < k2. The Length of error event is n = k2 − k1 − 1 ≥ ν.
Clearly for such an error event:

x̂(k) = x(k), k1 − ν ≤ k ≤ k1 − 1 and k2 − ν ≤ k ≤ k2 − 1

from the definition of s(k).
However, x̂(k1) 6= x(k1) and x̂(k2−ν−1) 6= x(k2−ν−1) since, ŝ(k1+1) 6= s(k1+1), and ŝ(k2−1) 6= s(k2−1),
we can define,

εx(D)
def
= [x(k1) − x̂(k1)] + [x(k1 + 1) − x̂(k1 + 1)]D + . . .+ [x(k2 − ν − 1) − x̂(k2 − ν − 1)]Dn−ν

εu(D)
def
= [u(k1) − û(k1)] + [u(k1 + 1) − û(k1 + 1)]D + . . .+ [u(k2 − 1) − û(k2 − 1)]Dn

Since u(D) = f(D)x(D), clearly we have εu(D) = f(D)εx(D)

Probability of a particular error event:

u(D)

y(D)

û(D)

||y(D) − û(D)|| < ||y(D) − u(D)||

Think of u(D) being “symbols” in sequence space. Hence, the same way as we did earlier, we can write
the NNUB as

Pe,MLSE ≤ NeQ

(
dmin
2σ

)

where dmin is the minimum distance between sequences u(D), i.e.

dmin = min
u6=û

||u(D) − û(D)||

Ne is again Ne =
∑

x Px(εx + x̂)Nu that is, the average # of nearest neighbors. Note that this is done in
sequence space and we calculate over the allowable sequences, i.e., εx+ x̂ must be an allowable sequence.
The main question is to be able to calculate dmin for different channels.
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4.4 Maximum a-posteriori symbol detection

In section (4.3), we explored the maximum likelihood detector. But if the priors are not uniform the
MAP detector is the optimal scheme and this is the focus of the following section.

4.4.1 BCJR Algorithm

For minimizing symbol error probability we use

x̂(n) = arg max
x(n)

P[x(n)|y(0), . . . y(N − 1)]

The BCJR algorithm efficiently does this computation simultaneously for all {x̂(n)}.

x̂(n) = arg max
x(n)

P[x(n)|yN−1
0 ] = arg max

x(n)
P[x(n),yN−1

0 ]

where yk2k1 = {y(k1), . . . , y(k2)}

P[x(n),yN−1
0 ] =

∑

i,j

P(x(n),yn−1
0 , y(n),yN−1

n+1 , s(n) = Si, s(n+ 1) = Sj)

=
∑

i,j

P[yn−1
0 , s(n) = S i]P[x(n), y(n),yN−1

n+1 , s(n+ 1) = Sj |yn−1
0 , s(n) = S i]

=
∑

i,j

P[yn−1
0 , s(n) = S i]P[x(n), y(n), s(n+ 1) = Sj |yn−1

0 , s(n) = Si]

P[yN−1
n+1 |x(n),yn−1

0 , y(n), s(n) = S i, s(n+ 1) = Sj ]
(a)
=

∑

i,j

P[yn−1
0 , s(n) = S i]︸ ︷︷ ︸

αn(i)

P[x(n), y(n), s(n+ 1) = Sj |s(n) = Si]︸ ︷︷ ︸
γn(i,j)

P[yN−1
n+1 |s(n+ 1) = Sj ]︸ ︷︷ ︸

βn+1(j)

where (a) is due to the Markov property of the finite state machine. Therefore we obtain the relationship,

P[x(n),yN−1
0 ] =

∑

i,j

αn(i)γn(i, j)βn+1(j)

The BCJR algorithm essentially computes αn(i), and βn+1(j) efficiently through the forward-backward
recursion.

γn(i, j) = P[y(n), x(n), s(n+ 1)] = Sj |s(n) = S i]
This can be computed for each n, as,

γn(i, j) = P[y(n), x(n)|s(n) = S i]P[s(n+ 1) = Sj |s(n) = S i, x(n), y(n)]

= p(x(n))p (y(n) | x(n), s(n) = Si) P[s(n+ 1) = Sj |s(n) = Si, x(n), y(n)]

If the transition from Si to Sj occurs due to symbol x̃(n), then

P[s(n+ 1) = Sj |s(n) = S i, x(n), y(n)]

is either 1 if x̃(n) = x(n), and 0 otherwise. Now we need to compute {αn(i)} and {βn(j)}.
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Forward recursion

Computation of {αn(i)}

αn(i) = P[yn−1
0 , s(n) = S i]

=
∑

k

P[yn−1
0 , s(n) = Si, s(n− 1) = Sk]

=
∑

k

P[yn−2
0 , y(n− 1), s(n) = Si, s(n− 1) = Sk]

=
∑

k

P[yn−2
0 , s(n− 1) = Sk]P[y(n− 1), s(n) = Si|yn−2

0 , s(n− 1) = Sk]

=
∑

k

αn−1(k)γn−1(k, i)

Therefore we get the following forward recursion,

αn(i) =
∑

k

αn−1(k)γn−1(k, i). (4.10)

Backward recursion

Computation of {βn(j)}

βn+1(j) = P[yN−1
n+1 |s(n+ 1) = Sj ]

=
∑

k

P[yN−1
n+1 , s(n+ 2) = Sk|s(n+ 1) = Sj ]

=
∑

k

P[yN−1
n+2 , y(n+ 1), s(n+ 2) = Sk|s(n+ 1) = Sj ]

=
∑

k

P[y(n+ 1), s(n+ 2) = Sk|s(n+ 1) = Sj ]

P[yN−1
n+2 |y(n+ 1), s(n+ 2) = Sk, s(n+ 1) = Sj ]

=
∑

k

γn+1(j, k)βn+2(k)

Hence we get the following backward recursion,

βn+1(j) =
∑

k

γn+1(j, k)βn+2(k) (4.11)

Using the forward-backward recursions, one can then compute the max-a-posteriori symbols {x̂(n)}N−1
n=0 .

Notes:

1. The BCJR algorithm computes {x(n)} according to minimum symbol-by-symbol error probability:
This could be different from the sequence of error probability

2. BCJR also gives us “soft-information” on the reliability of the symbols detected.

3. The BCJR algorithm and the Viterbi algorithm (MLSE) applied to same observations (and uniform
priors) may give different candidate sequences, since they optimize different criteria. The choice of
which criteria is important depends on the application.
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4.5 Problems

Problem 4.1

Let the transmission over an ISI channel yield after matched filtering the following model,

Y (D) = ||p||X(D)Q(D) + Z(D)

where ql = e−2|l| and Sz(D) = N0Q(D) and Q(D) is the D-Transform of {ql}.
Find the whitening filter W (D) to whiten the noise. Choose the whitening filter such that the resulting
communication channel after the whitening filter is causal. That is, Q(D)W (D) is causal.

Problem 4.2

Suppose we are given qk, (the autocorrelation function of the normalized pulse function) by : q0 = 5/4,
q1 = q−1 = −1/2, and where the equivalent channel in D-transform resulting out of matching filter is
given by :

Y (D) =
1

N0
Sz(D)||p||X(D) + Z(D)

Find Sz(D), F (D) and the resulting channel ( write in the temporal domain G(D)Y (D)).

Problem 4.3

[Whitening and coloring]

1. Let the transmission over an ISI channel yield after matched filtering the following model,

Y (D) = ||p||X(D)Q(D) + Z(D)

where ql = e−2|l| and Sz(D) = N0Q(D) and Q(D) is the D-Transform of {ql}.
Find the whitening filter W (D) to whiten the noise. Choose the whitening filter such that the
resulting communication channel after the whitening filter is causal. That is,

Y (D)W (D) = ||p||X(D) Q(D)W (D)︸ ︷︷ ︸
causal channel

+Z(D)W (D)

2. Let {Zn} be a wide-sense stationary random process with EZn = 0,

EZnZn−l =





1.81 l = 0
0.9 |l| = 1

0 else

and let {Zn} be a real process. Now let {Un} be a white, wide-sense stationary real random process,

i.e EUn = 0, and EUnUn−l =

{
1 l = 0
0 else

Find a coloring filter {Cn} such that Zn = Cn ∗ Un
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Problem 4.4

An information sequence X = (X1, X2, . . . , Xn), Xi ∈ {+1,−1} is transmitted over a noisy intersymbol
iterference channel. The ith channel output is given by

Yi = X̃i + Zi

where Zi is an i.i.d sequence of Gaussian random variables, and,

X̃i =

∞∑

j=0

Xi−jhj ,

where hj is the channel impulse response and is given by

hi =

{
1, if i ∈ {0, 1}
0, otherwise

Sketch the state diagram of the finite state machine that produces the ouput sequence X̃ from the input
sequence X. Draw the Viterbi decoding trellis for the received sequence Y = [0.28, −0.94, −0.46, 2.26,
1.52], and hence determine the maximum likelihood estimate of X.

Problem 4.5

Considering the channel where H(D) = 1 + D, show that dmin, the minimum distance between two
different paths for the MLSE detector is, in this case, the same as the minimum distance between paths
in the shortest possible error event. Assume that channel state is known at the beginning and end of the
sequence.

Problem 4.6

Consider transmission over an ISI channel with PAM and symbol period T . Let ϕ(t) = 1√
T

sinc
(
t
T

)
and

h(t) = δ(t) − 1
2δ (t− T ). Assume that AWGN noise has power spectral density N0.

1. Determine the pulse response p(t).

2. Determine ||p|| and ϕ̃(t).

3. Find the autocorrelation function of the noise after sampling the output of the matched filter. Find
the whitening filter such that the resulting channel is causal.

4. Assume that N0 = 25/64, size of PAM is 2 and xi ∈ {−1, 1}. Let the transmitted sequence is
{1,−1,−1, 1, 1} and the output of the whitened matched filter is
{0.7, 0.1,−2.0, 0.4, 0.7}. Find the maximum likelihood sequence using the Viterbi algorithm. As-
sume that the initial and last states are 1.

5. Apply the BCJR algorithm when the received sequence is same as in part 4 . Compare the two
results and comment.

Problem 4.7

Consider noisy ISI channel given by

Yi = Xi +Xi−1 + Zi.
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where Xi and Yi are the channel input and output, respectively, at time index i, Z is a sequence of
i.i.d. Gaussian random variables, with zero mean and unit variance and xi ∈ {−1, 1}. Calculate the
symbol-wise MAP esitmate of X, using the BCJR algorithm, if the received sequence Y = [0.28, −0.54,
−0.46, 2.26, 1.52]. You may assume that the channel is in state +1 at the begining and the end of the
sequence. Compare this to the decoding estimate from the MLSE decoder.
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Chapter 5

Equalization: Low complexity
suboptimal receivers

In many applications even the efficient implementation of optimal receivers may be too computationally
intensive for practical use. In such cases further reductions in complexity are sought at the cost of
optimality. This chapter explores several such structures for detection in ISI channels. The chapter
starts with a discussion of linear estimation which forms the principles behind all the structures studied
in this chapter. We then proceed to derive and analyze several suboptimal schemes for ISI channels using
linear estimation as a tool.

5.1 Linear estimation

5.1.1 Orthogonality principle

Suppose

y(k) = Ax(k) + z(k)

and given observations {y(k)} one wants to estimate x(k). Here z(k) is assumed to be Gaussian i.i.d.
noise.
Estimation criterion

min E

[
||x(k) − x̂(k)||2

]

This is called the minimum mean squared error (MMSE) criterion. Our interest is restricted to a class
of linear estimators, i.e.,

x̂(k) = Wy(k)

where W is the linear estimator matrix.
Hence

e(k)
def
= x(k) − x̂(k) = x(k) −Wy(k)

and the problem becomes to find W such that

Wopt = argmin
W

E

[
||x(k) −Wy(k)||2

]

and the MMSE is defined as

σ2
MMSE = E

[
||x(k) − Wopty(k)||2

]

77
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Notation: Given a vector (or matrix) x (or A) we use the notation x∗ (or A∗) to denote Hermitian
transpose, i.e., complex conjugation and transpose. We use xt (or At) to denote ordinary transpose
without complex conjugation.
Now, we can write the mean-squared error as,

E

[
||x(k) −Wy(k)||2

]
= trace{E

[
[(x(k) −Wy(k))(x(k) −Wy(k))

∗
]
]
}

= trace{Rxx −RxyW
∗ −WRyx + WRyyW

∗} (5.1)

Now to find Wopt, we can differentiate equation (5.1) with respect to (W)th(i,j) element of matrix W.
An alternate method would be to “guess” the solution. We use the following basic property of the trace
operator for matrices.

Fact 5.1.1. For matrices A ∈ Cm×n and B ∈ Cn×m,

trace(AB) = trace(BA).

Theorem 5.1.1. (Orthogonality principle) The MSE is minimized if and only if the following con-
dition is met

E [e(k)y∗(k)] = 0 ∀k

Proof: Let W̃ any linear estimator, and Wopt be the linear estimator which satisfies the orthogonality
principle.

E

[
||ẽ(k)||2

]
= E

[
||ẽ(k) − eopt(k) + eopt(k)||2

]

= E

[
||ẽ(k) − eopt(k)||2

]
+ E

[
||eopt(k)||2

]
+ 2Re

{
E
[
e∗opt(k) {ẽ(k) − eopt(k)}

]}

(a)
= E

[
||ẽ(k) − eopt(k)||2

]
+ E

[
||eopt(k)||2

]
+ 2Re

{
trace

[
E
[
e∗opt(k) {ẽ(k) − eopt(k)}

]]}

(b)
= E

[
||ẽ(k) − eopt(k)||2

]
+ E

[
||eopt(k)||2

]

+2Re
{
trace

[
E

[{
x(k) − W̃y(k) − x(k) + Wopty(k)

}
e∗opt(k)

]]}

= E

[
||ẽ(k) − eopt(k)||2

]
+ E

[
||eopt(k)||2

]
+ 2Re

{
trace

[
E

[
(Wopt − W̃)y(k)e∗opt(k)

]]}

(c)
= E

[
||ẽ(k) − eopt(k)||2

]
+ E

[
||eopt(k)||2

]

≥ E

[
||eopt(k)||2

]

Where (a) follows because trace of a scalar is the same as the scalar. Also (b) follows since trace is a
linear operator i.e.,

E [trace(·)] = trace{E [(·)]},
and because of Fact 5.1.1. Finally (c) follows due to the supposition of the theorem. Therefore we get

the if part of the theorem directly due to the inequality E

[
||ẽ(k)||2

]
≥ E

[
||eopt(k)||2

]
. We get the only

if part by noticing that we need for optimality of any other estimator, E

[
||ẽ(k) − eopt(k)||2

]
= 0 which

means that ẽ(k) = eopt(k) almost everywhere, i.e., except over a set of measure zero. This implies that

W̃y(k) = Wopty(k) almost everywhere, resulting in W̃ = Wopt for optimality. Hence we have proved
the theorem.
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�

Therefore, using the orthogonality principle, we have

E [(x(k) −Wopty(k))y∗(k)] = 0

or

WoptRyy = Rxy

where Ryy = E [y(k)y∗(k)], Rxy = E [x(k)y∗(k)] and hence

Wopt = RxyR
−1
yy (5.2)

Now, let us calculate the minimum mean-squared error (MMSE) of the optimal estimator.

σ2
MMSE = E

[
||x(k) −Wopty(k)||2

]

= E [(x(k) −Wopty(k))∗eopt]

= E [x∗(k)eopt] − trace {E [Wopty(k)eopt]}
(a)
= E [x∗(k)(x(k) −Wopty(k))]

= E

[
||x(k)||2

]
− traceE [Wopty(k)x∗(k)]

= trace [E [xx∗] −WoptE [yx∗]]

= trace [Rxx −WoptRyx]

Where (a) follows due to Theorem 5.1.1.

Optimum (non-linear) MMSE estimation

A natural question to ask is what the optimal estimator is, without the restriction to a linear estimator.
We next show that the optimal estimator is given by

x̂ = E [x | Y = y] .

Notes:

1. In general, depending on the distributions x̂ = E [x|Y = y] could be a non-linear function of y. For
brevity we will denote E [x|Y = y] by E [x|y].

2. If x,y are jointly Gaussian , then x̂ = E [x|y] is linear and hence linear estimators are optimal for
estimating Gaussian random processes from another (correlated) Gaussian random process.

3. Here as well we will show (see Theorem 5.1.2), that the orthogonality principle holds, i.e.,

(x − E[x | y]) ⊥ (g(y))

for any (measurable) function g(y). Hence

E[eopty
∗] = 0.

Theorem 5.1.2. x̂opt = E[X | Y = y] and x − x̂opt ⊥ g(y) for any (measurable) function g.
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Proof: First, it is easy to see that the tower property holds, i.e.,

Ex[X] = Ey

[
Ex|y[X]

]
.

Hence

E[Xg∗(y)] = Ey

[
Ex|y[Xg∗(y)]

]
= Ey

[(
Ex|y[X]

)
g∗(y)

]

= Ey

[(
Ex|y[X | Y]

)
g∗(y)

]

⇒ E
[(

X − Ex|y[X]
)
g∗(y)

]
= 0.

Therefore, if we denote x̂opt = Ex|y[X | Y], then x− x̂opt ⊥ g(y).
Now, let x̃ be any other estimator

⇒ E[‖ x − x̃ ‖2] = E[‖ x − x̃ + x̂opt − x̂opt ‖2]

= E[‖ (x̂opt − x̃) + eopt ‖2]

= E[‖ (x̂opt − x̃) ‖2] + E[‖ eopt ‖2] + 2Re





E[eopt (x̂opt − x̃)∗︸ ︷︷ ︸
g(y)

]





⇒ E[‖ x − x̃ ‖2] = E[‖ (x̂opt − x̃) ‖2] + E[‖ eopt ‖2]

⇒ x̃ = x̂opt, a.e.

Where the notation a.e. means “almost everywhere”, i.e., everything except over a set of zero measures.

�

The estimation principles can be applied to a variety of situations. In particular we are interested in
applying it to scenarios where we observe a random process {y(k)} which is a noisy observation of the
process {x(k)} which we want to estimate. Note that in general the processes {x(k)}, {y(k)} need not
be white, i.e., there could be dependencies over time which we can exploit. In this context in the next
sections we consider the following cases.

Smoothing: Here we are allowed to use the entire observation y(n), n ∈ (−∞,∞) in order to estimate
x(k). Therefore we can use “future” observations in the estimate of x(k).

Prediction: In this case we are only allowed to process the observations strictly causally. Therefore,
in estimating x(k), we can only use observations y(n), n ∈ (−∞, k − 1). In this problem, we can
also formulate a pure prediction problem where the observations x(n), n ∈ (−∞, k − 1) are used
to predict the value of x(k).

Filtering: In this case we are only allowed to process the observations causally. Therefore, in estimating
x(k), we can only use observations y(n), n ∈ (−∞, k). Therefore the difference between prediction
and filtering is that one can use the “current” observation as well for the estimate of x(k). However,
this means that the filtering problem is degenerate if the observations are {x(k)} itself.

5.1.2 Wiener smoothing

Recall, for a random process {x(k)}, (scalar and wide-sense stationary).
Autocorrelation:

rxx(l) = E [x(k)x∗(k − l)]

rxx(l) = r∗xx(−l)
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i.e., {rxx(l)} exhibits conjugate symmetry.
Power Spectrum: We define the power spectrum and cross spectrum as,

Rxx(D) = D{E[xkx
∗
k−n]}, Rxy(D) = D{E[xky

∗
k−n]}, (5.3)

where D(·) denotes the D-transform. Note that there is conjugate symmetry in the power spectrum, i.e.,
Rxx(D) = R∗

xx(D
−∗).

Notation (mneumonic): Very often in the class we denote the power spectrum and cross spectrum
loosely as

Rxx(D) = E[X(D)X∗(D−∗)], Rxy(D) = E[X(D)Y ∗(D−∗)],

but this is an imprecise statement. What we really mean is the relationship in (5.3). This notation is
really used as a mneumonic to easily write out relationships.
Suppose we observe {y(k)} and we want to estimate {x(k)} where unlike our previous set-up, there would
be correlation between y(l) and x(k), k 6= l. Here we would need to “filter” {y(k)} to estimate {x(k)}.
We restrict our attention to linear filters, i.e.,

x̂(k) =
∑

n

w(n)y(k − n)

Hence,

X̂(D) = W (D)Y (D)

E(D) = X(D) −W (D)Y (D)︸ ︷︷ ︸
X̂(D)

We use the criterion,

min
W (D)

E

[
|e(k)|2

]

Claim 5.1.1. The optimal estimator Wopt(D) is such that

E [eopt(k)y
∗(k − n)] = 0, ∀n

where eopt(k) = x(k) − x̂opt(k), where X̂opt(D) = Wopt(D)Y (D).

Using this orthogonality principle we have,

E [eopt(k)y
∗(k − n)] = 0, ∀n (5.4)

Hence,

E

[[
x(k) −

∑

l

wopt(l)y(k − l)

]
y∗(k − n)

]
= 0

⇒ E [x(k)y∗(k − n)] −
∑

l

wopt(l)E [y(k − l)y∗(k − n)] = 0

⇒ rxy(n) =
∑

l

wopt(l)ryy(n− l)

⇒ Rxy(D) = Wopt(D)Ryy(D) (5.5)

where we have denoted rxy(n) = E [x(k)y∗(k − n)] and ryy(n− l) = E [y(k − l)y∗(k − n)].
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Note: The relationship in (5.4) (seen in more detail in (5.5) above) can be written in mneumonic as

E
[
E(D)Y ∗(D−∗)

]
= 0. (5.6)

This is useful since the relationship in (5.5) can be easily seen by simple manipulation as

E
[
{X(D) −W (D)Y (D)}Y ∗(D−∗)

]
= 0 (5.7)

⇒ Rxy(D) = Wopt(D)Ryy(D).

The relationship given in (5.6) is really again a shorthand for the cross-spectrum relationship as illustrated
before in (5.3) and in (5.5). One can represent the orthogonality condition either way as long as the
meaning is clear.

Hence

Wopt(D) = Rxy(D)R−1
yy (D).

is the optimal linear filter to estimate {x(k)} from {y(k)}. As before, the cross-spectrum and the spectrum
respectively, are denoted by Rxy(D) = E[X(D)Y ∗(D−∗)], Ryy(D) = E[Y (D)Y ∗(D−∗)].
Note that,

Y (D) ⇔ y(n)

⇒ Y (D) =
∑

y(n)Dn

⇒ Y ∗(D) =
∑

y∗(n)(D∗)n

⇒ Y ∗(D−1) =
∑

y∗(n)(D−∗)n

⇒ Y ∗(D−∗) =
∑

y∗(n)D−n =
∑

y∗(−n)Dn

5.1.3 Linear prediction

Given a sequence {xk}, we want to use the past to predict the present using a linear filter, i.e.,

x̂k =

∞∑

m=1

amxk−m

Question: Find {am}∞m=1 such that E

[
|xk − x̂k|2

]
is minimized.

Using orthogonality condition, we have

ek = (xk − x̂k) ⊥ xk−n, n = 1 . . .

Using this,

E

[
[xk −

∞∑

m=1

amxk−m]x∗k−n

]
= 0

or,

E
[
xkx

∗
k−n

]
=

∞∑

m=1

amE
[
xk−mx

∗
k−n

]
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giving,

rx(n) =

∞∑

m=1

amrx(n−m), n = 1, . . . (5.8)

Let,

gn = rx(n) −
∞∑

m=1

amrx(n−m) =

∞∑

m=0

a′mrx(n−m) (5.9)

with,

a′0 = 1, a′m = −am,m ≥ 1

Clearly, due to (5.8) {gn} is a anti-causal sequence. Now, suppose the Paley-Wiener condition holds and
we can write the power spectral density (PSD) of {x(k)} as,

Sx(D) = L(D)L∗(D−∗)Γx

where L(D) is minimum phase (i.e., zeros and poles of L(Z) are strictly inside the unit circle). Now,
taking the D-transform on both sides of (5.9) we get

G(D) = A′(D)Sx(D) = A′(D)L(D)L∗(D−∗)Γx

where A′(D) is causal and monic and G(D) is anti-causal. Hence,

G(D)

ΓxL∗(D−∗)
= A′(D)L(D) (5.10)

Now, since L(D) is minimum phase, L−1(D) is causal and stable, and 1/L∗(D−n) is anti-causal 1.
Hence we have LHS of (5.10) which is anti-causal, equal to the RHS which is causal. Also, since
A′(D), L(D) are monic and causal, A′(D)L(D) is also monic. Hence for (5.10) to be true, we need

A′(D) =
1

L(D)

Since L(D) is a minimum phase, A′(D) is therefore causal and stable.
Also for l > 1

E
[
eke

∗
k−l
]

= E

[
ek{xk−l −

∞∑

m=1

amxk−m−l}∗
]

= E
[
ekx

∗
k−l
]
−

∞∑

m=1

a∗mE
[
ekx

∗
k−m−l

]

Since due to orthogonality principle, E[ekx
∗
k−l] = 0, ∀l > 1, we get,

E
[
eke

∗
k−l
]

= 0, l 6= 0

i.e., {ek} is a white sequence and the prediction filter is also a whitening filter for the error sequence.
The prediction error sequence is called the innovation sequence as it conveys the unpredictability or the
“new” information in each step of the process.

1L−1(D) = l0 +
P∞

n=1 lnDn ⇒ L−∗(D−∗) = l∗0 +
P∞

n=1 l∗nD−n is anti-causal.
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5.1.4 Geometry of random processes

A random variable/vector/process is a mapping from a probability space Ω, to Cn. i.e., if x ∈ Cn,
x = x(ω), X : Ω → Cn.

Example 5.1.1. Think of ω ∈ Ω as an outcome of a single trial, and X(ω) is just a mapping from the
outcome of the trial to a complex vector.

x̂ = Wy

e = x− x̂

x

Linear space of {y}

L(y)

Figure 5.1: Geometry of random processes.

Just as in elementary geometry there is a Pythagorean relationship between x, x̂opt and x̂.

Theorem 5.1.3. Pythagorean theorem:

E[‖ x − x̂opt ‖2] + E[‖ x̂ ‖2] = E[‖ x ‖2]

Inner products: The following properties define an inner product.

1. Linearity: < α1x1 + α2x2,y >= α1 < x1,y > +α2 < x2,y >
for α1, α2 ∈ C.

2. Reflexivity: < x,y >=< y,x >∗

3. Non degenerative: ‖ x ‖2∆
=< x,x >= 0 ⇔ x = 0

Definition 5.1.1. (Linear Vector Spaces) A linear space V whose elements are vectors, and a ring of
scalars S through which the operation αx ∈ V, for α ∈ S, x ∈ V is well defined. Moreover the addition
operator x + y ∈ V for any x,y ∈ V is also defined.
V is a linear space if given x,y, z ∈ V, α, β ∈ S the following are satisfied,

(i) x + y = y + x

(ii) (x + y) + z = x + (y + z)

(iii) α(x + y) = αx + αy
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(iv) (α+ β)x = αx + βx

(v) (αβ)x = α(βx)

(vi) 0 · x = 0, 1 · x = x

Usually S = C in our application. Also, of importance is S = { set of square n × n matrices } i.e.,
S = Cn×n.
For vector valued random variables y, z ∈ Cn

< y(ω), z(ω) >= E[y(ω)z∗(ω)] ∈ C
n×n

If S = Cn×n (i.e., square matrices), then V is a linear space over S, and is an inner product space since,

E[zy∗] = (E[yz∗])∗

and hence
< z,y >=< y, z >∗

also
‖ y ‖2= E[yy∗] = 0 ⇔ y = 0 a.e. (almost everywhere)

Hence as
< α1x1 + α2x2,y >= α < x1,y > +α2 < x2,y >

for α1, α2 ∈ S, clearly the space of vector valued random variables is a linear inner product space. Hence
our geometric intuition of orthogonality is precise in this setting.

5.2 Suboptimal detection: Equalization

Let us consider the ISI channel setup introduced in Chapter 4, and illustrated in Figure 5.2. Let us start
with just the matched filter output,

yk =
∑

n

xn||p||< ϕ̃n, ϕ̃k >︸ ︷︷ ︸
qk−n

+< z, ϕ̃k >︸ ︷︷ ︸
zk

,

which is written compactly as,

yk =
∑

n

xn||p||qk−n + zk

or,

yk = ||p||[xk ∗ qk] + zk (5.11)

In the “suboptimal” receivers, we are only interested in minimizing marginal measures, i.e. E

[
|ek|2

]
.

Thus, having colored noise does not change the principles. We could equivalently have worked with the
output of the whitened filter (WMF) and done exactly what we will do next. Just for consistency with
other notes, we will do it at the output of the matched filter rather than at the WMF.
All these results can be translated to the latter case and we leave this as an exercise for the students.
Basic idea: The output {rk} is to make the equivalent channel as “close” to the AWGN channel as
possible. The equalizer is composed of linear filtering blocks and the detection at the output rx is done
“symbol-by-symbol”. The complexity of decoding therefore does not grow exponentially with the channel
length as in optimal decoding (MLSE, MAPSD). However, the price is paid in terms of performance. We
will consider four kinds of structures:
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x(t)

z(t)

+
y(t)

h(t)

CHANNEL

Figure 5.2: The ISI channel.

yk rk
Equalizer

Figure 5.3: Structure of linear equalizer.

1. Zero-forcing equalizer (ZFE): Inverts the channel and eliminate ISI.

2. MMSE linear equalizer (MMSE-LE): Takes noise into account and “inverts” channel as best as
possible in the presence of noise.

3. Zero-forcing decision feedback equalizer (ZF-DFE): Uses previous decisions to eliminates ISI and
inverts channel.

4. MMSE Decision feedback equalizer (MMSE-DFE): Uses previous decisions to reduce ISI and takes
into account presence of noise.

Notation (mneumonic): To re-iterate a point we made earlier about notation. We define the power
spectrum and cross spectrum as,

Sxx(D) = D{E[xkx
∗
k−n]}, Sxy(D) = D{E[xky

∗
k−n]}, (5.12)

where D(·) denotes the D-transform.
In this section, very often we denote the power spectrum and cross spectrum loosely as

Sxx(D) = E[X(D)X∗(D−∗)], Sxy(D) = E[X(D)Y ∗(D−∗)],

but this is an imprecise statement. What we really mean is the relationship in (5.12). This notation is
really used as a mneumonic to easily write out relationships.

5.3 Zero-forcing equalizer (ZFE)

This is the simplest equalizer structure to understand and perhaps analyze. The basic idea is that, if we
know that the transmitted symbols have been distorted by a known linear filter, then we can eliminate
the distortion by just filtering the output through the inverse of the filter. Clearly this does not take into
account the presence of additional noise and hence could result in noise enhancement.
Now recall from (5.11) that the output of the matched filter, yk, is given by,

yk = ||p||(xk ∗ qk) + zk

Hence in D-transform domain,

Y (D) = ||p||X(D)Q(D) + Z(D) (5.13)
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||p||Q(D) X(D) + Z(D)
||p||Q(D)

WZFE(D)

1
||p||Q(D)

X(D)

Z(D)

Y (D)

+

Figure 5.4: Zero-forcing equalizer.

This relationship (5.13) forms the starting point of all the equalization schemes. Now, if we invert the
channel using WZFE(D) given by

WZFE(D) =
1

‖ p ‖ Q(D)

we get,

R(D) = WZFE(D)Y (D) =
1

||p||Q(D)︸ ︷︷ ︸
ZFE

[||p||X(D) + Z(D)]

Hence we see that,

R(D) = X(D) +
Z(D)

||p||Q(D)

Clearly, the ZFE, WZFE(D), has eliminated the ISI, but it could have severely enhanced the noise, in that
1

Q(D) could actually be very large, and in the absence of noise this would not have mattered. However in

the presence of noise, this could severely degrade the SNR.

5.3.1 Performance analysis of the ZFE

We have seen that the noise at the output of the matched filter has a PSD given by,

Sz(D) = N0Q(D).

Normalized per real dimension this is

S̄z(D) =
N0

2
Q(D).

Now, after the ZFE,
rk = xk + zZFEk

where,

zZFEk = D−1

[
Z(D)

||p||Q(D)

]
.

Hence, per dimension, the PSD of the noise zZFEk is,

S̄zZF E (D) =
N0

2
Q(D)

1

||p||Q(D)

1

||p||Q∗(D−∗)
.

But
Q(D) = Q∗(D−∗)
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due to conjugate symmetry of {ql}.
Therefore,

S̄zZF E (D) =
N0

2

1

||p||2
1

Q(D)
=
N0

2

WZFE(D)

||p|| .

Now,

σ̄2
ZFE =

T

2π

∫ π
T

−π
T

S̄zZF E (e−jωT )dω

=
T

2π

∫ π
T

−π
T

N0

2

WZFE(e−jωT )

||p|| dω

=
N0

2

1

||p||

[
T

2π

∫ π
T

−π
T

WZFE(e−jωT )dω

]

︸ ︷︷ ︸
wZF E(0)

Thus we have

SNRZFE =
Ēx

σ̄2
ZFE

=
Ēx

N0

2
1

||p||wZFE(0)

=

(
Ēx||p||
N0

2

)
1

wZFE(0)

Noise enhancement: The basic problem occurs when Q(D) has zeroes close to the unit circle as seen
in Figure 5.3.1. Hence, inverting Q(D) results in a “gain” that becomes large and hence enhances the

π/T π/T

Q(e−jwT ) W (e−jwT )

Figure 5.5: The noise enhancement in ZFE.

noise power that was ignored.

5.4 Minimum mean squared error linear equalization (MMSE-
LE)

In order to deal with the noise enhancement of the ZFE, we need to take into account the presence of
noise. The first method is to modify the ZFE to take the noise into account, by finding a linear filter
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that minimizes the output noise variance.

ek = xk − wk ∗ yk (5.14)

The MMSE-LE, attempts to find the linear filter according to the MMSE criterion applied to (5.14) as,

WMMSE−LE(D) = arg min
W (D)

E

[
|ek|2

]

Now, we use the MMSE machinery we have developed in Section 5.1. We want to find WMMSE−LE(D)
such that MMSE of output is minimized. By using the orthogonality principle2 as in (5.5), we have,

E
[
E(D)Y ∗(D−∗)

]
= 0

Hence we get,

E
[
(X(D) −WMMSE−LE(D)Y (D))(Y ∗(D−∗))

]
= 0

This gives us,

Sxy(D) = WMMSE−LE(D)Syy(D),

or

WMMSE−LE(D) =
Sxy(D)

Syy(D)
=

||p||Q(D)Ex
||p||2Q2(D)Ex +N0Q(D)

,

giving us

WMMSE−LE(D) =
||p||Ex

||p||2Q(D)Ex +N0

=
1

||p||Q(D) +
(

N0

||p||Ex

) (5.15)

Note that the difference between WMMSE−LE(D) and WZFE(D) is the additive term in the denominator
of (5.15). Even if Q(e−jωT ) = 0 for some ω, the gain of the WMMSE−LE(D) does not blow up at these
frequencies, as would WZFE(D). Note that as N0

Ex
→ 0 or SNR → ∞ , the MMSE-LE tends towards the

ZFE as one would expect.

5.4.1 Performance of the MMSE-LE

At the output of the MMSE-LE, the D-transform is,

R(D) = WMMSE−LE(D)Y (D)

=
1

||p||
(
Q(D) + 1

SNRMF B

)X(D)Q(D)||p|| + Z(D)

||p||
(
Q(D) + 1

SNRMF B

)

where, as defined in definition 4.2.2,

SNRMFB =
Ex||p||2
N0

=
Ēx||p||2
N0/2

(5.16)

2Again recall that the precise relationship is given in (5.5), but we use the mneumonic given in (5.6) for convenience of
manupulation.
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Therefore

R(D) =

[
Q(D)

Q(D) + 1/SNRMFB

]
X(D) +

[
1

||p|| (Q(D) + 1/SNRMFB)

]
Z(D)

︸ ︷︷ ︸
Z′(D)

=

{
1 − 1/SNRMFB

Q(D) + 1/SNRMFB

}

︸ ︷︷ ︸
1−V (D)

X(D) + Z ′(D)

Where we have defined,

V (D) =
||p||

SNRMFB
WMMSE−LE(D) =

1

SNRMFB

[
Q(D) + 1

SNRMF B

] (5.17)

Writing it in time domain, we get
rk = xk − vk ∗ xk + z′k

Let us examine, the contribution of xk in (vk ∗ xk),

vk ∗ xk =
∑

n

vnxk−n = v0xk +
∑

n6=0

vnxk−n

where the second term does not depend on xk.
Hence we have

rk = xk − v0xk −
∑

n6=0

vnxk−n + z′k

︸ ︷︷ ︸
e′k

yielding,
rk = (1 − v0)xk + e′k (5.18)

Hence one would naturally have defined the detection SNR as,

SNRMMSE−LE,U =
Ex(1 − v0)

2

E [|e′k|2]
(5.19)

However, in the MMSE minimization, one computes E
[
|ek|2

]
, where

ek = xk − wMMSE−LE(k) ∗ yk = xk − rk

Using this in (5.18),

ek = v0xk − e′k

Hence Ex

E[|ek|2]
is not the same as what a detector encounters in (5.18). Therefore, the discrepancy needs

to be taken into account in the analysis of the MMSE-LE. Let us first calculate,

σ2
MMSE−LE = E

[
|ek|2

]

Similar to the ZFE analysis,

SEE(D) = D
{
E
[
ele

∗
l−k
]}

= Ex −W ∗
MMSE−LE(D−∗)SXY (D) −WMMSE−LE(D)S∗

XY (D−∗)

+WMMSE−LE(D)SY Y (D)W ∗
MMSE−LE(D−∗)

= Ex −WMMSE−LE(D)SY Y (D)W ∗
MMSE−LE(D−∗) (5.20)



5.4. MINIMUM MEAN SQUARED ERROR LINEAR EQUALIZATION (MMSE-LE) 91

Now,

WMMSE−LE(D) =
||p||Q(D)Ex

||p||2Q2(D) +N0Q(D)
=

1

||p|| [Q(D) + 1/SNRMFB]
(5.21)

and

SY Y (D) = ||p||2Q2(D)Ex +N0Q(D) = Ex||p||2Q(D)

[
Q(D) +

1

SNRMFB

]
(5.22)

Inserting (5.21) and (5.22) into (5.20) we obtain

SEE(D) = Ex −
ExQ(D)(

Q(D) + 1
SNRMF B

)

=
Ex/SNRMFB

Q(D) + 1
SNRMFB

=

N0

||p||

||p||
[
Q(D) + 1

SNRMF B

] (5.23)

Now using (5.16) and (5.17) in (5.23), we get

SEE(D) = ExV (D) =
N0

||p||WMMSE−LE(D)

Hence

E
[
|ek|2

]
= σ2

MMSE−LE = Exv0 =
N0

||p||wMMSE−LE(0). (5.24)

But the performance really depends upon E
[
|e′k|2

]
(see (5.18)). Now we relate them as,

E
[
|ek|2

]
= v2

0Ex + E
[
|e′k|2

]

Therefore,

E
[
|e′k|2

]
= E

[
|ek|2

]
− v2

0Ex = Exv0 − v2
0Ex (5.25)

Thus σ2
MMSE−LE,U = E[| e′k |2] is,

σ2
MMSE−LE,U = Exv0[1 − v0] (5.26)

Inserting (5.26) in (5.19) we get,

SNRMMSE−LE =
Ex

σ2
MMSE−LE

=
Ex
Exv0

=
1

v0

SNRMMSE−LE,U =
Ex(1 − v0)

2

Exv0(1 − v0)
=

1 − v0
v0

=
1

v0
− 1

Hence,
SNRMMSE−LE = 1 + SNRMMSE−LE,U (5.27)
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Whitened matched
filter

Decision−feedback
equalizer

p(t)
xk

z(t)

W (D)
kT

ϕ∗(−t)

x̂k

r′k
ỹ(t)

1 − B(D)

rk

Figure 5.6: The decision feedback equalizer.

The “biased” SNR i.e., SNRMMSE−LE arises directly out of the calculation deriving that MMSE-LE.
However, by looking at (5.18), one realizes that the detector actually works with a different SNR, i.e.,
SNRMMSE−LE,U and hence we need to be careful in finding the performance of the MMSE-LE to use
the correct “noise” variance.

Till now we have considered two flavors of the equalizer structure. Both the ZFE and the MMSE-
LE attempts to filter the received sequence through a linear filter (WZFE(D) and WMMSE−LE(D)
respectively) in order to convert the ISI problem to be “close” to an AWGN problem. The ZFE did
that by inverting the channel, but could cause noise enhancement. The MMSE-LE took the noise into
account, but it now has transmitted symbols as part of the “noise”. Can we take advantage of the fact
that the noise contains some past/future transmitted symbols? This idea forms the basis of the decision
feedback equalizer, which we study next.

5.5 Decision-feedback equalizer

The basic idea of decision feedback equalization comes from the realization that one could potentially
use previous decisions while attempting to estimate the current symbol.
The derivation and analysis of DFE requires us to make a strong assumption, that the decisions are indeed
correct! Without this, the analysis of the DFE is still an open question. We will make this assumption
and proceed with the DFE.
Criterion for the MMSE-DFE: The basic optimization problem is,

min
W (D),B(D),b0=1

E
[
|xk − r′k|2

]

Notes:

1. In order to utilize past decisions, one should ensure that rk depends only on the past symbols.

2. The feedforward filter W (D) shapes the sequence{yk} in order to have only “trailing” ISI terms.

3. We have seen one structure that caused the equivalent channel to be causal i.e., the whitened
matched filter.
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4. We need B(D) such that, B(D) is causal and monic, i.e.,

B(D) = 1 + b1D + b2D
2 + . . .

which implies that

1 −B(D) = −
∞∑

n=1

bnD
n

and hence X(D)[1 −B(D)] depends only on past decisions as shown in Figure 5.6.

Main steps in deriving the MMSE-DFE:

Step 1 Fix feedback filterB(D) and find feedforward filterW (D), in terms of B(D), such that E
[
|(xk − r′k)|2

]

is minimized.

Step 2 Express result of operating W (D) on Y (D), i.e., express W (D) in terms of B(D) and set up
linear prediction problem.

Step 3 Solve linear prediction problem to find the causal, B(D) that minimizes E
[
|(xk − r′k)|2

]
. And

hence find the MMSE-DFE, i.e., {W (D), B(D)}.

Step 4 (Analysis) As in the MMSE-LE, remove the bias term to find the equivalent SNRMMSE−DFE,U .

We will first focus on step 1-3 to obtain the MMSE-DFE and then analyze its performance through step
4.
Step # 1:
Let us fix B(D), and then find W (D) that minimizes MMSE criterion. We can write the error E(D) as,

E(D) = X(D) − {W (D)Y (D) + (1 −B(D))X(D)}︸ ︷︷ ︸
R′(D)

Hence,

E(D) = B(D)X(D) −W (D)Y (D) (5.28)

Now, to find W (D) that minimizes E
[
|ek|2

]
, we use the orthogonality principle3 (see (5.5)) as,

E
[
E(D)Y ∗(D−∗)

]
= E

[
[B(D)X(D) −W (D)Y (D)]Y ∗(D−∗)

]
= 0

= B(D)SXY (D) −W (D)SY Y (D) = 0

Hence,

W (D) = B(D)
SXY (D)

SY Y (D)
= B(D)WMMSE−LE(D) =

B(D)

||p||
(
Q(D) + 1

SNRMF B

) (5.29)

Step # 2: Now, we express the resulting error in terms of B(D) by substituting (5.29) in (5.28) as,

E(D) = B(D)X(D) −B(D)WMMSE−LE(D)Y (D)

= B(D) [X(D) −WMMSE−LE(D)Y (D)]︸ ︷︷ ︸
U(D)

= (1 +B(D) − 1)U(D) = U(D) − [1 − B(D)]U(D)

3Again recall that the precise relationship is given in (5.5), but we use the mneumonic given in (5.6) for convenience of
manupulation.
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where 1−B(D) is a strictly causal sequence. Now, this is exactly like the linear prediction problem that
we studied in Section 5.1.3, where we want to predict the sequence {uk} = D−1(U(D)).

Step # 3: In Section 5.1.3, we studied the linear prediction problem and we found the optimal linear
predictor as,

Bopt(D) =
1

L(D)

where

SU (D) = ΓUL(D)L∗(D−∗)

through spectral factorization. Now let us find SU (D).

SU (D) = E
[
[X(D) −WMMSE−LE(D)Y (D)][X∗(D−∗) −W ∗

MMSE−LE(D−∗)Y ∗(D−∗)]
]

(a)
= SXX(D) −W ∗

MMSE−LE(D−∗)SY Y (D)WMMSE−LE(D)

where (a) follows because WMMSE−LE(D) = SXY (D)
SY Y (D) .

Hence,

SU (D) = Ex −
ExQ(D)

Q(D) + 1
SNRMFB

=
N0/||p||2

Q(D) + 1
SNRMFB

(b)
= ΓUL(D)L∗(D−∗)

where (b) is the spectral factorization, with L(D) being causal, monic and minimum phase.
Then we get

Bopt(D) =
1

L(D)

which is still causal, monic and stable. Hence

SE(D) = B(D)SU (D)B∗(D−∗)

=
1

L(D)
ΓUL(D)L∗(D−∗)

1

L∗(D−∗)

= ΓU

Alternatively, if

Q(D) +
1

SNRMFB
= γ0G(D)G∗(D−∗) (5.30)

then

SU (D) =
N0/||p||2

Q(D) + 1
SNRMF B

=
N0/||p||2

γ0G(D)G∗(D−∗)

Thus in this notation, ΓU = N0

||p||2γ0 , L(D) = 1
G(D) then

Bopt(D) = G(D). (5.31)
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Now, let us substitute this in (5.29) to get,

Wopt(D) = Bopt(D)WMMSE−LE(D) (5.32)

= G(D)
1

||p||
(
Q(D) + 1

SNRMF B

)

= G(D)
1

||p||γ0G(D)G∗(D−∗)

=
1

||p||γ0

1

G∗(D−∗)

So, the main computation is to figure out the spectral factorization of
[
Q(D) + 1

SNRMF B

]
. For the choice

of Bopt(D) and Wopt(D), the error spectrum is:

SEE(D) = Bopt(D)SU (D)B∗(D−∗)

= ΓU =
N0

γ0||p||2
(5.33)

5.5.1 Performance analysis of the MMSE-DFE

First the PSD of the error sequence is,

SEE(D) =
N0

γ0||p||2
,

hence the per-dimension PSD is

S̄EE(D) =
N0/2

γ0||p||2

Thus, the error sequence of the MMSE-DFE (with no decision error propagation) is white, when it is
minimized.
Now, to compute γ0 we illustrate this with the following. Let us assume that we have a rational spectrum
S(D), i.e.,

S(D) = γ0

∏M
k=1(1 − ckD)(1 − c∗kD

−1)
∏N
k=1(1 − dkD)(1 − d∗kD

−1)
(5.34)

Claim 5.5.1. For S(D) of the form given in (5.34)

T

2π

∫ π/T

−π/T
lnS(e−jωT )dω = ln γ0

if the finite energy constraint is satisfied, i.e.,

R(0) =
T

2π

∫ π/T

−π/T
S(e−jωT )dω <∞

Notes:

1. This result actually holds in more generality than just rational spectrum, but we do the proof under
this restrictive assumption.

2. The finite energy constraint for rational spectra is equivalent to saying that there are no poles of
S(D) on the unit circle.
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Proof:

T

2π

∫ π/T

−π/T
lnS(ejωT )dω = ln γ0 +

M∑

k=1

T

2π

∫ π/T

−π/T
ln(1 − cke

−jωT )dω

+

M∑

k=1

T

2π

∫ π/T

−π/T
ln(1 − c∗ke

jωT )dω

−
N∑

k=1

T

2π

∫ π/T

−π/T
ln(1 − dke

−jωT )dω

−
N∑

k=1

T

2π

∫ π/T

−π/T
ln(1 − d∗ke

jωT )dω (5.35)

Now, if a ∈ C , |a| ≤ 1, a = |a|ejφa

T

2π

∫ π/T

−π/T
ln[1 − ae−jωT ][1 − a∗ejωT ]dω =

T

2π

∫ π/T

−π/T
ln[1 + |a|2 − 2|a| cos(ωT − φa)]dω

(a)
= 0

where (a) follows from standard integral tables.
Inserting this in (5.35) we get

T

2π

∫ π/T

−π/T
lnS(ejwT )dw = ln γ0

This formula is called the Szego formula.

�

Using the Szego formula for the MMSE-DFE, i.e., using it in (5.33) we obtain

σ2
MMSE−DFE =

N0/2

||p||2 exp[− T

2π

∫ π/T

−π/T
ln

(
Q(e−jωT ) +

1

SNRMFB

)
dω]

This is called Salz formula as it was derived by Salz in 1973. Hence we get,

SNRMMSE−DFE =
Ex

σ2
MMSE−DFE

= SNRMFB exp[
T

2π

∫ π/T

−π/T
ln

(
Q(e−jωT ) +

1

SNRMFB

)
dω]

= γ0SNRMFB =
γ0||p||2Ex

N0

Now, we have issue of “bias”, i.e., to check whether this SNRMMSE−DFE is the right quantity to
examine4. Let us first find out if we have a biased receiver.

R′(D) = R(D) + [1 −B(D)]X(D)

= W (D)Y (D) +X(D) −B(D)X(D)

= X(D) − [B(D)X(D) −W (D)Y (D)]

= X(D) −E(D)

4This was the same issue investigated in the MMSE-LE.
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The receiver makes decisions on xk, based on r′k

R′(D) = X(D) −
[
G(D)X(D) − 1

||p||γ0

Y (D)

G∗(D−∗)

]

= X(D) −
[
G(D)X(D) − 1

||p||γ0

||p||Q(D)

G∗(D−∗)
X(D) − 1

||p||γ0

Z(D)

G∗(D−∗)

]

=

{
1 −G(D) +

Q(D)

γ0G∗(D−∗)

}
X(D) +

1

||p||γ0

1

G∗(D−∗)
Z(D)

=

{
1 − −Q(D) + γ0G(D)G∗(D−∗)

γ0G∗(D−∗)

}
X(D) +

1

||p||γ0

1

G∗(D−∗)
Z(D)

(a)
=

{
1 −

1
SNRMFB

γ0G∗(D−∗)

}

︸ ︷︷ ︸
1−V (D)

X(D) +
1

||p||γ0G∗(D−∗)
Z(D)

︸ ︷︷ ︸
Z′(D)

Where (a) follows due to (5.30) and we have defined

V (D) =
1

SNRMF B

γ0G∗(D−∗)
(5.36)

Note that V (D) =
1

SNRMFB

γ0G∗(D−∗) is a purely anti-causal filter. Therefore, in a manner identical to what we

did for the MMSE-LE,

r′k = (1 − v0)xk −
∑

n6=0

vnxk−n + z′k

︸ ︷︷ ︸
e′k

Hence,
r′k = (1 − v0)xk + e′k

Hence, we again have a biased receiver, and the SNR measure that reflects error probability needs to take
this into account. Note that since

E(D) = X(D) −R′(D)

In time domain,
ek = v0xk − e′k

And therefore for the same reason as in the MMSE-LE, the SNRMMSE−DFE is not the right measure
to use for detecting SNR. Hence we need to find E[| e′k |2] and to do that first we find E[| ek |2] as,

E
[
|ek|2

]
= σ2

MMSE−DFE = v2
0Ex + E

[
|e′k|2

]

= v2
0Ex + σ2

MMSE−DFE,U

Hence,

σ2
MMSE−DFE,U = σ2

MMSE−DFE − v2
0Ex =

N0

||p||2γ0
− v2

0Ex (5.37)

Since from (5.36)

V (D) =
1

SNRMFB

1

γ0

1

G∗(D−∗)
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and G∗(D−∗) is monic and anti-causal, therefore so is 1
G∗(D−∗) ,

v0 =
1

SNRMFB

1

γ0
=

N0

||p||2Ex
1

γ0

Therefore

1

γ0
=

||p||2Ex
N0

v0

Using this in (5.33) we see that

σ2
MMSE−DFE = v0Ex

Inserting this in (5.37), we get

σ2
MMSE−DFE,U = Exv0 − v2

0Ex = v0Ex(1 − v0)

And hence we get the more informative SNR,

SNRMMSE−DFE,U =
(1 − v0)

2Ex
v0(1 − v0)Ex

=
1

v0
− 1 = SNRMMSE−DFE − 1

Therefore we have

SNRMMSE−DFE = SNRMMSE−DFE,U + 1 (5.38)

Notice the similarity in the relationship in (5.38) and (5.27). In both cases the unbiased SNR and the
biased SNR differ by 1. This turns out to be a fundamental relationship between the SNR of biased and
unbiased detectors.
Note that the error sequence {e′k} is not in general white, even with the correct past decisions assump-
tion. Again, the main calculating in finding SNRMMSE−DFE,U is to find the spectral factorization of[
Q(D) + 1

SNRMF B

]
and by using γ0 found from it we can obtain v0 and hence SNRMMSE−DFE,U .

5.5.2 Zero forcing DFE

We can find the ZF-DFE forward and feedback filters by simply setting SNRMFB → ∞ in the expressions
derived in the MMSE-DFE. Therefore we do a spectral factorization of

Q(D) = η0Pc(D)P ∗
c (D−∗)

and set the feed forward and feedback filters of the ZF-DFE as,

W (D) =
1

η0||p||P ∗
c (D−∗)

, B(D) = Pc(D) (5.39)

It is not immediately clear what criterion the zero-forcing DFE is operating on. The zero-forcing DFE is
the direct extension of the algebraic argument that led to the ZFE. In the ZFE, we observed that in the
absence of noise,

Y (D) = ||p||Q(D)X(D) (5.40)

and hence we can solve this algebraic equation for xk by “inverting” the channel, i.e., WZFE(D) =
1

‖p‖Q(D) . The zero-forcing DFE also solves an algebraic equation, where we further assume that previous

symbols, xk−1, . . . are known. The result of solving (5.40) for xk, given previous symbols is exactly what
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the ZF-DFE is doing. In order to observe this, let us use (5.39) and examine its effect on rk and r
′

k. Since
the structure of the ZF-DFE is the same as Figure 5.6, at the output of the feedforward filter we have,

R(D) = W (D)Y (D) =
1

η0||p||P ∗
c (D−∗)

‖ p ‖ Q(D)X(D) +
1

η0||p||P ∗
c (D−∗)

Z(D) (5.41)

(a)
= Pc(D)X(D) + Z

′
(D) = B(D)X(D) + Z

′
(D),

where (a) follows from (5.39). Now, notice that since R
′
(D) = R(D) + [1 −B(D)]X(D),

r
′

k = xk + z
′

k, (5.42)

which has eliminated the inter-symbol interference. Therefore, in the absence of noise, we would have
solved the algebraic equation (5.40) for xk . Notice that the power spectral density Sz′ (D) of the modified

noise process Z
′
(D) in (5.42) is,

Sz′ (D) =
1

η2
0 ||p||2Pc(D)P ∗

c (D−∗)
Sz(D) =

N0Q(D)

η0||p||2Q(D)
=

N0

η0||p||2
, (5.43)

i.e., it is white! Therefore we have converted the problem into (5.42) which is like the AWGN channel we
studied in Chapter 2. However, the caveat is ofcourse that we have assumed perfect decision feedback.
We will study how to remove that assumption using a technique described in Section 6.1.

5.6 Fractionally spaced equalization

We have till now assumed perfect synchronization, i.e., we know exactly when the sampling at the output
of the WMF occurs. Suppose we think that sampling occurs at kT , but it occurs at kT + t0. Then the
equivalent channel is

y(kT + t0) =
∑

m

xm||p||q(kT −mT + t0) + z(kT + t0)

Therefore we are sampling q(t+ t0) at kT , and we design equalizers assuming that it was q(t), hence the
equivalent channel is Q(ω)e−jωt0 which could cause loss in performance. One solution is to work with
Nyquist sampling and collecting sufficient statistics by this method.
There are several motivations to collect sufficient statistics through Nyquist sampling. One, is as explained
above, is due to robustness to timing errors. Another more subtle reason is that in practice, the channel
is unknown to the receiver and one needs to estimate the channel. We will learn channel estimation
methods in Section 6.3. Therefore, we may not be able to form the matched filter to collect sufficient
statistics. Given this, we need a channel independent method to do so, and Nyquist sampling gives us
such a tool. By sampling at Nyquist rate, we actually sample at higher than the symbol rate T , and
therefore sometimes the terminology “oversampling” is used for this.
Let,

yi(k) = y

(
kT − iT

L

)
, i = 0, . . . , L− 1 (5.44)

Hence, in transform domain,

Yi(D) = Pi(D)X(D) + Zi(D), i = 0, . . . , L− 1

Where,

Pi(D) = D[pi(k)]
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p(t)

Anti aliasing filter

kT/L

Fractionally
spaced equalizer

Z(t)

xk
+ x̂k

Figure 5.7: Fractionally spaced equalizer.

and

pi(k) = [h(t) ∗ ϕ(t)]t=kT− iT
L

and

zi(k) = z

(
kT − iT

L

)

Stacking up all the “oversampled” or fractionally sampled versions, one obtains

Y(D) =




Y0(D)
...

YL−1(D)


 =




P0(D)
...

PL−1(D)




︸ ︷︷ ︸
P(D)

X(D) +




Z0(D)
...

ZL−1(D)




︸ ︷︷ ︸
Z(D)

Which in more compact notation is,

Y(D) = P(D)X(D) + Z(D)

The equalizer structure can now be a row vector

W(D) = [W0(D), . . . ,WL−1(D)]

and the output of the equalizer is

R(D) = W(D)Y(D) = W(D)P(D)X(D) + W(D)Z(D)

Again, from basic linear estimation principles, the fractionally spaced MMSE-LE can be found by or-
thogonality principle,

E
[
E(D)Y∗(D−∗)

]
= 0

This gives,

E
[
{X(D) −WMMSE−LE(D)Y(D)}]Y∗(D−∗)

]
= 0

Yielding,

WMMSE−LE(D) = E
[
X(D)Y∗(D−∗)

]
E
[
Y(D)Y∗(D−∗)

]−1

= ExP∗(D−∗)
[
ExP(D)P∗(D−∗) + LN0I

]−1

Note that the equalization is done and then the output is downsampled, and this alleviates some of the
problems of timing offset.
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5.6.1 Zero-forcing equalizer

An interesting feature of the fractionally-spaced case is the special case of the zero-forcing equalizer. Here
we need

WZF (D)P(D) = 1 =

L−1∑

i=0

Wi,ZF (D)Pi(D) (5.45)

Now the interesting aspect of this is that one can have Wi(D) which are finite length polynomials and
still be able to satisfy (5.45). This implies that for this case one is able to “convert” the channel without
infinite length “inverses”! This is really because we only need the downsampled version of the equalizer
output to behave like a discrete-time delta function.

Theorem 5.6.1 (Bezout identity). If {Pi(D)}L−1
i=0 do not share common zeros, then there exists a vector

polynomial (of finite degree)
W(D) = [W0(D), . . . ,WL−1(D)]

such that
W(D)P(D) = 1

Remarks:

1. In fact this condition is a necessary and sufficient condition, i.e., {Pi(D)}L−1
i=0 do not share common

zeros (are co-primes) iff there exists a polynomial vector W(D) such that WZF (D)P(D) = 1.

2. This result was shown first by Sylvester (1840) as a test for co-primeness.

3. This shows that there exists a finite-impulse response inverse to the vector channel if the vector
channel satisfies the regularity condition of Theorem 5.6.1. Again this inverse is only after “down-
sampling”.

4. One can also have fractionally spaced decision-feedback equalizer, where the feedforward section
operates in fractional spacing and the feedback section is symbol spaced. We will learn more about
such structures in the context of finite length equalizers in Section 5.7.

5.7 Finite-length equalizers

In practice one can only implement finite length filters using digital signal processors. One way is to
“truncate” the infinite length filters we have derived till now and implement them. However, a more
principled approach is to start with the requirement of finite length filtering and derive the optimal finite
length filters for equalization. Again, we use oversampled version of the receiver, as done in (5.44).

y

(
kT − iT

L

)
=
∑

m

xmp(kT − iT

L
−mT ) + z

(
kT − iT

L

)
, i = 0, . . . , L− 1

We define,

yk =



y(kT )
...
y
(
kT − L−1

L T
)


 =

∑

m

xm



p(kT −mT )
...
p
(
kT − L−1

L T −mT
)




︸ ︷︷ ︸
pk−m

+



z(kT )
...
z
(
kT − L−1

L T
)




︸ ︷︷ ︸
zk

(5.46)

Hence in more compact notation,

yk =
∑

n

pnxk−n + zk
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Assumption: We impose the condition that the pulse response is of finite duration i.e.,

p(t) = 0 for t /∈ [0, νT ]

which implies that

pk = 0 for k < 0 and k > ν.

Note that in practice this is a reasonable assumption since most “real-world” channels are approximately
time-limited.
Thus using this assumption (5.46) becomes

yk = [p0,p1, . . . ,pν ]




xk
...

xk−ν


+ zk.

Now, we collect Nf samples of yk, i.e., a frame of Nf + ν transmitted symbols as,

Yk =




yk
yk−1
...
yk−Nf+1


 =




p0 p1 . . . pν 0 0 . . . 0
0 p0 p1 . . . pν 0 . . . 0
...

...
. . .

. . .
. . .

. . .
... 0

0 . . . 0 0 p0 p1 . . . pν




︸ ︷︷ ︸
P




xk
xk−1

...
xk−Nf−ν+1




︸ ︷︷ ︸
Xk

+




zk
zk−1

...
zk−Nf−ν+1




︸ ︷︷ ︸
Zk

(5.47)
This is the basic model that will be used for finite length equalization. This model is like the basic
relationship (5.11) seen in Section 5.2.

5.7.1 FIR MMSE-LE

In this section we derive a finite length MMSE linear equalizer, i.e., the equalizer is restricted to operate
on Nf symbol times, or NfL samples of received sequence. Therefore, the equalizer is a NfL dimensional
row vector applied to the received (sampled) vector Yk.

rk = wYk

where w ∈ C1×NfL.
Since one cannot implement a non-causal filter, the system has to be designed for a given delay, i.e.,
the equalized output rk, is close to xk−∆, where ∆ is the delay. Note that for infinite filters we did not
consider this issue, though a delay was implicitly assumed since we can only implement causal systems.
Hence the equalizer works by minimizing the following error:

ek = xk−∆ − rk.

For the FIR MMSE-LE, the criterion is

w(∆) = argmin
w

E
[
|ek|2

]

Using the orthogonality principle,
E [ekY

∗
k] = 0

To find w, we use this orthogonality principle as,

E [xk−∆Y∗
k] = wopt(∆)E [YkY

∗
k]
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where

RY Y = E [YkY
∗
k]

is the auto-correlation matrix.

RY X(∆) = E
[
YkX

∗
k−∆

]

is the cross-correlation matrix, and hence,

wopt(∆) = RXY (∆)R−1
Y Y

In more detail,

RXY (∆) = E [xk−∆(X∗
kP

∗ + Z∗
k)]

= [0 . . . 0 Ex︸︷︷︸
(∆+1)thposition

0 . . . 0]P∗

= Ex[0 . . . 0 p∗
ν︸︷︷︸

(∆+1)thposition

. . .p∗
0, 0 . . . 0]

Let

11∆ = [0, . . . , 0, 1, 0, . . . , 0]∗ ∈ CNf+ν ,

where the 1 occurs in the (∆ + 1)th position. Hence,

RXY (∆) = Ex11∗
∆P∗

Also,

RY Y = E [PXkX
∗
kP

∗] + E [ZkZ
∗
k]

= ExPP∗ + LN0INfL.

One finds ∆ by choosing the setting that minimized σ2
FIR−MMSE−LE , the MMSE for the FIR equalizer.

Now, to compute the MMSE of the finite length equalizer we can write

σ2
MMSE−LE = E[‖ xk−∆ −w(∆)Yk ‖2]

= Ex −RXY (∆)R−1
Y Y R∗

XY (∆)

= Ex −wopt(∆)R∗
XY (∆)

= Ex − Ex11∗
∆P∗ [ExPP∗ + LN0INfL

]−1
P11∆Ex

(a)
= 11

∗
∆

{
ExINf+ν − ExP∗ [ExPP∗ + LN0INfL

]−1
PEx

}
11∆ (5.48)

where (a) follows because

11
∗
∆11∆ = 1.

Now the matrix inversion lemma (Woodbury’s identity) gives

Lemma 5.7.1. (Matrix inversion lemma) Given matrices A,B,C,

[A + BCB∗]−1 = A−1 −A−1B[C−1 + B∗A−1B]−1B∗A−1
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By identifying,

A−1 = ExINf+ν , B = P∗, C−1 = LN0INfL

in Lemma 5.7.1 and using this in (5.48), we get,

σ2
MMSE−LE = 11

∗
∆

{
E−1
x INf+ν + P∗P

1

N0L

}−1

11∆

= N0L11
∗
∆

{
P∗P +

N0L

Ex
INf+ν

}−1

︸ ︷︷ ︸
Q(∆)

11∆

= N0L11
∗
∆Q(∆)11∆ (5.49)

Therefore the smallest σ2
MMSE−LE occurs by choosing the ∆ corresponding to the smallest diagonal

element of Q(∆). Therefore the optimal delay can be easily identified by just one matrix inversion.

5.7.2 FIR MMSE-DFE

The FIR MMSE-DFE (see Figure 5.8), is similar to the FIR MMSE-LE except that there is now a symbol
spaced feedback filter which is also of finite lengthNb, which filter the past decisions {x̂k−∆−1, . . . , x̂k−∆−Nb

},

ek = xk−∆ −





[b1, . . . , bNb
]



x̂k−∆−1

...
x̂k−∆−Nb


+ wYk





p(t)xk +

z(t)

Anti-aliasing
filter +

x̂k−∆

length Nb

length NfL

kT/L

b

w

Figure 5.8: Structure of the FIR MMSE-DFE.

As in the earlier MMSE-DFE setting, we derive the DFE assuming correct past decisions.

Let

b = [1,−b1,−b2, . . . ,−bNb
]

and

Xk−∆
k−∆−Nb

=




xk−∆

xk−∆−1

...
xk−∆−Nb



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Therefore we can write,

ek = xk−∆ −





[b1, . . . , bNb
]



x̂k−∆−1

...
x̂k−∆−Nb


+ wYk





= [1,−b1, . . . ,−bNb
]




xk−∆

x̂k−∆−1

...
x̂k−∆−Nb


−wYk

(a)
= bXk−∆

k−∆−Nb
−wYk

where (a) follows due to perfect decision feedback assumption.
FIR MMSE-DFE criterion:

{bopt,wopt} = argb,w min E
[
|ek|2

]

= arg

{
min
b

min
w

E
[
|ek|2

]}

That is, we do the minimization in a nested manner just like in the infinite length case. First let us fix
b and find w in terms of b. To do that, apply orthogonality principle

E [ekY
∗
k] = 0

which gives,

E
[{

bXk−∆
k−∆−Nb

−wYk

}
Y∗
k

]
= 0

or

wE [YkY
∗
k] = bE

[
Xk−∆
k−∆−Nb

Y∗
k

]
(5.50)

Now, let us find the terms in (5.50)

E
[
Xk−∆
k−∆−Nb

Y∗
k

]
= E






xk−∆

...
xk−∆−Nb





P



xk
...
xk−Nf −ν+1


+ Zk




∗


= E






xk−∆

...
xk−∆−Nb




︸ ︷︷ ︸
(Nb+1)×1

[
x∗k . . . x

∗
k−Nf−ν+1

]

︸ ︷︷ ︸
1×(Nf+ν)




P∗
︸︷︷︸

(Nf+ν)×NfL

∆
= ExJ∆P∗

Now, let us write J∆ in more detail. First let us assume that xk−∆ occurs in the information window,
i.e.,

∆ ≤ Nf + ν − 1

then J∆ 6= 0 for i.i.d. symbols {xk}. Now the question is whether xk−∆−Nb
occurs before or after

xk−Nf +1−ν
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Case I: ∆ +Nb ≤ Nf + ν − 1
Then xk−∆−Nb

occurs in the information window {xk, . . . , xk−Nf−ν+1} and this is the “easy” case.

J∆ =
1

Ex
E



xk−∆

...
xk−∆−Nb



[
x∗k, . . . , x

∗
k−∆, . . . , x

∗
k−∆−Nb

, . . . , x∗k−Nf−ν+1

]
(5.51)

=
[

0(Nb+1)×∆, I(Nb+1)×(Nb+1), 0(Nb+1)×(Nf+ν−1−∆−Nb)

]

Case II: ∆ +Nb > Nf + ν − 1
Then xk−∆−Nb

does not appear in the observation window of information and therefore we have a
truncation at the end. Hence the observation looks like,

{xk, . . . , xk−∆, . . . , xk−Nf−ν+1︸ ︷︷ ︸
observation window Xk

, . . . , xk−∆−Nb
}

And we have

Xk−∆
k−∆−Nb

=




xk−∆

...
xk−Nf−ν+1

...
xk−∆−Nb




Therefore, the b that needs to be used is also truncated since, {xk−Nf−ν , . . . , xk−∆−Nb
} are not part

of the observation window. This is really the edge effect that we need to be aware of. One can easily
calculate the correct b for this case by now choosing a shorter decision feedback window size, i.e.,



xk−∆

...
xk−Nf−ν+1




of length (Nf + ν − ∆), and setting the rest of the taps to zero. For completeness

J∆ =
1

Ex
E







xk−∆

...
xk−Nf−ν+1

...
xk−∆−Nb




[x∗k , . . . , x
∗
k−∆, . . . , x

∗
k−Nf−ν+1]




=

[
0(Nf+ν−∆)×∆ I(Nf+ν−∆)×(Nf+ν−∆)

0(∆+Nb−Nf−ν+1)×∆ 0(∆+Nb−Nf−ν+1)×(Nf+ν−∆)

]

For b̃ = [1,−b̃1, . . . ,−b̃Nb
],

b̃J∆J∗
∆b̃∗ = E2

xb̃b̃∗

Note: The Case II is really an edge effect that we will not consider in detail, but we enunciated it more
for completeness. We will focus our attention on Case I.
Now, expressing w in term of b we obtain, for Case I,

σ2
e(∆) = E

[∣∣bXk−∆
k−∆−Nb

− ExbJ∆P∗R−1
Y YYk

∣∣2
]

(5.52)

= b
{
ExI(Nb+1) − ExJ∆P∗R−1

Y Y PJ∗
∆Ex

}
b∗
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where,

RY Y =
[
ExPP∗ + LN0INfL

]

We now use this in (5.52),

σ2
e (∆) = Exb

{
INb+1 − J∆P∗

[
PP∗ +

LN0

Ex
INfL

]−1

PJ∗
∆

}
b∗ (5.53)

Now, for case I using (5.51) we have,

J∆J∗
∆ = INb+1.

Using this in (5.53) we get,

σ2
e(∆) = ExbJ∆

{
INf +ν −P∗

[
PP∗ +

LN0

Ex
INfL

]−1

P

}
J∗

∆b∗ (5.54)

Now we use the matrix inversion lemma (Lemma 5.7.1) in (5.54) after identifying,

A = INf+ν , B = P∗, C−1 =
LN0

Ex
INfL.

Hence using this in (5.54) we get

σ2
e(∆) = ExbJ∆

{
INf+ν −P∗

[
PP∗ +

LN0

Ex
INfL

]−1

P

}
J∗

∆b∗ (5.55)

= Exb
[
J∆

{
INf+ν +

Ex
LN0

P∗P

}−1

J∗
∆

]
b∗

= LN0b

[
J∆

{
L

SNR
I + P∗P

}−1

J∗
∆

]

︸ ︷︷ ︸
Q̃−1(∆)

b∗

∆
= LN0bQ̃−1(∆)b∗ (5.56)

Let us define the Choleski decomposition,

Q̃(∆) = G∗
∆S−1

∆ G∆

Q̃−1(∆) = G−1
∆ S∆G−∗

∆

where G∆ is an upper triangular matrix, and hence G∗
∆ is a lower triangular matrix.

Fact 5.7.1. If G∆ is an upper triangular matrix, so is G−1
∆ .

Hence, the same fact follows for lower triangular matrices. Therefore, G−1
∆ is upper triangular and G−∗

∆

is lower triangular. Now, suppose we have

S∆ =



s0(∆) 0

. . .

0 sNb
(∆)


 (5.57)
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as the diagonal matrix S∆, with the ordering property,

s0(∆) ≤ s1(∆) ≤ . . . ≤ sNb
(∆)

This property is assured due to the Choleski factorization. Hence,

σ2
e (∆) = LN0b

[
G−1

∆ S∆G−∗
∆

]
b

= LN0(bG−1
∆ )S∆(bG−1

∆ )∗ (5.58)

To minimize this we want to pick off s0(∆), i.e., the top-left corner element of S∆, for which we want

bG−1
∆ = [1, 0, . . . , 0]

This means that we want b to be the first row of G∆. This can be seen by noticing that,

G∆G−1
∆ = I

If

G∆ =




g∆(0)
...
g∆(Nb)


 ,

then clearly
g∆(0)G−1

∆ = [1, 0, . . . , 0]

If g∆(0) is the top row of upper triangular matrix G∆

bopt = g∆(0) (5.59)

and

wopt = boptRXY (∆)R−1
Y Y

(b)
= g∆(0)J∆(P∗P +

L

SNR
I)−1

︸ ︷︷ ︸
feed forward filter

P∗
︸︷︷︸

matched filter

where (b) follows because,

P∗PP∗ + P∗ L

SNR
= P∗PP∗ +

L

SNR
P∗

P∗
(
PP∗ +

L

SNR
I

)
=

(
P∗P +

L

SNR
I

)
P∗

⇒
(
P∗P +

L

SNR
I

)−1

P∗ = P∗
(
PP∗ +

L

SNR
I

)−1

Hence, we basically have the same interpretation of the FIR MMSE-DFE as in the infinite length case as
a matched filter cascaded with a feed forward filter.
Now, for the performance of the FIR MMSE-DFE, from (5.58) and (5.59), we see that

σ2
e (∆) = LN0s0(∆)

where s0(∆) is defined in (5.57). Hence, both the settings of the FIR MMSE-DFE and the analysis
involves the Choleski decomposition of Q̃(∆) defined in (5.56). This is similar to the analysis of the FIR
MMSE-LE. However, the optimization with respect to the decision delay, ∆, needs to be carried out
separately unlike the FIR MMSE-LE. Therefore for different values of ∆, the σ2

e (∆) is evaluated and the
delay corresponding to the minimum is chosen.
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5.8 Problems

Problem 5.1

Assume that Y(k),X(k),Z(k) ∈ R2. Given the model Y(k) = HX(k) + Z(k), where X(k),Z(k) are

independent zero mean Gaussian random vectors with covariance matrices K =

[
1 −1
−1 1

]
and I respec-

tively. Let H =

[
1 1
−1 1

]
. Find the optimal (MMSE criterion) W such that X̂(k) = WY(k). Find

σ2
MMSE.

Problem 5.2

Assume that Y(k) ∈ CN be a noisy observation of X(k) ∈ CN . We allow dependency between Y(k),X(l)
where k 6= l. We observe the complete sequence {Y(k)} and would like to estimate {X(k)} by passing it
through a filter W(k) ∈ CN×N i.e.

X̂(k) =
∑

n

W(n)Y(k − n).

Let SXY(D) = E[X(D)Y∗( 1
D∗ )], SXY(D),SYY(D) ∈ CN×N . Find the optimum filter W(D) (in the

MMSE sense) in terms of SXY(D) and SYY(D).

Note that X̂(k) is obtained by using the complete noisy sequence {Y(k)}∞k=−∞. This operation is called
as smoothing.
Hint: For the D-transform of vectors or matrices, we take D-transform of individual components.

Problem 5.3

1. Let the autocorrelation function of x(k) is given by φx(l) = e−2|l|. Find the optimal (MMSE) linear
prediction filter for x(k), i.e.

x̂(k) =

∞∑

i=1

aix(k − i).

2. We know that in the prediction problem the estimate x̂(k) =
∑∞
i=1 aixk−i depends on the past. In

this problem which is an instance of a filtering problem, we would like to estimate {x(k)} based on
the noisy observations {y(k)} of the past and present by filtering i.e.

x̂(k) =

∞∑

i=0

aiyk−i.

Let the autocorrelation function of x(k) be φx(l) = e−2|l|. Also

y(k) = x(k) + z(k),

where z(k) is zero-mean unit-variance white Gaussian noise. Find the optimum {ai}∞i=0 (in the
MMSE sense).

Note: In the filtering problem we only use the noisy observation of the past and present, while in
the smoothing problem (problem 2) we also use the future noisy observations.

Hint: Use orthogonality principle.
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Problem 5.4

Suppose we are given Sx(z) = 1 − b?D−1 − bD + |b|2. Suppose the Paley-Wiener condition holds. Write
the spectral factorization of Sx(D). Depending on b, find the the linear filter used to do a linear prediction
from the sequence {xk}.

Problem 5.5

Given some realizations {yn}, we want to estimate x̂ by using a linear filter. Derive the orthogonality
principle E[eopt(k)y

?(k)] = 0, and determine the coefficients of the filter hk,n from the MMSE estimation
problem.

Problem 5.6

Given the following model y(k) = Hx(k) + z(k) where z(k) is a white Gaussian noise vector. Find the
optimal W such that x̂(k) = Wy(k).

Problem 5.7

Given two WSS random sequences {xk} and {yk} , we want to use {yl}kl=−∞ to predict {xk} by using a
linear filter, i.e x̂k =

∑∞
l=0 alyk−l. Find {al}.

Problem 5.8

[Linear Estimation] Consider the additive noise model given in Fig. 5.9. Let X , Y1, Y2, Z1, Z2 ∈ C,

Y1

Y2

Z2

Z1

X

Figure 5.9: Additive Noise Channel

i.e complex random variables. Moreover, let EX = 0 = EZ1 = EZ2, and Z1 and Z2 are independent of
X .

1. Given Y1, Y2 find the best minimum mean squared error linear estimator X̂, where the optimization
criterion is E|X − X̂ |2.
Assume the following: E|X |2 = Ex, E|Z1|2 = E|Z2|2 = 1, EZ1Z

∗
2 = 1√

2
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2. If EZ1Z
∗
2 = 1 = EZ2Z

∗
1 , what is the best MMSE linear estimator of X ?

Problem 5.9

[ Combining linear estimators] Let Ya and Yb be two separate observations of a zero mean random
variable X such that

Ya = HaX + Va

and Yb = HbX + Vb,

where {Va, Vb, X} are mutually independent and zero-mean random variables, and Va, Vb, X, Ya, Yb ∈ C.

1. Let X̂a and X̂b denote the linear MMSE estimators for X given Ya and Yb respectively. That is

Wa = argminWa
E
[
||X −WaYa||2

]
,

Wb = argminWb
E
[
||X −WbYb||2

]

and
X̂a = WaYa and X̂b = WbYb.

Find X̂a and X̂b given that

E [XX∗] = σ2
x,E [VaV

∗
a ] = σ2

a,E [VbV
∗
b ] = σ2

b .

Also, find the error variances,

Pa = E

[
(X − X̂a)(X − X̂a)

∗
]

Pb = E

[
(X − X̂b)(X − X̂b)

∗
]

2. We, have the following identities,

rxh
∗ [hrxh

∗ + rv]
−1

=
[
r−1
x + h∗r−1

v h
]−1

h∗r−1
v (5.60)

rx − rxh
∗ [hrxh

∗ + rv]
−1

hrx =
[
r−1
x + h∗r−1

v h
]−1

(5.61)

Prove that

P−1
a X̂a =

H∗
a

σ2
a

Ya, P−1
b X̂b =

H∗
b

σ2
b

Yb. (5.62)

and

P−1
a =

1

σ2
x

+
HaH

∗
a

σ2
a

, P−1
b =

1

σ2
x

+
HbH

∗
b

σ2
b

. (5.63)

Hint: Use identities (5.60), (5.61).

3. Now we find the estimator X̂, given both observations Ya and Yb, i.e.,
(
Ya
Yb

)
=

(
Ha

Hb

)
X +

(
Va
Vb

)
.

We want to find the linear MMSE estimate

X̂ =
(
Ua Ub

)( Ya
Yb

)
,
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where (
Ua Ub

)
= argmin(Ua,Ub)

E

[
||X − X̂||2

]

and define the corresponding error variance

P = E

[
(X − X̂)(X − X̂)∗

]
.

Use (5.62), (5.63) to show that

P−1X̂ = P−1
a X̂a + P−1

b X̂b

and P−1 = P−1
a + P−1

b − 1

σ2
x

.

Problem 5.10

[ Noise cancellation] Consider two individual scalar observations Y1, Y2 as,

Y1 = X + Z1 (5.64)

Y2 = Z2,

Assume that zero mean Z1, Z2 are independent of X and are correlated with covariance,

E[ZZ∗] =

[
σ2 ρσ2

ρ∗σ2 σ2

]
, (5.65)

where Z = [Z1, Z2]
T . Let E[|X |2] = Ex.

(a) Find the best linear MMSE estimate of X̂ of the random variable X from the observations Y1, Y2.

(b) What is the minimum mean-squared error E[|X − X̂|2] of the best linear estimator? Is there a value
of ρ for which we get E[|X − X̂|2] = 0? Interpret the result if E[|X − X̂ |2] = 0 is possible.

(c) Find the best estimate Ẑ1 of the random variable Z1 from Y2. Consider the operation

Ỹ1 = Y1 − Ẑ1

Find the best linear estimate of X from Ỹ1. Is it the same as the answer you found in (a)? Do you
have an interpretation?

Problem 5.11

Assume that the channel model is
Yk = Xk +Xk−1 + Zk

where Xk ∈ {−1, 1} and Zk is i.i.d Gaussian noise of unit variance. Find the minimum distance between
two possible paths on the MLSE trellis.

Problem 5.12

Consider the discrete time channel model

yn =
∑

k

Rg(k)xn−k + zn,

where zn is a complex valued circularly symmetric Gaussian process with Rz(k) = N0Rg(k). Assume we
filter this received signal through some filter F (z).

1. How do we have to choose F in order to eliminate the intersymbol interference completely.

2. What is the power spectral density of the noise at the output of the filter.
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Problem 5.13

Consider the channel Y (D) = ||p||Q(D)X(D) + Z(D) with

||p||2 = 1 + aa∗

Q(D) =
a∗D−1 + ||p||2 + aD

||p||2

0 ≤ |a| < 1.

• Find the zero forcing and minimum mean square error equalizers WZFE(D) and WMMSE-LE(D).

Use the variable b = ||p||2
(
1 + 1

SNRMF B

)
in your expression for WMMSE-LE(D).

• Find the roots r1, r2 of the polynomial

aD2 + bD + a∗.

Show that b2 − 4aa∗ is always a real positive rumber (for |a| 6= 1). Hint: Consider the case where
1

SNRMF B
= 0. Let r2 be the root for which |r2| < |r1|. Show that r1r

∗
2 = 1.

• Use the previous results to show that for the MMSE-LE

W (D) =
||p||
a

D

(D − r1)(D − r2)
=

||p||
a(r1 − r2)

(
r1

D − r1
− r2
D − r2

)
.

• Find w(0).

• Show that the canonical factorization is

Q(D) +
1

SNRMFB
= γ0(1 − r2D

−1)(1 − r∗2D).

What is γ0 in terms of a and b?

• Find B(D) and W (D) for the MMSE-DFE.

• Find expressions for SNRZFE , SNRMMSE−LE−U , SNRMMSE−LE , SNRMMSE−DFE−U and
SNRMMSE−DFE .

Problem 5.14

Consider the following system where σ2
n = 0.1, Ex = 1, l = 1:

φ(t) =
1√
T

sinc(
t

T
)

h(t) = δ(t) − 0.5δ(t− T )

1. We assume perfect anti-aliasing filtering wih gain
√
T . Find p(t) corresponding to the discrete

time-channel:
yk = xk − 0.5xk−1 + nk

Also find the matrix P .

2. Find a 3 tap FIR MMSE-LE for ∆ = 2.

3. Find the σ2
MMSE−LE for the equalizer of the previous part.

4. Design an MMSE-DFE which has 2 feedforward taps and 1 feedback tap. Assume that ∆ = 1.

5. Find the σ2
MMSE−DFE for the equalizer of the previous part.
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Problem 5.15

Consider transmission over an ISI channel with 2-PAM constellation of unit energy and symbol period
T . Let ϕ(t) = 1√

T
sinc

(
t
T

)
and h(t) = δ(t) − 1

2δ (t− T ). Assume that AWGN noise has power spectral

density N0/2 = 0.01 (this is the problem-2 of homework-4, you can use necessary results). Recall that
after matched filtering the model is Y (D) = ||p||Q(D)X(D) + Z(D). Find the ZFE, MMSE-LE and
MMSE-DFE equalizers for this model. Find SNRZFE, SNRMMSE-LE and SNRMMSE-DFE.

Problem 5.16

Consider the channel model discussed in class Y (D) = ||p||Q(D)X(D) + Z(D) with

Ex = 1

N0 = 0.01

||p||2 = 1.25

Q(D) =
2

5
D−1 + 1 +

2

5
D

1. Find B(D) and W (D) for the ZF-DFE.

2. Find SNRZF−DFE .

Problem 5.17

Consider the channel Y (D) = ||p||Q(D)X(D) + Z(D) with

Ex = 1

N0 = 0.01

||p||2 = 1 + aa∗

Q(D) =
a∗D−1 + ||p||2 + aD

||p||2

0 ≤ |a| < 1.

1. Find η0 and Pc(D) such that Q(D) = η0Pc(D)P ∗
c (D−∗)

2. Find B(D) and W (D) for the ZF-DFE.

3. Find SNRZF−DFE .

Problem 5.18

[ Equalization] Given a channel with transfer function H(Z) = 1 + cz−1 with |c| < 1, additive white
Gaussian noise of variance σ2

z and channel input {xk} with E|xk|2 = 1.

1. Find the zero forcing linear equalizer WZFE(D). Find the expression of SNRZFE .

2. Find the MMSE linear equalizer WMMSE−LE(D). Find the expression of SNRMMSE−LE .

3. Find the MMSE-DFE equalizer, i.e. BMMSE−DFE(D) and WMMSE−DFE(D). Also find an expres-
sion for SNRMMSE−DFE .

Hint : the integral relations in the Instructions may be of use here.



5.8. PROBLEMS 115

+ 

 +
+

−

�������������� 	�
 �����	 ���
�

����� �����

������
�

Figure 5.10: Block diagram for noise prediction DFE

Problem 5.19

[ Noise prediction DFE] Consider the discrete time model studied in class

Y (D) = ||p||Q(D)X(D) + Z(D),

where Sx(D) = Ex, Sz(D) = N0Q(D) with Q(D) = Q∗(D−∗). In class we derived the MMSE-DFE, but
in this problem we consider a slightly different structure shown in Figure 5.10. As in class we consider
perfect decision feedback, i.e., all past decisions are correct. Let

R(D) = H(D)Y (D),

R′(D) = R(D) + (1 −B(D))(X(D) −R(D)).

We restrict B(D) to be causal and monic, i.e.,

B(D) = 1 +

∞∑

l=1

blD
l.

We choose H(D) and B(D) to minimize
E
[
|xk − r′k|2

]

as we did in class.

1. Find H(D) in terms of B(D) by using orthogonality principle.

2. Set-up the prediction problem by proving that the error

E(D) = X(D) −R′(D) = B(D)X(D) −B(D)H(D)Y (D).

Use the solution of H(D) in terms of B(D) found in part (1) to show that

E(D) = B(D)U(D)
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and find the expression for U(D).
It can be shown (you don’t have to do this) that

SU (D) =
N0/||p||2

Q(D) + 1/SNRMFB
.

Given this can you comment on the values of H(D) and B(D) with respect to the quantities derived
in class. In particular, is the noise-prediction DFE the same as the MMSE-DFE derived in the class?

3. If B(D) = 1, what does the structure in Figure 5.10 become?

Problem 5.20

[The Oversampled ZF equalizer ] Let

[
Y1(D)
Y2(D)

]
=

[
1 + 0.9D
1 + 0.8D

]
X(D) +

[
Z1(D)
Z2(D)

]

i.e. no common zeros among the oversampled responses. Find the ZFE for this case. This should turn
out to be a FIR channel since the Pi(D) do not share a common zero.

Problem 5.21

Consider the following system where σ2
n = 0.1, Ex = 1, the oversampling factor L = 2:

φ(t) =
1√
T

sinc(
t

T
)

h(t) = δ(t) − 0.5δ(t− T )

1. We assume perfect anti-aliasing filtering wih gain
√
T . Find p(t) at the output of the anti-aliasing

filter. Find p(t) corresponding to the discrete time-channel:

yk = p0xk + p1xk−1 + zk

Also find [p0,p1].

2. We want to design a 4 tap FIR MMSE-LE equalizer. Find the ∆ which minimizes σ2
MMSE−LE and

for that ∆ find the corresponding equalizer. Also find σ2
MMSE−LE .

3. Design an FIR MMSE-DFE which has 4 feedforward taps and 1 feedback tap. Assume that ∆ = 1.
Also find σ2

MMSE−DFE .

Problem 5.22

Consider the following signal model:
Yk = PYk + Zk

where Zk,Yk ∈ CNfL, P ∈ C(NfL)×(Nf+ν), X ∈ CNf+ν

1. Using the orthogonality principle, derive the FIR MMSE-LE equalizer.

2. Find the expression of σ2
MMSE−LE .

3. How can we choose the value of ∆?
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Problem 5.23

[Target Channels] Suppose we have a linear time-invariant channel i.e

yk =

ν∑

n=0

pnxk−n + zk

where yk ,pn, zk ∈ CL and xk ∈ C . In class we developed the following block model for Nf samples of
{yk}:

Yk = PXk + Zk
where Yk, Zk ∈ CNfL, Xk ∈ CNf , P ∈ CNfL×(N+ν). Suppose we want the following receiver structure
and we want rk ≈ ∑η

n=0 hnxk−∆−n, where η � ν. That is we want the output of the equalizer to be

W

{yk} {rk}

close to a given target channel {hn}. Therefore we find W ∈ C1×NfL :

Wopt = arg min
W

E||WYk −HXk||2 (5.66)

where H = [ 0 · · · 0︸ ︷︷ ︸
∆ times

h0 h1 · · · hη 0 · · · 0︸ ︷︷ ︸
Nf+ν−η−1

] i.e H ∈ C1×(Nf+ν) You may assume that Exkxk−` =

Exδ`, E|zk|2 = σ2 and {zk} is AWGN.

1. (Complete equalization) In class we derived the finite length equalizer when

hn =

{
1 n = 0
0 otherwise

(5.67)

Re-derive the optimal MMSE finite length equalizer W, for this case, i.e. for {hn} given in (5.67)
and the criterion in (5.66) (i.e. same as done in class).

2. Now if we want a particular target channel {hn}ηn=0, and the criterion is given in (5.66), derive the
optimal filter Wopt for the given target channel.

3. For a given target channel {hn}ηn=0, compute the σ2
FIR-MMSE-LE, i.e.

E||WoptYk −HXk||2

Problem 5.24

[ Target channels] Suppose we have a linear time invariant channel done in class, i.e.,

Y (D) = ||p||Q(D)X(D) + Z(D),

with Q(D) = Q∗(D−∗). Also there is another process U(D) = H(D)X(D), which we want to estimate.

1. Given observations {yk}, find the linear estimator

Û(D) = W (D)Y (D)

which minimizes the mean-squared error, i.e.,
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Figure 5.11: MMSE estimation

W (D) = argminW (D)E
[
||uk − ûk||2

]
.

You can assume that {Xk} and {Zk} are independent and that

Sx(D) = Ex, Sz(D) = N0Q(D).

2. Given the optimum linear MMSE estimator given in part (1) we define the error as

ek = uk − ûk.

Find the power spectral density of {ek}, SE(D).

3. If H(D) = 1, can you comment on the operation performed in part (1)?
Hint: Is it related to any structure studied in class?



Chapter 6

Transmission structures

In Chapter 4 and 5, we learnt detection for ISI channels. However, the transmission structure remained
the same as an AWGN channel. This chapter examines techniques at the transmitter that are suitable
for ISI channels. We study precoding in Section 6.1 which also mitigates error-propagation effects of the
DFE. Section 6.2 demonstrates a canonical transmission and reception structure which is suitable for ISI
channels. Finally, Section 6.3 is devoted to training sequence optimization for channel estimation.

6.1 Pre-coding

In order to counter error-propagation in DFE’s, one method is to do “precoding”. The first idea is to
move the feedback section of the DFE to the transmitter. Note that this requires the knowledge of the
channel at the transmitter. We will also study another transmit strategy in this chapter which uses
alternate way of simplifying the equalization problem (multi carrier transmission).

6.1.1 Tomlinson-Harashima precoding

For simplicity we will first illustrate this with real (i.e., one-dimensional) baseband signals.

xk ψk

vk

1 −B(D)

ΓM (x̃)
x̃k

M-ary input
+

Figure 6.1: The Tomlinson-Harashima precoder for real baseband signals.

The basic idea is understood by examining the ZF-DFE. In the ZF-DFE as seen in Section 5.7.2, we have,

W (D) =
1

γ0||p||P ∗
c (D−∗)

, B(D) = Pc(D) (6.1)

where,
Q(D) = γ0Pc(D)P ∗

c (D−∗),

119
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and B(D) is monic, i.e., b0 = 1. Now, suppose we remove the ΓM (·) block from Figure 6.1, then we get,

ψk = xk −
∞∑

l=1

blψk−l (6.2)

Therefore we get,

∞∑

l=0

blψk−l = xk . (6.3)

Using this we get for Ψ(D) = D({ψk}),

Ψ(D) =
X(D)

B(D)

(a)
=

X(D)

Pc(D)
,

where (a) follows due to the fact that we are using the settings of the ZF-DFE given in (6.1). Now,
suppose instead of {xk}, we transmit {ψk}. Then, after matched filtering,

Y (D) = ||p||Q(D)Ψ(D) + Z(D).

Now, suppose we go through the feed-forward filter W (D), then we get,

Y (D)W (D) = ||p||W (D)Q(D)Ψ(D) + Z(D)W (D)

=
||p||γ0Pc(D)P ∗

c (D−∗)

γ0||p||P ∗
c (D−∗)

X(D)

Pc(D)
+

Z(D)

γ0||p||P ∗
c (D−∗)

= X(D) + Z̃(D)

where the noise PSD is,

SZ̃(D) =
N0Q(D)

γ2
0 ||p||2Pc(D)P ∗

c (D−∗)
=

N0

γ0||p||2

Hence, we have removed ISI, and the noise is white! The basic problem with this first attempt is that
the transmit power is boosted. To see this, if Sx(D) = Ex is white, then,

SΨ(D) =
Ex

Pc(D)P ∗
c (D−∗)

=
Exγ0

Q(D)

The transmit power is then

T

2π

∫ π/T

−π/T
SΨ(e−jωT )dω

which could be larger than Ex. Moreover, Ψ(D) is no longer a white process, i.e., there is memory in
transmitted symbols. A simple trick eliminates the power problem almost completely.
Modulo operator: ΓM (x) is a non-linear function defined on a M -ary PAM input constellation with
uniform spacing of d such that

ΓM (x) = x−Mdbx+ Md
2

Md
c

where byc means the largest integer that is less than or equal to y (lower ceil operation). The modulo
operator is illustrated in Figure 6.2. Therefore the modulo operator ΓM (·) maps all points x ∈ RI back
to the interval [−Md

2 , Md
2 ]. This is done by first tiling the real line with intervals of size M . Then the

intuitive explanation of the operator is as follows. We map any point x ∈ RI by observing its relative
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−Md/2 Md/2 3Md/2−3Md/2

Figure 6.2: Illustration if the one-dimensional modulo operator.

ΓM (x)

Md
2

Md
2

3Md
2−Md

2− 3Md
2

x

Figure 6.3: The modulo function.

position in the corresponding interval and mapping it back to the corresponding position in the interval
[−Md

2 , Md
2 ] as shown in Figure 6.2.

Properties of modulo operator:

ΓM (x+ y) = ΓM (x) ⊕M ΓM (y)

ΓM (x− y) = ΓM (x) 	M ΓM (y)

where

a⊕M b = ΓM (a+ b)

a	M b = ΓM (a− b)

We denote ⊕M and 	M operators to mean addition and substraction modulo M . So, now, let us take
our first idea and pass the output through a modulo operator in order to ensure the transmit power is
controlled. From Figure 6.1, we see that,

Ψ(D) = X(D) + (1 −B(D))X̃(D)

where B(D) is defined in (6.1). Therefore in time domain,

ψk = xk −
∞∑

i=1

bix̃k−i
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where from Figure 6.1 we see that,

x̃k = ΓM (ψk) = ΓM

[
xk −

∞∑

i=1

bix̃k−i

]

Now, going back to our earlier calculation, with W (D) = 1
γ0||p||P∗

c (D−∗) and B(D) = Pc(D), we get

Y (D) = ||p||Q(D)X̃(D) + Z(D)

Hence after the feed forward filter,

R(D) = Y (D)W (D) =
||p||Q(D)

γ0||p||P ∗
c (D−∗)

X̃(D) +
Z(D)

γ0||p||P ∗
c (D−∗)

= Pc(D)X̃(D) + Z̃(D)

Therefore, in time domain,

rk = x̃k +

∞∑

i=1

bix̃k−i + z̃k

where the noise z̃k is white.
Now, suppose we do a modulo operation at the output, i.e.,

ΓM (rk) = ΓM

[
x̃k +

∞∑

i=1

bix̃k−i + z̃k

]

= ΓM

[
ΓM (ψk) +

∞∑

i=1

bix̃k−i + z̃k

]

= ΓM

[
ΓM

(
xk −

∞∑

i=1

bix̃k−i

)
+

∞∑

i=1

bix̃k−i + z̃k

]

(a)
= ΓM

[
xk −

∞∑

i=1

bix̃k−i +

∞∑

i=1

bix̃k−i + z̃k

]

= ΓM [xk + z̃k] = xk ⊕M ΓM (z̃k)

Here (a) follows because

ΓM (ΓM (a) + b) = ΓM (ΓM (a)) ⊕M ΓM (b)

= ΓM (a) ⊕M ΓM (b)

= ΓM (a+ b)

The Tomlinson-Harashima precoder can be also adapted to the MMSE-DFE case, but we will not go into
details here. Also, for complex symbols and multidimensional signals, the only change needed is in the
definition of ΓM (x), the modulo-operator. All the arguments in the above stated case go through in such
case as well with an appropriately defined modulo operator. Next, we address the transmit power of the
precoder.
The original PAM constellation had an average energy of

Ex =
M2 − 1

12
d2

For x̃k uniformly distributed in [−Md/2,Md/2] the power is approximately M2d2

12 , which results in a

power increase of M2

M2−1 in the transmission which implies a small increase in power that vanishes for
large M . Note that this is an approximate calculation and not a formal result for finite M . A more
complete calculation is beyond the scope of this class.
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6.2 Multicarrier Transmission (OFDM)

Now, we have studied various methods of dealing with inter-symbol-interference. The main techniques
were receiver driver, i.e., the transmission was as if we had an AWGN channel, but the receiver took
the ISI into account. One exception was the Tomlinson-Harashima precoder, which did change the
transmission scheme. However it required knowledge of the channel of the transmitter. Next we are
going to study a transmission and reception scheme that utilizes a characteristic of the channel (being a
LTI channel) rather than the specifics of the channel response.

6.2.1 Fourier eigenbasis of LTI channels

pn
xk

zk

yk+

Figure 6.4: Transmission over LTI channel.

The basic idea is that the Fourier basis is the eigenbasis for LTI channels. In Figure 6.4, let X(ω) =
δ(ω − ω0), then

X(ω)P (ω) = P (ω)δ(ω − ω0) = P (ω0)δ(ω − ω0)

i.e.,

x(k) = e−jω0k ⇒ x(k) ∗ p(k) = P (ω0)e
−jω0k (6.4)

Thus the output is just a scaled version of the input, in other words the Fourier basis is the eigenbasis
for LTI channels. This property only utilizes the LTI nature of the channel and not any specific form of
channel impulse response. This canonical orthogonal decomposition property is the central idea behind
the transmission strategies discussed in this section.

6.2.2 Orthogonal Frequency Division Multiplexing (OFDM)

The idea in OFDM (Orthogonal Frequency Division Multiplexing) is to utilize this eigen-property of LTI
channels. Let us use the modulation studied in Chapter 2, and therefore the cascade of the channel along
with the basis function is defined as in Section 4.2. We use the same notation from there to denote the
equivalent discrete time ISI channel as {pn}. Therefore if we transmit (see Figure 6.5)

xk =

N−1∑

n=0

X(n)e−jωnk,

using the eigenproperty shown in (6.4), we see that the output yk is

yk =

N−1∑

n=0

X(n)P (ωn)e
−jωnk + zk

Now, we convolve the output using filters tuned to specific frequencies, ω0, ..., ωN−1.
Then we could just pick out the different frequency components of yk and observe the noisy versions of
what was transmitted, i.e.,

Y (n) = P (ωn)X(n) + Z(n), n = 0, . . . , N − 1,
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xk pn

zk

yk+

X(0)e−jkω0

X(1)e−jkω1

X(N − 1)e−jkωN−1

.

..

+

Y (N − 1)

Y (0)

δ(ω − ωN−1)

δ(ω − ω0)

Figure 6.5: Decomposition of LTI channels using sinusoids.

where Y (n) is the received signal at frequency ωn, and Z(n) is the corresponding noise at ωn.
Therefore we get a set of parallel channels, each of which is memoryless. Hence we have decomposed an
ISI channel into a set of memoryless channels which are much easier to work with. However, in doing
this we needed infinite length blocks. In reality we only have finite transmission blocks, and therefore
a natural question to ask is whether this creates a roadblock to this approach. This is the topic we
study next. Note that since we send information using multiple sinusoid “carriers” this idea is also called
multicarrier transmission. Since we are using discrete spacing of the carriers the terminology commonly
used is Discrete Multi-Tone or DMT for short.

Cyclic prefix

We now use an additional assumption on the channel response, i.e., that it is a finite impulse response.
A similar assumption was used in Section 5.7 while considering finite length equalizers. In fact we use
the same setup as shown in Figure 6.6 for an oversampled receiver.
Consider the model given in (5.47)




yk
...
yk−N+1


 =




p0 p1 . . . pν 0 0 . . . 0
0 p0 p1 . . . pν 0 . . . 0
...

...
. . .

. . .
. . .

. . .
... 0

0 . . . 0 0 p0 p1 . . . pν







xk
xk−1

...
xk−N−ν+1


+




zk
zk−1

...
zk−N+1


 (6.5)

Here, the output

yk =



yk(0)
...
yk(L− 1)




is the output of the “oversampler” and anti-aliasing filter, as shown in Figure 6.6. Also the pulse response
is assumed finite, i.e., of length νT . Now the idea is that for a block of N (vector) received samples1, it
is actually affected by N + ν input symbols, {xk, . . . , xk−N−ν+1} (see Figure 6.7).
Clearly the receiver symbols {yk−N , . . . , yk−N−ν+1} depend on {xk−N , ..., xk−N−ν+1} which also affect the
observation frame shown in (6.5). Therefore, in a way we are “discarding” those observations. Now, let us
create a dependency between {xk−N , . . . , xk−N−ν+1} and {xk, . . . , xk−N+1} (see Figure 6.8). Therefore
we are only sending N information symbols in a block of N + ν symbols.
Let us create a prefix {xk−N−ν+1, ..., xk−N+1}

xk−N−i = xk−i, i = 0, . . . , ν − 1 (6.6)

1For simplicity of notation we will sometimes use L = 1, but the principle is identical in the more general (and correct)
case.
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xk

z(t)

Anti-aliasing filter

ykp(t)
kT
L

Figure 6.6: Set-up for (6.5).

����������
pn +

zk

yk

yk−N+1 yk
ν

xkxk−N−ν+1

xk−N+1

Figure 6.7: Output block {yk, ...,yk−N+1} affected by inputs {xk, ..., xk−N−ν+1}.

This implies that the frame looks “cyclic” it makes the data circularly shifted.

Claim 6.2.1. Using the prefix (6.6) in (6.5), we get,




yk
...
yk−N+1




︸ ︷︷ ︸
Ỹk

=




p0 p1 . . . pν 0 0 . . . 0
0 p0 p1 . . . pν 0 . . . 0
...

...
. . .

. . .
. . .

. . .
... 0

0 . . . 0 0 p0 p1 . . . pν
pν 0 . . . 0 0 p0 . . . pν−1
...

...
...

...
...

...
. . .

...
p1 p2 . . . pν 0 . . . 0 p0




︸ ︷︷ ︸
P̃




xk
xk−1

...
xk−N+1




︸ ︷︷ ︸
X̃k

+




zk
zk−1

...
zk−N+1




︸ ︷︷ ︸
Z̃k

(6.7)

or we get

Ỹk = P̃X̃k + Z̃k (6.8)

xk−N+1 xk

xk−N−ν+1 xk−N

ν

Figure 6.8: A transmission block of N + ν symbols.
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Proof: First, let us rewrite (6.5) without the noise term as,




yk
...
yk−N+1


 =




p0 p1 . . . pν 0 0 . . . 0
0 p0 p1 . . . pν 0 . . . 0
...

...
. . .

. . .
. . .

. . .
... 0

0 . . . 0 0 p0 p1 . . . pν







xk
xk−1

...
xk−N+1

...
xk−N−ν+1




(6.9)

Now, let us use the prefix defined in (6.6) which is,

xk−N−l = xk−l, l = 0, . . . , ν − 1

therefore the noiseless output at time k−N+1, ..., k+ν−N+1 (which get affected by the prefix symbols)
are given by.

yk+ν−N+1 = p0xk+ν−N+1 + · · · + pνxk−N+1

yk+ν−N = p0xk−ν−N + · · · + pν−1xk−N+1 + pν xk−N︸ ︷︷ ︸
xk

...

yk−N+1 = p0xk−N+1 + p1 xk−N︸ ︷︷ ︸
xk

+ . . .+ pν−1 xk−N−ν+2︸ ︷︷ ︸
xk−(ν−2)

+pν xk−N−ν+1︸ ︷︷ ︸
xk−(ν−1)

Hence inserting this in equation (6.9) we get the noiseless output as




yk
...
yk+ν−N+1

yk+ν−N
...
yk−N+1




=




p0 p1 . . . pν 0 0 . . . 0
...

. . .
. . .

. . .
. . . 0 . . . 0

0 . . . 0 . . . p0 p1 . . . pν
pν 0 . . . 0 0 p0 . . . pν−1

. . .
. . .

. . .
...

. . .
. . .

. . .

p1 p2 . . . pν 0 . . . 0 p0







xk
xk−1

...
xk+ν−N+1

...
xk−N+1




(6.10)

Therefore after re-inserting the noise we get (6.7) as claimed.

�

Now, let us look at L = 1, i.e., each of the channel taps {pi}νi=0 is a scalar rather than a vector.

Theorem 6.2.1 (Decomposition of circulant matrices). A (N× N) matrix is circulant if it has the
following structure.

C =




p0 p1 . . . pν 0 . . . 0
0 p0 p1 . . . pν 0 0
...

...
. . .

. . .
. . .

. . . 0
0 . . . 0 p0 p1 . . . pν
pν 0 . . . 0 p0 . . . pν−1

...
...

...
...

...
. . .

...
p1 p2 . . . pν 0 . . . p0



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A circulant matrix has an eigen-decomposition

C = F∗ΛF

where

(F)p,q =
1√
N

exp

{
−j 2π

N
(p− 1)(q − 1)

}

and Λ = diag(dl) where dl is

dl =

ν∑

m=0

pme
−j 2π

N ml

That is,

Λ =



d0 0

...
0 dN−1




�

Note: The matrix F as one would recognize is the DFT matrix and Λ contains on its diagonal the
Fourier transform of the channel taps.

Now, let us use Theorem 6.2.1 in the basic OFDM equation (6.8) which is,

Ỹk = P̃X̃k + Z̃k

Now, let us define

Xk = FX̃k

Yk = FỸk

Zk = FZ̃k

Then using Theorem 6.2.1 we have,

Yk = ΛXk + Zk

since the DFT matrix is unitary i.e.,

F∗F = I

Hence

Yk(l) = dlXk(l) + Zk(l), l = 0, . . . , N − 1 (6.11)

Therefore we have created ISI-free channel! Basically to do this, we have used the eigen property of LTI
channels as well as the finite impulse response property of the channel. Note that for arbitrary L, (6.11)
just becomes a vector relationship in the following way.

Yk(l) = DlXk(l) + Zk(l), l = 0, . . . , N − 1

Here

Dl =




∑ν
m=0 p0(m)e−j

2π
N ml

...∑ν
m=0 pL−1(m)e−j

2π
N ml


 =

ν∑

m=0

p(m)e−j
2π
N ml.
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6.2.3 Frequency Domain Equalizer (FEQ)

Now, the relationship given in (6.11) for L = 1, forms the basis of the receiver in a manner similar to
(5.45) for finite length equalizers. Given that we have no interference between the symbols {Xn(l)} the
MMSE receiver is quite simple. Since we have transmitted symbols in additive (white) noise, the MMSE
estimator is just.

X̂l(k) =
d∗l

|dl|2 + σ2/Ẽx
Yk(l)

where Ẽx is the energy on every symbol. Since we are doing N successive transmissions, and F is a unitary
transform, typically Ẽx = Ex, the energy of originally intended symbol. The above FEQ is equivalent to
the MMSE-LE applied in the frequency domain.

6.2.4 Alternate derivation of OFDM

Consider a periodic sequence {xn} of period N, given by

xk−rN = xk , r ∈ ZZ , k ∈ {0, . . . , N − 1}

Therefore the Fourier transform of {xk} is (basically Fourier series coefficients) is given by

X(ω) =

N−1∑

n=0

Xnδ(ω − 2π

N
n)

Now, let us pass this periodic sequence through a LTI channel as shown in Figure 6.9.
The output Y (ω) is,

Y (ω) = P (ω)X(ω) = P (ω)
N−1∑

n=0

Xnδ(ω − 2π

N
n) =

N−1∑

n=0

XnP (
2π

N
n)δ(ω − 2π

N
n) (6.12)

. . .

X(w)

. . .

P (0)X0

P (w)

P
(

2π
N (N − 1)

)
XN−1

Figure 6.9: Transmission of periodic sequence through LTI channel.

Therefore, {yk} is also periodic with period N , i.e.,

yk+rN = yk , r ∈ ZZ , k ∈ {0, . . . , N − 1}

Hence, just N samples of {yk}N−1
k=0 are enough to reconstruct the sequence.

Therefore, the Fourier coefficients of Y (ω) are

Y (ω) =

N−1∑

n=0

Ynδ(ω − 2π

N
n) (6.13)

From equations (6.12) and (6.13), we obtain,

Yn = P

(
2πn

N

)
Xn, n = 0, . . . , N − 1. (6.14)
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Hence, if we transmit periodic sequences, {xn}, over an LTI channel, we can get a “straight-wire” rela-
tionship between {Xn}N−1

n=0 and {Yn}N−1
n=0 .

The basic trick in DMT/OFDM is to “simulate” an infinite periodic sequence without actually having to
do so. This critically uses the FIR property of the channel. Since in the periodic sequence {yk}, the N
samples are enough to recreate the periodic sequence, can we create a non-periodic transmission strategy
that produces the same output? Therefore if we create an input that produces N samples of yk which is
the same as if the input were periodic, then we are done.

Now, if P (ω) corresponds to FIR channel of memory ν, i.e., has impulse response p0, ..., pν , then the
noiseless output is

yk =

ν∑

n=0

pnxk−n.

For y0, . . . , yN−1 to look the same as the first N samples of the periodic sequence, we just need to prefix
the sequence {xk} i.e., see Figure 6.10.

Prefix

Information

x0 . . . xN−1xN−ν . . . xN

Figure 6.10: The cyclic prefix.

Therefore, by using the cyclic prefix (for simplicity assume N > ν), we get

y0 = p0x0 + p1 xN−1︸ ︷︷ ︸
x−1

+p2 xN−2︸ ︷︷ ︸
x−2

+ . . .+ pν xN−ν︸ ︷︷ ︸
x−ν

y1 = p0x1 + p1x0 + p2xN−1 + . . .+ pν xN−ν+1︸ ︷︷ ︸
x−ν+1

...

yν−1 = p0xν−1 + p1xν−2 + . . .+ pν−1x0 + pνxN−1

yν = p0xν + p1xν−1 + . . .+ pν−1x1 + pνx0

...

yN−1 = p0xN−1 + p1xN−2 + . . .+ pνxN−1−ν (6.15)

Therefore, the output y0, . . . , yN−1 is identical to that we would have obtained from a periodic sequence.
Hence, we have “tricked” the FIR channel into thinking that we did send a periodic sequence and get
the “straight-wire” channel of equation (6.14). This idea has been illustrated for just a transmission
block from time k = 0, ..., N − 1. However, in Section 6.2.2 we had transmission block which ended at
an arbitrary time index k and hence the time indices look different. However, if we shifted our blocks to
end at k instead of N − 1, then we would get exactly the same result as given in (6.11). Therefore the
relationship in (6.14) is the noiseless version of the relationship in (6.11). Therefore we have derived the
OFDM by an alternate methodology which also gives us the interpretation for why it works.

Notes:

1. We of course cannot have a time-limited and band-limited channels. This is an approximation, and
this truncation would in principle cause aliasing. However, the choice of ν can make this error as
small as we need.
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2. By the trick shown, we essentially “sample” the channel in the frequency domain,i.e.,
{
P
(

2π
N n
)}N−1

n=0
.

This is correct for periodic sequences, but with a-periodic sequences, such a sampling could incur
a loss, which is the same as the “aliasing” error in 1) above.

3. The decomposition of the channel into parallel channels through the cyclic prefix trick did not need
the transmitter to know the channel impulse response. All that was used was

• The channel was LTI

• It had a finite response of length ν + 1

This property makes the decomposition canonical for FIR LTI channels.

The interpretation through periodic sequences leads us to the use of circular convolution. For a given N ,
the circular convolution between two sequences u0, ..., uN−1 and v0, ..., vN−1 is defined as

uk ⊗N vk =

N−1∑

n=0

unv(k−n)N
, k = 0, ..., N − 1 (6.16)

where (k − n)N is the modulo operator i.e., (k − n)N = r if k − n = qN + r, for some q ∈ Z.
Therefore in our case if (k − n) < 0 then

(k − n)N = N − (k − n).

Hence we can interpret the relationship in (6.15) by a circular convolution, i.e.,

yk = pk ⊗N xk .

This is also true in the relationship in (6.10) where

yk = pk ⊗N xk

Thus the operations in DMT/OFDM can also be interpreted in terms of circular convolutions. This
interpretation is explicit in our derivation using periodic sequences. Note that circular convolution like
periodic convolution is a commutative operation.

6.2.5 Successive Block Transmission

Note that the development till now has been on a single block of transmission. What happens for
continuous transmissions? This is illustrated in Figure 6.13. For continuous transmission, the idea goes
through again in the following manner.

Prefix for

block k

xk(N − ν), . . . , xk(N − 1) xk(0), . . . , xk(N − 1)

Block k

xk+1(N − ν), . . . , xk+1(N − 1) xk+1(0), . . . , . . . , xk+1(N − 1)

Block k+1

block k+1

Prefix for

Figure 6.11: Transmitted sequence for OFDM blocks.

We define the following quantities (see Figures 6.11 and 6.12) in relation to the single frame trans-
mission notation given in (6.7). We denote the frame of N + ν symbols transmitted in block k as
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Block k

yk(−ν), . . . , yk(−1) yk(0), . . . , yk(N − 1) yk+1(−ν), . . . , yk+1(−1) yk+1(0), . . . , yk+1(N − 1)

Block k+1

Figure 6.12: Received sequence for OFDM blocks.

���������� ������ ����������

������������������
... ...

ννν
N symbols

(k + 1)st blockN + ν kth block

Figure 6.13: Continuous transmission blocks.

{xk(−ν), ..., xk(−1), xk(0)..., xk(N − 1)} which along with the cyclic prefix relationship in (6.6) we see
that the transmitted frame is {xk(N − ν), ..., xk(N − 1), xk(0), ..., xk(N − 1)}.
The received frame of N + ν symbols for block k is denoted by, {yk(−ν), ..., yk(−1), yk(0), ..., yk(n− 1)}.
Now for each block of transmission, it is clear that {yk(−ν), ..., yk(−1)} are influenced by symbols trans-
mitted in the previous frame (i.e., xk−1(l), l = 0, ..., N −1). Therefore, we discard yk(−ν), ..., yk(−1) and
only use yk(0), ..., yk(N − 1). Hence,

yk+1(0) = p0xk+1(0) + p1 xk+1(N − 1)︸ ︷︷ ︸
xk+1(−1)

+...+ pν xk+1(N − ν)︸ ︷︷ ︸
xk+1(−ν)

where due to the cyclic prefix the interference from the previous transmitted block (block k) has been
eliminated. Therefore the prefix has eliminated the interblock interference at the cost of added redundancy
of ν symbols per block. Hence the redundancy rate is ν

N+ν per transmitted symbol.
Note that if we examined yk+1(−1), we would have dependencies from the previous transmitted block
(block k) and this is the reason for discarding it. Therefore the prefix given in (6.6) serves another
purpose, i.e., it prevents successive blocks from interfering with each other. This function causes it to be
also called the “guard” interval.
The overall block diagram implementation of DMT is shown in Figure 6.14.

Disadvantages of OFDM

The OFDM technique seems like a panacea and solves our ISI channel problem. However, it does have
some disadvantage like longer transmit symbols, larger peak-to-average ratio, sensitivity to mismatch and
synchronization errors. So, in practice, it depends on the real gain in system performance to make the
appropriate choice between time-domain equalization and OFDM. Sometimes a combination of the two
might be appropriate.

6.3 Channel Estimation

Up to now, the main assumption is that the transmission channel is known at the receiver. All the
algorithms and techniques we have seen critically utilize this fact. A natural question is how we have
such knowledge. The basic idea in channel estimation is to send known information symbols and estimate
the channel. The technique is a dual of estimating information symbols while sending it through a known
channel. Let us re-examine the discrete-time model given in (5.46) and for simplicity consider L = 1.
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INPUT

BITS

SYMBOL

BIT

MAPPER

I

F

F

T

Re(X̃i)

Im(X̃i)

C

TRANSMIT

FILTER

CARRIER

z(t)
s(t)

CHANNEL
CARRIER

D

AXi

CYCLIC PREFIX

V-POINT

MODULATION

+
DEMODULATION

C

D

A

PROCESSING

CYCLIC PREFIX

F

F

T

DECODING

T
′

T
′

Yi

X̃i

Figure 6.14: Block diagram for OFDM.

Therefore, we can re-write it as

yk =

ν∑

m=0

pmxk−m + zk,

and in vector form it is,



yk
...
yk−NT +1




︸ ︷︷ ︸
Y

=




xk xk−1 . . . xk−ν
xk−1 xk−2 . . . xk−ν−1

...
...

...
...

xk−N+1 xk−NT . . . xk−NT +1−ν




︸ ︷︷ ︸
X




p0

p1

...
pν




︸ ︷︷ ︸
p

+




zk
...
...

zk−NT +1




︸ ︷︷ ︸
z

(6.17)

where NT = length of training. The problem is now of estimating p from Y when {xk, . . . , xk−NT +1−ν}
are known symbols. Thus in compact form, (6.17) is written as

Y = Xp + z (6.18)

A criterion to estimate p from Y is

p̂opt = arg min
p

||Y − Xp||2 (6.19)

This can be written in more detail as,

arg min
p

NT−1∑

t=0

∣∣∣∣∣yk−t −
ν∑

m=0

pmxk−t−m

∣∣∣∣∣

2

= p̂opt

Note that this criterion does not involve any expectation (E[·]) operation. This is because we are assuming
the channel to be an unknown constant and not a stochastic quantity. The criterion given in (6.19) is called
the deterministic least squares criterion. As we shall see below, several of the geometric interpretations
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we had for the MMSE criterion (stochastic least squares) in Section 5.1 also carries through here as well.
We will examine a relationship between deterministic and stochastic least squares in Section 6.3.2.
We now know derive the orthogonality principle appropriate for the deterministic least squares problem
(see also Figure 6.15). Let us write the cost function given in (6.19) as,

J (p) = ||Y − Xp||2
= Y∗Y + p∗X ∗Xp − Y∗Xp − p∗X ∗Y

By differentiation one gets

X ∗X p̂opt = X ∗Y (6.20)

which in the terminology of least squares is the normal equation. If X ∗X is invertible then

p̂opt = (X ∗X )−1X ∗Y (6.21)

Note that the normal equation (6.20) implies the orthogonality principle, i.e.,

eopt = Y − X p̂opt

= Y − X (X ∗X )−1X ∗Y
⇒ X ∗eopt = X ∗Y − (X ∗X )(XX ∗)−1X ∗Y

= 0 (6.22)

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�
�
�
�

�
�
�
�

R(X )

eopt

Y

Xpopt

(Y − Ŷ) ⊥ R(X )

Figure 6.15: Geometry of the deterministic least squares problem.

Hence eopt⊥X , is the orthogonality principle in this context (see also Figure 6.15).
Now, let us use this result in the model of interest, i.e., (6.18). Therefore, we get

p̂opt = (X ∗X )−1X ∗[Xp + z] = p + (X ∗X )−1X ∗z (6.23)

The estimation error for criterion (6.19) is therefore

eopt = Y − X (X ∗X )−1X ∗Y =
[
I−X (X ∗X )−1X ∗]Y

Now, we can find the least squares error norm as

‖ eopt ‖2 = ‖ Y − X p̂opt ‖2= Y∗eopt − p̂optX ∗eopt
(a)
= Y∗eopt = Y∗Y − Y∗X p̂opt

= Y∗Y − (X ∗Y)∗p̂opt
(b)
= Y∗Y − (X ∗X p̂opt)

∗p̂opt

= Y∗Y− ‖ X p̂opt ‖2
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where (a) follows due to orthogonality (6.22) and (b) follows due to the normal equation (6.20).
Therefore we get

‖ eopt ‖2= Y∗Y − p∗opt(X ∗X )p̂opt (6.24)

which is a Pythagorean relationship (see Figure 6.15) similar to Theorem 5.1.3 in Section 5.1.4.

6.3.1 Training sequence design

We have further control on the channel estimation problem by appropriately choosing the known (“train-
ing”) symbols that are sent. In this section we explore some properties we desire for designing training
sequences.
Now, using (6.23), the error in the estimate p̂opt is,

p̂opt − p = (X ∗X )−1X ∗[Xp + z] − p (6.25)

= (X ∗X )−1X ∗z

Hence,
Ez[||p̂opt − p||2] = N0trace(X ∗X )−1,

where we have taken the E[·] operation over the noise z, and used E[zz∗] = N0I. Therefore, the “quality”
of the estimate is determined by trace[(X ∗X )−1]. The “optimal” training design is to choose the training
symbols so as to minimize trace[(X ∗X )−1] for a given power constraint.
Problem:

Minimize trace[(X ∗X )−1]

subject to
1

NT + ν

NT +ν−1∑

i=0

|xk−i|2 ≤ Ex (6.26)

or trace[X ∗X ] ≤ c (6.27)

Facts:

1. Unitary decomposition: If A = A∗, then A = UΛU∗ where U∗U = I.

2. If A = UΛU∗ and UU∗ = I then, A−1 = UΛ−1U∗.

Theorem 6.3.1. Consider the problem with constraint given in (6.27), i.e.,

Minimize trace[(X ∗X )−1]

subject to trace[X ∗X ] ≤ c (6.28)

Then optimal training sequence for this problem satisfies X ∗X = c
ν+1 I.

Proof: Let X ∗X = UΛU∗

trace(X ∗X )−1 = trace(UΛ−1U∗) = trace(Λ−1U∗U)

= trace(Λ−1) =
ν∑

i=0

1

λi

Similarly

trace(X ∗X ) =

ν∑

i=0

λi
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The problem with the constraint in (6.27) is then,

Minimize
∑ 1

λi

s.t
∑

λi ≤ c

Let us write the Lagrangian form for constrained optimization,

J (λ) =
∑ 1

λi
− γ

∑
λi

∂J
∂λi

= − 1

λ2
i

− γ = 0

Therefore we see that λ2
i = − 1

γ is a constant independent of index i. Therefore

Λ = − 1√
γ
I,

giving us

X ∗X = − 1√
γ
I.

Using this in (6.27) with equality we get

X ∗X =
c

ν + 1
I

This was a toy problem in that we did not take the exact constraints into account (there are edge effects
that mean that problem (6.26) and (6.27) are not equivalent). Also, typically we want {xk} to come
from a particular constellation. That makes the training sequence optimization problem a discrete one,
i.e., a discrete optimization problem. However, this gives one an idea of what kind of training sequences
we should attempt to design. Another way of interpreting this is that we want the training sequences
to have low cross-correlation with shifted versions. This requirement on sequences also arises in CDMA
wireless multiple access communications.

Now, let us compare the true constraint given in (6.26)

1

NT + ν

NT +ν−1∑

l=0

|xk−l|2 ≤ Ex

and the formal constraint (6.27) that we solved, i.e.,

tr [X ∗X ] ≤ c.

In order to do this we can write,

X ∗X =



xk . . . xk−ν
...

...
xk−NT +1 . . . xk−ν−NT +1




∗ 

xk . . . xk−ν
...

...
xk−NT +1 . . . xk−ν−NT +1



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Hence we get,

trace (X ∗X ) =

ν∑

l=0

NT −1∑

t=0

|xk−l−t|2 (6.29)

= (ν + 1)

[
NT −1∑

l=ν

|xk−l|2
]

+ |xk|2 + 2|xk−1|2 + . . .+ ν|xk−ν+1|2 + ν|xk−NT |2

+ . . .+ 2|xk−ν−NT +2|2 + |xk−ν−NT +1|2

Therefore we get,

trace (X ∗X ) = (ν + 1)

[
NT +ν−1∑

l=0

|xk−l|2
]
−
{
ν|xk |2 + . . .+ |xk−ν+1|2

}
−
{
|xk−NT |2 + . . .+ ν|xk−NT −ν+1|2

}

≤ (ν + 1)(NT + ν)Ex −
{
ν|xk |2 + . . .+ |xk−ν+1|2

}
−
{
|xk−NT |2 + . . .+ ν|xk−NT −ν+1|2

}

≈ (ν + 1)(NT + ν)Ex (6.30)

Therefore c ≈ (ν + 1)(NT + ν)Ex if we ignore the edge effects.
Now if we use the “optimal” training sequence sa specified in Theorem 6.3.1, we get

(X ∗X ) =
c

ν + 1
I = (NT + ν)ExI

and applying this using (6.25) we have

E(p − p̂opt)(p − p̂opt)
∗ = (X ∗X )

−1
N0.

These together give us,

E(p− p̂opt)(p − p̂opt)
∗ =

N0

(NT + ν)Ex
I

Therefore, for the optimal training sequences,

E[‖ p− p̂opt ‖2] =
N0ν

(NT + ν)Ex
=

[
1

SNR

1 + NT

ν

]
.

Given this, the error in the estimate is made small by choosing NT >> ν, i.e., the training length should
be much larger then the number of parameters being estimated. If such a large NT is chosen, then the
assumption of “perfect” channel state information becomes quite reasonable.

Channel mismatch

Since the channel estimation error is non-zero, the use of channel estimate instead of true channel incurs
a penality. Therefore we think that the output behaves as,

Yk =

ν∑

m=0

p̂opt,mxk−m +
∑

(pm − p̂opt,m)xk−m + zk
︸ ︷︷ ︸

Z′
k

If {xk} are assumed i.i.d then

E
[
||Z′

k||2
]

= ExE
[
||P̂opt −P||2

]
+N0L
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Hence, if the estimation error is small, then the use of the estimated channel does not greatly affect
performance. However, if either the training sequence length NT , is small of the sequence was chosen
poorly, the mismatch in the channel could adversely affect performance. For good system design, one
tries to ensure that the channel mismatch is small. If NT becomes large, it is clear that the mismatch
asymptotically vanishes. In wireless channels (which we will encounter soon), there may be constraints
on NT causing non-negligible channel mismatch.

6.3.2 Relationship between stochastic and deterministic least squares

In this section we explore the relationship between deterministic and stochastic least squares. We do this
using the model given in (6.18)

Y = Xp + z

and make the assumption that p is a stochastic variable with

Epp∗ = αI,

As before we assume that

Ezz∗ = N0I.

Now we use a linear estimator

p̂s = MY (6.31)

and we use the criterion

p̂s = argmin
p̂

E[‖ p− p̂ ‖2] (6.32)

Using orthogonality principle (seen in Section 5.1) we have

p − p̂s ⊥ Y

Hence we have,

E [(p−MY)Y∗] = 0

giving us

M = E(pY∗) {E [YY∗]}−1

Now we can write this explicitly using our assumptions as,

EpY∗ = (αI)X ∗,

EYY∗ = (αXX ∗ +N0I)

Hence we see that the linear estimator using the stochastic criterion (6.32) is given by

M = αX ∗ [αXX ∗ +N0INT ]
−1

(6.33)

Claim 6.3.1.

M =

[
N0

α
Iν+1 + X ∗X

]−1

X ∗



138 CHAPTER 6. TRANSMISSION STRUCTURES

Proof: Now using (6.33),

M = X ∗
[
XX ∗ +

N0

α
INT

]−1

Note that

X ∗
[
XX ∗ +

N0

α
INT

]
=

[
X ∗XX ∗ +

N0

α
X ∗
]

=

[
X ∗X +

N0

α
Iν+1

]
X ∗

⇒
[
XX ∗ +

N0

α
Iν+1

]−1

X ∗ = X ∗
[
XX ∗ +

N0

α
INT

]−1

= M

�

Hence we can rewrite (6.31) as

p̂s =

[
X ∗X +

N0

α
Iν+1

]−1

X ∗Y .

Comparing this to the solution obtained from the deterministic least squares (6.21), we see that if α → ∞,
both are the same! Letting α → ∞ is like saying we are estimating an unknown constant and this is
basically what deterministic least squares is trying to do.
Now, let us examine the MMSE of the stochastic estimator, which is given by

E(p − p̂s)(p − p̂s)
∗ = αIν+1 − αX ∗ (αXX ∗ +N0INT )

−1
αX

where Epp∗ = αI as before. Using matrix inversion lemma2 (Lemma 5.7.1) we get,

E(p − p̂s)(p − p̂s)
∗ =

[
1

α
Iν+1 +

1

N0
X ∗X

]−1

If we make an assumption on {xk} satisfies the training optimality condition of Theorem 6.3.1 (see also
(6.30)),

X ∗X = (NT + ν)ExIν+1

then

E(p − p̂s)(p − p̂s)
∗ =

[
1

α
Iν+1 +

1

N0
(NT + ν)ExIν+1

]−1

=
1

1
α + (NT +ν)Ex

N0

Iν+1

If

(NT + ν)
Ex
N0

>>
1

α
,

then

E(p − p̂s)(p − p̂s)
∗ ≈ N0

Ex
1

NT + ν
Iν+1 << αIν+1

Therefore the error covariance is much smaller than the variance of the random channel, i.e., much smaller
than the initial uncertainty.

2where the matrix inversion lemma is [A + BCB∗]−1 = A−1 − A−1B[C−1 + B∗A−1B]−1B∗A−1.
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6.4 Problems

Problem 6.1

For a channel with

Q(D) =
1

||p||2
[
0.9D+ 1.81 + 0.9D−1

]

Assume that the noise variance is σ2
n = 0.1, and Ex = 1.

1. Find G(D) and W(D)for the ZF-DFE.

2. Find SNRZF−DFE .

3. Design (draw) a Tomlinson precoder.

4. Let M = 4 (PAM constellation) for your precoder, Find Pe. Recall that the Tomlinson Precoder
output is approximately i.i.d when the input is an i.i.d sequence, and furthermore the output
sequence is approximately uniform in distribution over the inteval [−Md/2,Md/2].

Problem 6.2

Consider the channel model in Problem 5.6:

1. Design (draw) a Tomlinson precoder for this channel model and ZF-DFE.

2. Let M be a large value (PAM constellation) for your precoder, Find Pe. Recall that the Tomlinson
Precoder output is approximately i.i.d when the input is an i.i.d sequence, and furthermore the
output sequence is approximately uniform in distribution over the inteval [−Md/2,Md/2].

Problem 6.3

Consider the H(D) = 1 +D channel. The differential precoder for this channel has the form

m̄k = mk 	 m̄k−1

where 	 represents subtraction modulo-M , mk and m̄k are the precoder input and output, respectively,
and take values in {0, . . . ,M − 1}.

1. Derive the mapping from the precoder output to xk, the channel input, assuming PAM modulation
with symbols separated by distance d.

2. Find the noiseless equivalent channel output. Also determine the input mk from this output. Hint :
Apply the inverse of the mapping you found in part (a). You may use the (·)M operator to show a
quantity calculated in M-level arithmetic.

3. Assuming the presence of additive noise, what is the estimate of the input mk if you apply the same
method as in part-2 to determine mk?

Problem 6.4

[Tomlinson-Harashima Precoder for the MMSE-DFE ]

1. Derive the expression for R(D), the output of the feedforward filter in the MMSE-DFE.

2. Write an expression for GU (D), the equvialent unbiased filter for the MMSE-DFE.
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3. Using the fact that the SNRMMSE−DF E

SNRMMSE−DF E,U
scaled value of rk, the output of the MMSE WMF, is an

unbiased MMSE approximation of X(D)GU (D), find the feedback filter, B(D) for the Tomlison-
Harashima precoder for the MMSE-DFE. Hence find rU,k, the scaled output of the feedforward
filter.

4. Determine the output of the precoder after the modulo operation, Γ(rU,k).

Problem 6.5

1. Suppose we are given a periodic channel h(t) = h(t+ T ). Show that ϕn(t) = ej
2π
T nt are eigenfunc-

tions of the channel. (Hint: express h(t) in a Fourier series). By eigenfunctions, we mean that if
φ(t), t ∈ [0, T ) is used for a periodic channel h(t), the output y(t), t ∈ [0, T ), will be a scaled version
of φ(t). Note here, that both the input and the output signals are restricted to the interval [0, T ).

2. What are the associated eigenvalues ?

3. If the channel is not periodic, but had finite length ν, how could the designer create a new set of
functions ϕ̂n(t) from ϕ(t) such that the output looks as if it was created by a periodic channel.

4. If the receiver only looks at the periodic part of the output signal, what would the associated
eigenvalues be ?

5. If a transmission uses the channel eigenfunctions developed here, how much faster does the sampling
rate hav to be ? ( or how much more bandwith does the design have to use ?)

Problem 6.6

Assume an OFDM system with N subcarriers, of symbol length T , of which ν is the length of the cyclic
prefix

φk(t) =

{
1√
T−ν e

j2πW
N k(t−ν) , if t ∈ [0, T ]

0 , otherwise

On a particular symbol, we have the transmitted signal given by:

sl(t) =

N−1∑

k=0

xk,lφk(t− lT )

Then the output from a transmitter is:

s(t) =

∞∑

l=0

sl(t)

Moreover we assume that the impulse response g(t) of the channel is of length ν.

1. Compute the received signal r(t). (consider an AWGN channel noise n(t))

2. The OFDM receiver consists of a filter bank, matched to the last part [ν, T ] of the transmitter
waveforms φk(t) :

ψk(t) =

{
φ∗k(T − t) , if t ∈ [0, T − ν]

0 , otherwise

Compute the sampled output from the receiver filter banks yk = (r ∗ψk)(t) |t=T and show that it is
of the form yk = hkxk + nk. (Remember that since the cyclic prefix contains all ISI from previous
symbol, we can ignore the time index l)
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Problem 6.7

Given an OFDM system with N subcarriers , compute the channel estimation in the frequency domain.
Do we need N pilot symbols?

Problem 6.8

Given an OFDM system with N = 4 sub-carriers, cyclic prefix and a given channel P (D) = 1 + 1.81D+
0.81D2:

1. Find the matrix P and compute its eigen decomposition.

2. After applying FEQ, compute the SNR on each sub carrier.

Assume that Ex = 0.1 and σ2 = 0.01.

Problem 6.9

Consider a finite impulse response channel

yk =

ν∑

n=0

pnxk−n + zk

where yk, zk ∈ C2 and pn ∈ C2, i.e they are 2-dimensional vectors. This could arise, for example,
through Nyquist sampling like the model considered in class (L = 2).

1. Suppose one observes a block of N samples of {yk}, Yk =




yk
...

yk−N+1


. Write down the relationship

between Yk and Xk =




xk
...

xk−N+1

...
xk−N+1−ν




in the form

Yk = PXk + Zk

where Yk , Zk ∈ C2N , Xk ∈ CN+ν , P ∈ C2N×(N+ν) by specifying the form of P.

2. Suppose we use a cyclic prefix, i.e

xk−N−l = xk−l, l = 0, · · · , ν − 1

Develop the equivalent model:

Yk = P̃X̃k + Zk (6.34)

where X̃k =




xk
...

xk−N+1


 ∈ CN and P̃ ∈ C2N×N . Find P̃.
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k−N+1−ν k−N+1 k

cyclic prefix

ν

Figure 6.16: Cyclic Prefix

3. Let Y(`) = 1√
N

∑N−1
k=0 yke

−j 2π
N k`, Z(`) = 1√

N

∑N−1
k=0 zke

−j 2π
N k`,

P(`) =
∑ν

n=0 pne
−j 2π

N n`, X(`) = 1√
N

∑N−1
k=0 xke

−j 2π
N k`.

Develop the vector OFDM form for (6.34), i.e, show that

Y(`) = P(`)X(`) + Z(`), ` = 0, · · · , N − 1 (6.35)

This can be done by either arguing about equivalent periodic sequences or any other proof technique.
Here we would like to see a derivation, just stating the result is not enough.

4. In the form given in (6.35), we get N parallel vector channels. If we want to detect each component
{X(`)} separately what would be the best linear estimator of X(`) from Y(`), i.e the appropriate
“frequency-domain” MMSE linear equalizer (FEQ).

Problem 6.10

Find the MMSE-LE filter that normalizes the following channel

P (D) = 0.7 + 1.5D + 0.8D2

to a target channel of H̃(D) = 1 +D. In this case our predicition error becomes

E(D) = X(D)H̃(D) −W (D)Y (D).

You may assume that Rxx = Ex and that there is additive white Gaussian noise of power N0.
The goal of this exercise to show the links between equalization, and the other methods of dealing with
ISI that we looked at such as OFDM and sequence detection. In pratical systems a channel is rarely
fully equalized to a delta function (H̃(D) = 1). Instead the channel is equalized to something relatively
benign (such as 1 +D), and then OFDM or sequence detection is applied to this equivalent channel.
We see that the techniques we have learned for dealing with ISI channels do not have to be used indepen-
dently, and indeed in practical systems equalization is often combined with another method for coping
with ISI.

Problem 6.11

Given an OFDM system with N = 8 subcarriers, and a given channel P (D) = 1 + 0.9D:

1. Find the matrix P and compute its eigen decomposition.

2. After applying FEQ, compute the SNR on each subcarrier.

3. Calculate the error rate for QPSK modulation.

4. What is the worst error rate?
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Problem 6.12

[Sensitivity of OFDM to frequency offset ]
To the P (D) = 1 + D channel, add a small frequency offset, δω. This will make the P̃ matrix not
exactly circulant anymore. Calculate the inter-carrier interference and quantify for what frequency offset
it becomes significant. Let N = 4. δω = ωoT , where ωo is the frequency offset and T is the symbol
period. p(n) is replace to include the frequency offset such that

y(k) =

ν∑

n=0

ejδωkp(n)x(k − n) + z(k)

Hint: Calculate the new P̃ matrix, then calculate the Λ matrix.

Problem 6.13

[Inter-carrier Interference in OFDM]
Consider the scalar discrete-time inter symbol interference channel considered in the class,

yk =
ν∑

n=0

pnxk−n + zk, k = 0, . . . , N − 1, (6.36)

where zk ∼ CN (0, σ2
z) and is i.i.d., independent of {xk}. Let us employ a cyclic prefix as done in OFDM,

i.e.,
x−l = xN−1−l, l = 0, . . . , ν.

As done in class given the cyclic prefix,

y =



yN−1

...
y0


 =




p0 . . . . . . pν 0 . . . 0 0
0 p0 . . . pν−1 pν 0 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

0 . . . . . . 0 p0 . . . . . . pν
pν 0 . . . 0 0 p0 . . . pν−1

. . .
. . .

. . .
. . .

. . .

p1 . . . pν 0 . . . 0 0 p0




︸ ︷︷ ︸
P



xN−1

...
x0




︸ ︷︷ ︸
x

+



zN−1

...
z0




︸ ︷︷ ︸
z

. (6.37)

In the derivation of OFDM we used the property that

P = F∗DF, (6.38)

where

Fp,q =
1√
N

exp

(
−j 2π

N
(p− 1)(q − 1)

)

and D is the diagonal matrix with

Dl,l = dl =

ν∑

n=0

pne
−j 2π

N nl.

Using this we obtained
Y = Fy = DX + Z,
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where X = Fx, Z = Fz. This yields the parallel channel result

Yl = dlXl + Zl. (6.39)

If the carrier synchronization is not accurate, then (6.36) gets modified as

y(k) =

ν∑

n=0

ej2πf0kpnxk−n + zk, k = 0, . . . , N − 1 (6.40)

where f0 is the carrier frequency offset. If we still use the cyclic prefix for transmission, then (6.37) gets
modified as




y(N − 1)
.
.

y(0)




︸ ︷︷ ︸
y

=




p0e
j2πf0(N−1) . . . pνe

j2πf0(N−1) 0 . . . 0 0
. . .

. . .
. . .

. . .
. . .

0
. . .

. . .
. . . ej2πf0νp0 . . . ej2πf0νpν

. . .
. . .

. . .
. . .

. . .

ej2πf00p1 . . . ej2πf00pν 0 . . . 0 ej2πf00p0




︸ ︷︷ ︸
H



xN−1

...
x0




︸ ︷︷ ︸
x

+



zN−1

...
z0




︸ ︷︷ ︸
z

.

(6.41)
i.e.,

y = Hx + z

Note that
H = SP,

where S is a diagonal matrix with Sl,l = ej2πf0(N−l) and P is defined as in (6.37).

(a) Show that for Y = Fy, X = Fx,
Y = GX + Z (6.42)

and prove that
G = FSF∗D.

(b) If f0 6= 0, we see from part (a) that G is no longer a diagonal matrix and therefore we do not obtain
the parallel channel result of (6.39). We get inter-carrier interference (ICI), i.e., we have

Yl = Gl,lXl +
∑

q 6=l
G(l, q)Xq + Zl

︸ ︷︷ ︸
ICI + noise

, l = 0, . . . , N − 1,

which shows that the other carriers interfere with Xl. Compute the SINR (signal-to-interference
plus noise ratio). Assume {Xl} are i.i.d, with E|Xl|2 = Ex. You can compute the SINR for the
particular l and leave the expression in terms of {G(l, q)}.

(c) Find the filter Wl, such that the MMSE criterion is fulfilled,

minWl
E|W∗

l Y −Xl|2.

You can again assume that {Xl} are i.i.d with E|Xl|2 = Ex and that the receiver knows G. You
can now state the answer in terms of G.

(d) Find an expression for Gl,q in terms of f0, N, {dl}. Given this and (b), what can you conclude about
the value of f0. For what values of f0 do you think that the inter-carrier interference problem is
important? Hint: Use the summation of the geometric series hint given in first page.
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Problem 6.14

Consider the channel estimation problem based on the deterministic criterion. Let the channel be:

Y = Xp + z,

where channel memory length ν = 1 and length of the training sequence NT = 2. The deterministic
criterion to estimate p is given by:

p̂opt = argminp||Y − Xp||.

1. Assume that all the signal are real, prove directly by differentiating that the optimum p satisfies

p̂opt = (X ∗X )−1X ∗Y . (6.43)

Prove eqn(6.43) when the signals can be complex.

2. Let Ex = 0.1, σ2 = 0.01. Find the expected error in the estimation assuming that the training
sequence is the optimal sequence obtained under the constraint Tr(X ∗X ) ≤ (ν + 1)(NT + ν)Ex.
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Part III

Wireless Communications
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Chapter 7

Wireless channel models

Wireless communication refers to communication using electromagnetic waves propagated in “air” to carry
information. This is different from the telephone line channel or the cable channel that required a wire to
carry information across from point to point. Today wireless networks have significantly penetrated our
lives through cellular phones, satellite TV and even cordless phones which combine with the traditional
PSTN wired telephone line network.
Wireless communication has a long history, dating back to 1897 when Marconi successfully demonstrated
wireless telegraphy. The early 20th century witnessed the birth of radio transmission with speech and
audio carried across the ocean. Soon, television transmission started in the 1930s and the launching of
satellites in the 1950s started long-haul wireless networks. Today microwave networks for line-of-sight
transmission, cellular networks for wireless telephony and wireless LANs for data access seem ubiquitous.
In this part of the class we introduce the transmission medium in cellular wireless communication and
some of the signal processing issues dealing with reception of multiple user wireless transmissions.
There are two main distinguishing features of wireless communications in comparison to wired channels.
The first is the channel could be time-varying causing the received signal strength to wax and wane. This
phenomenon is called channel fading, and occurs due to radio wave propagation effects. The second is that
the wireless channel is an inherently shared medium and hence multiple user interact and interfere with
each other. Therefore we need to devise techniques to handle multiuser interference making it distinct
from the point-to-point (single-user) detectors we studied in Chapter 2. In general we also encounter
inter-symbol interference in wireless channels, but this is something we have already encountered in
Chapter 4-6.
A cellular network consists of users spread over a geographical area served by a “base station”. The
area of a single base station is often called a “cell” and hence the name cellular communication. Several
base-stations combine to cover large geographical areas. For example New York city has base-stations
every couple of blocks and therefore the cells could be quite small. On the other hand in sub-urban and
rural areas the cells could be quite large, of the order several square kilometers.

The base-stations connect to the wired telephone network enabling calls to and from the telephone line
network to the wireless cellular network. Given this background, we study the following aspects of wireless
networks.

• Radio wave propagation in scattering environments.

• Physical and statistical models for wireless channels.

• Detection in wireless point-to-point (single users) channels.

• Concept of diversity in various forms.

149
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Base station

Figure 7.1: A cartoon of a cellular base station.

���
�

���
�

������

������������

	�	
�
 ������

Base station

Cell

base station

Figure 7.2: An oversimplified view of cells in geographical area.
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• Wireless multi-users channels, in particular focus on the multiple access channel.

• Multiuser detection for multiple access channels.

In this chapter we study wireless channel models after understanding the effects of radio wave propagation.
In Chapter 8, we study detection in point-to-point (single user) wireless channels. In Chapter 9, we study
multiuser wireless channels and focus on multiple access channels.

7.1 Radio wave propagation

Wireless transmission occurs by modulating electromagnetic waves which are then transmitted through
an antenna. The receiver processes the impinging electromagnetic wave and detects the transmitted
information. The typical carrier frequencies are 0.9 GHz, 1.8 GHz, 2.4 GHz, etc. for cellular wireless
networks. The main effects on the information transmission arises due to the propagation effects on the
electromagnetic waves due to reflection, absorption and constructive and destructive combining of these
electromagnetic waves. Therefore we first study these effects and their impact on communication.

7.1.1 Free space propagation

������

��
Receiving
antenna

transmitting
antenna

(0, 0, 0)

(r, θ, ψ)

Figure 7.3: Free space radio propagation.

Free space propagation occurs when the transmitter and the receiver have an unobstructed line-of-sight
path between them. For a fixed transmitting and fixed receiving antenna, and for a pure sinusoid cos 2πft
transmitted, the observed electric field (far field) at time t and position (r, θ, ψ) is

E[f, t, (r, θ, ψ)] =
1

r
Re[αs(θ, ψ, f)ej2πf(t−r/c)] (7.1)

where αs(θ, ψ, f) is the radiation pattern of transmitting antenna, c = 3 × 108 (velocity of light). Note
that phase variation of fr/c is just due to the delay caused by radiation travelling at the speed of light.
The receiving antenna could have a radiation (reception) pattern of its own and this could modify the ob-
served electric field. This just means α(θ, ψ, f) replaces αs(θ, ψ, f) where α(θ, ψ, f) = αs(θ, ψ, f)αr(θ, ψ, f).
Therefore the received electric field at the antenna is

E[f, t, (r, θ, ψ)] =
1

r
Re[α(θ, ψ, f)ej2πf(t− r

c )]. (7.2)

Notes:

1. Notice that in (7.2) the electric field decays as 1
r as a function of distance between transmitting

and receiving antennas. Thus the power behaves as,

Pr =
| α(θ, ψ, f) |2

r2
(7.3)
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and hence decays as 1
r2 , as a function of the distance. This is often called the squared law loss

and determines how far we can have the transmitter and receiver, implying the coverage area of a
base-station for example.

2. The relationship in (7.2) holds only for free space propagation, i.e. no absorption, no reflections or
scattering.

3. The radiation pattern of the transmitting antenna could be directional and also cause phase varia-
tions.

4. It is clear that (7.2) does not hold for r = 0, i.e., this is a far field model when the transmitter and
the receiver are far apart.

5. Linearity: The observed electric field is linear in the input, i.e. if we transmit a sum (superposition)
of two sinusoids, the output will be the sum of the outputs one would have observed if each of them
were transmitted alone. This is an important feature of the propagation behavior that will be used
in the channel models later.

7.1.2 Ground Reflection

In typical scenarios, an unobstructed line-of-sight path between the transmitter and the receiver is rare.
We will now look at our first modification of the free space model developed in Section 7.1.1.
A two-ray ground reflection model is a usual first step in demonstrating the kind of impairments we
would see in a real propagation environment. Even though such a model (shown in Figure 7.4) does not
capture all the complexities of a real-world channel, it gives us a taste of what to expect.
In Figure 7.4, we consider a typical scenario where one antenna (say the transmitter) is much higher (at a
height ht) than the receiver (at height hr). This might represent a base-station transmitting to a mobile
unit. We consider a perfect omnidirectional transmitter and receiver, i.e., α(θ, ψ, f) = 1.

r0

hr

ht
Erefl

Edirect
rdirect

Figure 7.4: A two-ray ground reflection model.

We assume that receiver observes two versions of the transmitted wave, one which reaches it directly
and we call this Edirect and the other which reflects off the ground and reaches it after travelling a total
distance of rb. Due to linearity, the total electric field is the sum of these two components given by,

E(f, t) = Edirect(f, t) + Erefl(f, t) (7.4)

Let E0 be the observed electric field at a reference distance d0 from the transmitter. If the ground is a
perfect reflector, then

Edirect =
E0d0

rd
cos
(
2πf

(
t− rd

c

))

Erefl =
−E0d0

rb
cos
(
2πf

(
t− rb

c

))



7.1. RADIO WAVE PROPAGATION 153

where rd is the distance travelled by the direct wave, i.e., rd is the distance from transmitter to receiver
and rb is the total distance travelled by reflected wave.

Now, let us define the path difference ∆ as,

∆ = rb − rd
(a)
=
√

(ht + hr)2 + r20 −
√

(ht − hr)2 + r20

= r0

[
1 +

(
ht + hr
r0

)2
]1/2

− r0

[
1 +

(
ht − hr
r0

)2
]1/2

(b)≈ r0

[
1 +

1

2

(
ht + hr
r0

)2

− 1 − 1

2

(
ht − hr
r0

)2
]

=
1

2r0

[
(ht + hr)

2 − (ht − hr)
2
]

=
1

2r0
(4hthr) =

2

r0
hthr

where (a) occurs due to geometry in Figure 7.5 i.e.,

r2b = (ht + hr)
2 + r20

r2d = (ht − hr)
2 + r20 (7.5)

and the approximation (b) is for r0 >> (ht + hr). This means that the distance between the transmitter
and the receiver are much larger than the antenna heights. Hence we get

∆ = rb − rd ≈ 2

r0
hthr (7.6)

Therefore using this in (7.4) we get

E(f, t) =
E0d0

rd
cos
[
2πf

(
t− rd

c

)]
− E0d0

rb
cos
[
2π(ft− f

rb
c

)
]

≈ E0d0

r0
cos
[
2πf

(
t− rd

c

)]
− E0d0

r0
cos
[
2πf(t− rb

c
)
]

where the approximation is because rb =
√

(ht + hr)2 + r20 ≈ r0 and rd =
√

(ht + hr)2 + r20 ≈ r0 in the
first order.

hr

ht

rb

rd

hr

hr

ht

rb

r0

Figure 7.5: Trigonometry to find path differences.

Now, let us consider the complex representation of the electric field. One can get to the previous repre-
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sentation by taking the real part.

E(f, t) =
E0d0

rd
ejω(t−

rd
c ) − E0d0

rb
ejω(t−

rb
c )

≈ E0d0

r0

[
ejω(t−

rd
c ) − ejω(t−

rb
c )
]

where as before the approximation is that 1
rd

≈ 1
rb

≈ 1
r0

in the far field. Moreover we have used the
notation ω = 2πf , for brevity.
Using this we get

E(f, t) ≈ E0d0

r0
ejωt

[
e−jω

rd
c − e−jω

rb
c

]

=

[
E0d0

r0

]
ejωte−jω

rb
c

[
e
jω

“
rb−rd

c

”

− 1

]
.

Now to find the power we need the total magnitude of the electric field, i.e.,

|E(f, t)| =

∣∣∣∣
E0d0

r0

∣∣∣∣
∣∣∣∣e
jω

“
rb−rd

c

”

− 1

∣∣∣∣

Consider the second term above,
∣∣∣∣e
jω

“
rb−rd

c

”

− 1

∣∣∣∣
2

=

{
cos

[
ω

(
rb − rd
c

)]
− 1

}2

+ sin2

[
ω

(
rb − rd
c

)]

= 1 + 1 − 2 cos

[
ω

(
rb − rd
c

)]

= 2

{
1 − cos

[
ω

(
rb − rd
c

)]}

= 2

{
2 sin2

[
ω

(
rb − rd

2c

)]}

Therefore now we use the approximation developed in (7.6) as,

|E(f, t)| ≈
∣∣∣∣
E0d0

r0

∣∣∣∣ 2 sin

[
ω

(
rb − rd

2c

)]

(a)≈
∣∣∣∣
E0d0

r0

∣∣∣∣ 2 sin

(
ω

2hthr
r02c

)

(b)≈
∣∣∣∣
E0d0

r0

∣∣∣∣
2ω

c

hthr
r0

=
1

r20

[
2E0d0hthr

c

]

where (a) occurs due to the approximations in (7.6) and (b) occurs because sin θ ≈ θ for small θ.
Hence the power received is | E(f, t) |2 is Pr ≈ 1

r40

[
4E0d0hthr

c

]
.

Hence, the received power decays as 1
r40

instead of 1
r20

as was seen in the free space propagation model.

This drastically different behavior in the power decay shows that complex reflections can alter the decay
behavior with distance.
The main ideas from radio wave propagation considered in Section 7.1.1 and 7.1.2 can be summarized as
follows.
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1. The free space transmission resulted in a linear time-invariant system with a power decay of 1
r20

,

where r0 was the distance between sender and receiver.

2. For a ground reflection, which occurs frequently in rural and suburban environments, the power
loss become 1/r40 i.e., it decays much faster than in free space. Therefore in general the radio wave
propagation causes a decay of power as

Pr ∝
1

rβ
(7.7)

where β ≥ 2. Typically β ∈ [2, 6].

7.1.3 Log-normal Shadowing

The model given in (7.7) may not completely capture the power loss behavior. Unfortunately the radio
propagation environment is much more complicated than just a reflection model. Typically radio waves
get reflected, absorbed, scattered and diffracted. All these depend very highly on the particular propa-
gation environment. For example, the presence of a large building causing absorption, or a rough surface
causing scattering means that one cannot easily predict the radio wave propagation behavior. Here is
where we first encounter a stochastic model for the propagation, where the randomness corresponds to
the unknown or uncertain propagation environment.
Given that just the “distance loss” behavior of (7.7) does not account for the complete effects of radio
propagation, we introduce the notion of shadowing to account for the randomness in the propagation
environment. It has been empirically observed that the received signal power Pr(r0) as a function of
distance r0 between transmitter and receiver behaves as,

Pr(r0) ∝
S

(r0)β
(7.8)

where S is a random variable (shadowing) accounting for some of the uncertainties in the propagation
environment. Through empirical studies it has been observed that the random variable S behaves as
a log-normal distribution, i.e., logS is a zero-mean Gaussian distributed random variable with a given
variance. This model attempts to account for the variability in the empirical signal seen, even for the
same distance separation between the transmitter and the receiver. Therefore the model in (7.8) shows
that the received signal levels at a particular transmitter-receiver separation of r0 is a random variable.
In terms of signal power measured in dB,

10 logPr(r0) = K + 10 logS − 10β log r0,

where K is the proportionality constant. Since log S is modelled as zero-mean, the mean received power
in dB is that given by the distance loss and the shadowing adds on to this with a normal distribution.
In summary the shadowing represents the absorption and clutter loss which depends on the unknown
(and uncertain) propagation environment. This is our first encounter with such randomness in the
modelling. We will encounter it again in the next section where we consider mobility. Note, however
that the shadowing loss is modelled only for fixed environments. The modelling of shadowing for mobile
environments is quite difficult.

7.1.4 Mobility and multipath fading

Up to now the propagation effects have been perhaps random but time-invariant. In this section we
introduce one of the distinguishing features of wireless channels, i.e., time-variation. These rapid fluctu-
ations in signal strength are called fading and are caused by constructive and destructive interference of
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reflected waves. We have already seen the effect of such superposition in Section 7.1.2 where we saw the
combination of a direct and a ground reflected wave. The essential difference here is that the receiver
and/or the transmitter is mobile and hence these superpositions change over time causing the rapid sig-
nal strength fluctuations. These are small-scale effects in that the distance travelled is of the order of
several wavelengths of the carrier wave in order to observe these variations. Therefore the signal strength
variations do not occur due to changes in the propagation environment (i.e., reflectors, etc.) but due to
phase changes in the “multipath” superposed reflections themselves.

Doppler Shift: Consider a mobile moving at a constant velocity v, along a path AB as illustrated in
Figure 7.6. Suppose, as shown in Figure 7.6 there is a remote fixed transmitter T .

v

d

BA

θ

∆p

T

≈ θ

Figure 7.6: Doppler shift.

The difference in path length travelled by a wave from T to the mobile at A and B is ∆p = d cos θ =
v∆t cos θ where ∆t is the time needed for the car to go from A to B and θ is the angle between AB and
AT . Here we have assumed that T is far enough that the angles from A and B are the same, i.e., θ.
Therefore due to the path length difference the phase difference of the radio wave is

∆φ =
2π∆p

λ
=

2πv∆t

λ
cos θ

where λ is the wavelength of the carrier. Therefore the apparent change in frequency is given by

fd =
1

2π

∆φ

∆t
=
v

λ
cos θ. (7.9)

The relationship given in (7.9) relates the mobile speed to the change in frequency, which is called the
Doppler shift. This is a phenomenon one might have encountered often when a police siren seems to
increase in frequency while approaching while decreasing when it is receding. Though the siren is always
transmitting at the same frequency a fixed listener observes a variation in the frequency and this effect is
called the Doppler effect after its discoverer. Clearly, in (7.9) we see that if the mobile is moving towards
T , i.e., θ > 0, then the frequency shift is positive (i.e., apparent frequency is higher) and the shift is
negative when it is receding from T (i.e., θ < 0).

Now, this Doppler shift is the cause for the time-variation seen in wireless channels. The situation
becomes more complex when the mobile receives not one copy but several reflected copies of the signal
transmitted by T . This can be modelled as having several virtual sources {Tl} transmitted to the mobile.
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Tl

T1

TL

T
reflected paths

v

Figure 7.7: Multipath reflections and Doppler shifts.

Now, consider the effect of (7.9) on the received electric field, given in (7.1). The change in frequency
causes the received field at point B to be

E(f, t) ≈ 1

r0
Re[α(θ, ψ, f)ej2π(f+fd)t]

For an ideal omni-directional transmitter and receiver, the complex electric field is given by

E(f, t) =

[
1

r0
ej2πft

]
ej2πfdt

Therefore in the baseband and after compensation of distance loss we get

Eb(t) = ej2πfdt

Now, this is for a single path and for reflections we get several virtual sources, i.e., the received baseband
signal is

y(t) =

L∑

l=1

cle
j2π[ v

λ cos θl]t (7.10)

where {θl} are the angles to the different reflectors and {cl} are the (complex) reflection coefficients of
each of the reflectors. This is because each of the reflectors could cause phase shift as well as absorb to
reduce the amplitude. This is illustrated in Figure 7.7.
In general, the reflectors could be such that one also gets delayed versions of the signal, but this is an
effect we will study in Section 7.2.
The model given in (7.10) was for a single sinusoid sent at a carrier frequency and it showed the baseband
equivalent signal. Now, if a narrowband signal x(t) was sent instead of a pure sinusoid, then the received
signal would be,

y(t) =

[
L∑

l=1

cle
j2π v

λ cos θlt

]
x(t)

∆
= f(t)x(t) (7.11)

The relationship in (7.11) illustrates two things. One, that the equivalent channel is multiplicative, i.e.,
the channel f(t) is time-varying and causes the received signal strength fluctuations. Second, the overall
system behavior is that of a linear time-varying system.
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7.1.5 Summary of radio propagation effects

There were three main effects that we studied in Sections 7.1.1-7.1.4, i.e., distance loss effect, shadowing
and multipath fading. Overall, for a baseband signal if a narrowband signal x(t) is transmitted, then the
received signal is

y(t) =
S

(r0)
β
2

f(t)x(t),

where S represents the random log-normal shadowing described in Section 7.1.3, (r0)
−β
2 loss describes

the distance loss and f(t) describes the small-scale fast fading alternation. In most baseband systems,
the relatively constant qualities of the shadowing and distance loss one compensated by automatic gain
control. Therefore the multipath fading becomes the dominant effect for a communication system design
and analysis. Clearly the overall model depends on unknown propagation environment that changes over
time. Thus leads to modelling the channel as a random variable with given probability laws which are
characterized empirically.

7.2 Wireless communication channel

Transmitter

Receiver

y(t)

x(t)

Figure 7.8: Delayed reflections of radio waves.

As can be seen from the discussion in Sections 7.1.3-7.1.5, the propagation models for the wireless channel
can quickly become quite complicated. As mentioned in Section 7.1.4, there can also be delays {τd}
between different reflected waves (see also Figure 7.8) and hence we can get the received baseband signal
to be,

y(t) =
D∑

d=1

Sd
(rd)

β
2

f
′

d(t)

︸ ︷︷ ︸
fd(t)

x(t− τd) =
D∑

d=1

fd(t)x(t − τd) (7.12)

where D are the number of delayed paths with Sd and rd respectively the shadowing and distance losses
of the delayed paths. There could be several reflectors at approximately the same delay {τd}, and hence
as in Section 7.1.4, (7.11), we have

f
′

d(t) =

Ld∑

l=1

cl(d)e
j 2π

x v cos θl(d)t, d = 1, ...,D. (7.13)

Adding is the usual receiver noise into (7.12), we get the received signal to be

y(t) =

D∑

d=1

fd(t)x(t− τd) + z(t) (7.14)
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where z(t) is typically additive Gaussian noise and we have defined fd(t) = Sd

(rd)
β
2

f
′

d. As can be seen,

the description of the model depends crucially on the multipath fading {fd(t)} as well as the delays {τd}
aside from the coarser quantities of distance loss and shadowing. The power of each delayed path depends
on the coarser quantities which leads to the power-delay profile in (7.14) which is the main model for
communication.

7.2.1 Linear time-varying channel

The model given is (7.14) can be represented as a linear time-varying channel as follows. We can rewrite
(7.14) as,

y(t) =

∫

τ

hp(t; τ)x(t − τ)dτ + z(t)

where

hp(t; τ) =

D∑

d=1

fd(t)δ(τ − τd).

This compactly represents the linear time-varying channel imposed by the electromagnetic wave propaga-
tion. Now, we can go to the discrete time model by sampling at Nyquist rate. Note that for a time-varying
system this means sampling at a rate higher than 2(WI +Ws) where WI is the input bandwidth and Ws

is the bandwidth of the channel time-variation. Now if we sample at times Ts <
1

2(WI+Ws) , then

y(kTs) =

∫

τ

hp(kTs; τ)x(kTs − τ)dτ + z(kTs).

Now, if the transmitted signal was modulated as in Chapter 4, then

x(t) =
∑

n

xnϕ(t− nT )

Where T is the symbol period and as in Chapter 4, we have assumed N = 1 complex dimensions for the
modulation. Therefore if we assume that Ts = T

L , where L as in Chapter 5 is the “over sampling” factor,
then,

yi(k)
∆
= y(kT − iT

L
) =

D∑

d=1

fd(kT − iT

L
)
∑

n

xnϕ(kT − iT

L
− τd − nT ) + z(kT − iT

L
)

︸ ︷︷ ︸
zi(k)

=
∑

n

xn

D∑

d=1

fd(kT − iT

L
)ϕ

[
(k − n)T − iT

L
− τd

]
+ zi(k)

=
∑

m

xk−m

{ D∑

d=1

fd(kT − iT

L
)ϕ(mT − iT

L
− τd)

}
+ zi(k)

∆
=

∑

m

xk−mhi(k;m) + zi(k)

where

hi(k;m) =

D∑

d=1

fd(kT − iT

L
)ϕ(mT − iT

L
− τd)
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Therefore a vector linear time-varying channel model is,

y(k) =




y0(k)
.
.
.

yL−1(k)




=
∑

m

h(k;m)xk−m + z(k) (7.15)

where

h(k;m) =




h0(k;m)
.
.
.

hL−1(k;m)



, z(k) =




z0(k)
.
.
.

zL−1(k)




(7.16)

The model given in (7.15) is the linear time-varying model that summarizes the effects of the radio wave
propagation on the communication channel.
Notes:

1. This model looks very similar to the one we have been studying till now in this class. The main
difference is that the linear time-invariant channel has been replaced by the linear time-varying
channel.

2. The impulse response {h(k, l)} is composed of several components, due to reflection, absorption,
path loss, an multipath combining. Instead of a detailed model for this, it is more fruitful to describe
it statistically, as we will do in Section 7.2.2.

3. The processes {fd(t)} vary in time and their correlation depends on the relative velocity between
sender and receiver. The bandwidths of these variations depend on the Doppler shifts of the
reflected paths. Thus the random process {fd(t)} has a spectral bandwidth which is roughly pro-
portional to fc

v
c . For example at fc = 1 GHz, v = 30m/s(≈ 60mph), the bandwidth of variation is

approximately 100 Hz.

4. The time-scales become important. During a transmission burst which might last a few seconds
at most, the path loss, shadowing (absorption) and the reflectors remain approximately constant.
The main variation comes from Doppler spread i.e., mobility. Hence, the variation in fd(t) arises
mainly from this effect.

7.2.2 Statistical Models

Wireless
Channel

x(t)

z(t)

y(t)+

In the model given in (7.15), one can describe in fine detail each of the quantities influencing h(k;m) in
terms of the reflector geometries and the delays. However, as one can imagine, such a description can
quickly become difficult in most realistic environments. Therefore we revert to a statistical (random)
channel description that captures the spirit rather than each of the fine details.
The first question is about the behavior of {f ′

d(t)} given in (7.13), which greatly infuences the linear
time-varying response h(k;m). Given that it corresponds to the addition of several random quantities,
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one can surmise that it can be well modelled by a Gaussian stochastic process. In fact this has also been
well justified by empirical studies. It has been shown that it can be well modelled as a complex Gaussian
process which has a power spectral density which is relatively flat over a bandwidth of ( vλ ) Hz, where λ
is the carrier wavelength. Therefore we have the model that fd(t) is Gaussian with

Sf ′
d
(ω) =

{
1

2Ws
, | ω |< 2π vλ
0 else

(7.17)

where Ws = v
λ . It is also a good model that the reflectors at different delays have independent fading,

i.e., {f ′

d(t)} are i.i.d. over d = 1, ...,D. Therefore we have statistical description of the fading processes

{f ′

d(t)}.
The delays {τd} are difficult to characterize empirically. Depending on the propagation environment
(urban, sub-urban or rural) the maximal delay τD can be characterized. For example in urban environ-
ments, | τD |< 5 µsec. Where as in rural environments one could have larger delays of the order of tens
of µsecs. This corresponds to reflectors being further away like mountains etc. Note that a 1 µsec delay
implies a distance of 300 m (3 × 108 × 10−6 = 300). As mentioned earlier, there is a power-delay profile
associated with {f ′

d(t)}.Usually the larger delay reflections have lower power since they have travelled
a larger distance. However the effects of shadowing means that there is randomness in the power-delay
profile as well. Therefore there are the models for the delays depending on the environment and typically
the models are given for urban, sub-urban or rural propagation scenarios.

Special Cases

1. Linear time invariant model: if v = 0, i.e., the mobile is stationary, then fd(t) is independent of
t, (see (7.14)), and we recover a linear time invariant model since (h(k;m) = h(0;m), and hence
(7.15) becomes

y(k) =
∑

m

h(0;m)xk−m + z(k)

2. Flat fading model: If the delay spread i.e., maxd τd = τD, is small, i.e, τD ≈ 0, then we get

hi(k;m) =

[ D∑

d=1

fd(kT − iT

L
)

]
ϕ(mT − iT

L
)

Hence

h0(k;m) =

[ D∑

d=1

fd(kT )

]
ϕ(mT ).

Therefore, for this case with L = 1, we get for pulse shapes like the sinc pulse which have

ϕ(mT ) = 0, m 6= 0

the flat fading model where there is no inter-symbol interference, i.e.,

y0(k) = h0(k; 0)xk + z0(k).

This gives a frequency “non-selective” (i.e., no ISI) but time varying channel.
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7.2.3 Time and frequency variation

In Chapter 4-6, we encountered ISI channels where the model was a linear time invariant channel. In
this chapter the model of the wireless channel is one of linear time-varying channel.
Now, the variation in time depends or the Doppler shifts as seen in (7.10), and therefore across all the
reflected paths one can define the largest Doppler variations. Clearly this is upper bounded by 2v

λ and
this is the maximal Doppler spread fmax of the time variation. This was the bandwidth of time variation
used in (7.17) for the statistical model. This Doppler spread corresponds to how fast the channel varies
over time. Hence we define the coherence time Tc as,

Tc
∆
=

1

fmax

which corresponds approximately the time period over which the channel is expected to remain roughly the
same. In a similar manner we can find the maximal delay spread of the channel response as Td = maxd τd.
This relates to the longest delay seen and characterizes the frequency variation of the random frequency
response of the wireless channel. We define the coherence bandwidth Wc as

Wc
∆
=

1

2Td

which corresponds approximately to the frequency range over which we expect the response to be roughly
the same.
Therefore we obtain characterization of the order-of-magnitude behavior in time and frequency of the
random time-varying channel through the coherence time and coherence bandwidths. For example, if we
are transmitting at 1 GHz, and a mobile is moving at 60 miles per hour (approximately 30ms ) then we
have fmax = 2v

λ = 200 Hz and Tc = 5 msec. Therefore approximately every 5 msec the channel becomes
independent and this gives us an engineering insight into block lengths we could use and other design
considerations. Similarly if we have a maximum delay spread of 20 µsec, then Wc = 2.5× 104. Therefore
for signal bandwidth of less than Wc, we would expect the variation of the channel in frequency to be
small.

7.2.4 Overall communication model

The wireless model given in (7.15) forms the basis of all the discussion in Chapter 8. The model comprises
of time-variation which is roughly characterized by the coherence time Tc, and frequency variation (ap-
proximately characterized by Wc, the coherence bandwidth). The frequency variation causes intersymbol
interference and we have studied such impairments in Chapter 4-6. However due to time-variation one
might encounter several realizations of the channel over a transmission burst and this is exactly the new
feature in wireless communication. We will need to understand the impact of this on the communication
system. Therefore we have a linear time-varying communication model that is modelled as a stochastic
process as described in Section 7.2.2.
Block time-invariant models: In many situations it is useful to consider the channel as remaining
constant over a small number of transmissions and then change to another value after that. For example
if we transmit a block over a duration which is much smaller than the coherence time Tc of the channel,
then for all practical purpose the channel encountered over the transmission block is constant. Then
if the next transmission occurs at a time which is longer than Tc after the previous transmission, then
the channel encountered can be well modelled as being independent of the previous transmission. This
argument leads us to an intermediate model between a continuously varying channel and a time-invariant
channel, i.e., a block time-invariant channel.
Consider a transmission of K symbols with symbol period T . If kT � Tc, then {h(k;n)} are approx-
imately the same for each of the symbols. If we call the transmission block b, then we can index the
“constant” channel realization by h(b).
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TI

BLOCK b

K symbols

BLOCK b+ 1

Figure 7.9: Block time-invariant model.

Now, if the next transmission occurs after TI time where TI � Tc, then the channel realization h(b+1) is
well modelled as being independent of h(b) and identically distributed. Thus behavior is called a block
time-invariant channel model.
Multiuser channels: In a multiuser setting of Chapter 9, we could have several users which have
independent channels transmitting simultaneously to a single receiver. This model would a multiuser
generalization to the point-to-point model given in (7.15). Such a generalization is the second distin-
guishing element of wireless channels and we will study the impact of multiuser interference in more
detail in Chapter 9.

7.3 Problems

Problem 7.1

Suppose g(t, τ) represents the response of a linear filter at time t to an impulse τ time units earlier, i.e.,
if the signal x is the input to the filter its output y is given by y(t) =

∫
x(t − τ)g(t, τ)dτ . How can we

tell if the filter described by g is time-invariant?
A linear time invariant filter can be characterized by its impulse response h(t), which is the response at
time t to an impulse at time 0. We can view this linear time invariant filter as just a linear filter with
response g(t, τ). What is the relationship between g(τ, t) and h(t) (i.e., what is g in terms of h)?

Problem 7.2

r1

r2hs

hr

r

1. Let r1 be the length of the direct path and r2 the length of the reflected path ( from the transmitter
to the ground and from the ground to the receiver). Show that r2 − r1 is asymptotically equal to
a/r. Find a.
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2. Assume that the received waveform at the receiving antenna is given by

Er(f, t) =
<[α exp {j2π[ft− fr1/c]}]

r1
− <[α exp {j2π[ft− fr2/c]}]

r2

Approximate the denominator r2 by r1 and show that Er ≈ γ
r2 for 1/r � c/f . Find γ.

3. Explain why the asymptotic expression remains valid without first approximating the denominator
r2 by r1.

Problem 7.3

Y

X

φ

v

Figure 7.10: Moving mobile receiver

Consider a mobile receiver moving along the X-axis with velocity v as shown in Figure 7.10. The received
signal arrives at an angle φ. What is the amount of associated Doppler shift?



Chapter 8

Single-user communication

In wireless channels the detection problem is different from that considered for linear time-invariant
channels (studied in Chapter 4-5) in two important ways.
First as seen in Chapter 7, the wireless channel can vary quite rapidly (within a few milliseconds) and
therefore one might not be able to have an accurate estimate of the channel. This is because the channel
estimation schemes (such as those studied in Section 6.3) might not have enough training symbols to
accurately estimate the rapidly varying channel. Therefore, we might have to design detectors that do
not utilize the actual realization of the channel but only the know statistics of the channel. Such detectors
are called non-coherent detectors as opposed to coherent detectors which use channel knowledge (or
estimates) for detection. We will study non-coherent detectors in Section 8.1.2.
The second difference is in the error probability behavior. In the linear time invariant channels studied
in Chapter 4-5, the error probability was averaged over the noise statistics alone. This was because
the linear time-invariant channel was the same over the entire duration of the transmission. However,
in wireless communication the channel need not be a constant over the duration of the transmission.
Consider the block time-invariant model introduced in Section 7.2.4.
Given any transmission strategy and a detection strategy, clearly the error probability averaged over the
noise statistics depends on the channel realization {h(k;n)}, i.e.,

Pe,b(x̂b 6= xb) = g(h(b);SNR)

where g(·, ·) is a function of h(b), the channel realization for transmission block b, {(h(b))} as well as the
SNR. Now if we transmit over B such blocks, the average error block error probability is

Pe({x̂} 6= {x}) =
1

B

B∑

b=1

Pe,b(x̂b 6= xb).

If the channel realization process {h(b)} is assumed to be i.i.d. over transmission blocks (or more generally
stationary and ergodic), then over a large number of blocks (i.e., B → ∞), the average block error
probability would go to

P̄e = Ehb
[Pe,b(x̂b 6= xb)].

Therefore there is a second averaging we need to perform for wireless channels which are over the channel
statistics and this is a new feature we will encounter. As we will see in Section 8.1, this will considerably
alter the behavior of the error probability with SNR.
In Section 8.1 we will study coherent and non-coherent detectors for the channel given in (8.1) and also
find the behavior of the error probability with SNR. In Section 8.2 we will study the tool of diversity
which is an important method to deal with the fading wireless channel.

165
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8.1 Detection for wireless channels

In this section we will derive and analyse the average block error probability of detection for wireless
channels. In Section 8.1.1, we analyse the coherent detector, where the channel varies slowly enough for
us to “perfectly” estimate the channel and use the realization for detection. This is similar in flavor to
detection schemes studied earlier in Chapters 2 and 4. However, when we have fast time-varying channels
we may not have knowledge of the channel realization but only its statistical behavior. In such cases we
have a non-coherent detection scheme as described in Section 8.1.2.
In the following we will for simplicity assume a flat fading model (see Section 7.2.2) where the baseband
received signal in transmission block b, is well modeled as,

y(k) = h(b)x(k) + z(k), , k ∈ T (b) (8.1)

with h(b) being a complex Gaussian process which is i.i.d. over transmission blocks b. For notational
reasons we will denote the time span of the bth block by T (b).

8.1.1 Coherent Detection

Suppose we estimate the channel and use this to detect the transmitted symbols. This is suitable if the
channel was block time-invariant (as given in (8.1), also see Section 7.2.4). Therefore one could insert
training symbols to estimate the particular channel realization for the block. If the channel varies slowly,
we can get a very accurate estimate of it. Therefore we assume that the channel is known perfectly at
the decoder. That is, for the maximum-likelihood decoding, for block b

y(k) = h(b)x(k) + z(k), k ∈ T (b)

we get
x̂b = arg max

x
PY|X,h(y|x, h(b))

where {x̂b} = {x̂(k)} for the bth block. Therefore the decision rule is

x̂b = argmin
x

∑

k∈T (b)

∣∣∣y(k) − h(b)x(k)
∣∣∣
2

since {z(k)} is AWGN.
As mentioned earlier, the probability of error is calculated by averaging the error probability over many
transmission blocks. For a given transmission block b, the error probability for binary transmission is

Pe(h
(b)) = Q

(
dmin|h(b)|

2σz

)
, (8.2)

as was derived in Chapter 2 where we notice that the error depends on minimum distance of the altered
constellation h(b)x(k).
It is well known that the Q(·) function decays exponentially, i.e.,

1

2
√

2πx

[
1 − 1

x2

]
e−

x2

2 ≤ Q(x) ≤ e−
x2

2 , x > 1

Therefore we have

Pe(h
(b)) = Q

(
dmin|h(b)|

2σz

)
≤ e

−d2
min|h(b) |2

8σ2
z . (8.3)
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Note that Pe(h
(b)) is a random variable depending on the random channel realization h(b). In order to

find the error probability we need to calculate

P̄e = EhQ

(
dmin|h(b)|

2σz

)
≤ Ehe

−d2
min|h(b) |2

8σ2
z (8.4)

Lemma 8.1.1. If U ∼ CN (0,KU ), (K−1
U + bA) > 0, and A = A∗, for some b ∈ C then

EU

[
e−bU

∗AU
]

=
1

|I + bKUA| (8.5)

Proof:

EU

[
e−bU

∗AU
]

=
1

π

∫

U

1

| KU |e
−U∗K−1

U Ue−bU
∗AUdU

=
1

π

1

| KU |

∫

U

e−U∗(K−1
U +Ab)UdU

Let K̃U = (K−1
U + bA)−1, then

EU

[
e−bU

∗AU
]

=
1

π

1

|KU |

∫

U

e−U∗(K−1
U +Ab)UdU

=
|K̃U |
|KU |

{
1

π

1

|K̃U |

∫

U

e−u∗K̃−1
U UdU

}

=
|K̃U |
|KU |

=
1∣∣KU (K−1
U + bA)

∣∣

=
1

|I + bKUA|
�

Now, we use this result in (8.4) to get an upper bound to the average error probability. By identifying

u = h(b), A =
d2min

8σ2
z

, b = 1 and KU = 1 = E[|h(b)|2], we get

P̄e ≤ Eh

{
e
− d2

min|h|2

8σ2
z

}
=

1

1 +
d2min

8σ2
z

(8.6)

Therefore in BPSK transmission, with average energy Ex, we have dmin = 2
√Ex and hence we have,

P̄e ≤
1

1 + SNR
≤ 1

SNR
(8.7)

and hence the behavior of the error probability at high SNR is like 1
SNR . This can be seen more explicitly

by carrying out the calculation in (8.4) exactly.
This calculation is done in Appendix 8.A and the result from (8.30) is that,

P̄e =
1

2


1 − 1√

1 + 8σ2

d2min


 .

Now, if we have BPSK, where ±√Ex are the symbols, this gives dmin = 2
√Ex and hence

d2min

σ2
z8 = Ex

2
N0
2

=

Ex

N0
= SNR.
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Hence we have

P̄e =
1

2


1 − 1√

1 + 1
SNR


 (8.8)

Now, at high SNR, i.e., SNR→ ∞, we have

P̄e =
1

2

[
1 − (1 + SNR−1)−

1
2

]
≈ 1

2

[
1 − (1 − 1

2

1

SNR
)

]

This gives at high SNR

P̄e ≈
1

4SNR
,

which is the same behavior as was observed in (8.6), where we just did the upper bound.
From this calculation we learn two important lessons. One is that at high SNR, the average error
probability decays inversely with SNR instead of exponentially as in an AWGN channel. The second
lesson is that the upper bound technique developed in Lemma 8.1.1 is actually tight at high SNR.
The first observation is quite striking since it means that to obtain the same error rates, one needs to go
to much higher SNR in a fading channel as compared to that in a time invariant channel. The surprise is
that this behavior occurs even with a coherent receiver which uses perfect channel information. A rough
intuitive argument for this can be seen as follows. From (8.2) we see that for a single frame the error
probability is given by

Pe(h
(b)) = Q

(
dmin
2σz

|h(b)|
)

= Q
(√

2SNR |h(b)|
)

and hence if |h(b)|
√

2SNR� 1, then Pe(h
(b)) ≈ 0 and if |h(b)|

√
2SNR� 1, then Pe(h

(b)) ≈ 1
2 . Therefore

a frame is in error with high probability when the channel gain |h(b)|2 � 1
SNR , i.e., when the channel is

in a “deep fade”. Therefore the average error probability is well approximated by the probability that
|h(b)|2 � 1

SNR , and for high SNR we can show that

P

{
|h|2 < 1

SNR

}
≈ 1

SNR

and this explains the behavior of the average error probability. Although this is a crude analysis, it brings
out the most important difference between the AWGN and the fading channel. The typical way in which
an error occurs in a fading channel is due to channel failure, i.e., when the channel gain |h| is very small,
less than 1

SNR . On the other hand in an AWGN channel errors occur when the noise is large and since
the noise is Gaussian, it has an exponential tail causing this to be very unlikely at high SNR.

8.1.2 Non-coherent Detection

As mentioned before, due to the fast time variation, one could have very imperfect knowledge of the
channel state h(b) in a particular block b. This could occur if the block is too short and/or if the channel
varies too fast. In such a case we can take an extremal view where we have no knowledge of the channel
at the receiver, but only know its statistical behavior (i.e., that h(b) ∼ CN (0, 1) and that it is i.i.d.
from block to block). In such a case the detector structure becomes different from the coherent detector
studied in Section 8.1.1.
Let us consider a block time invariant model where

y(k) = h(b)x(k) + z(k), k ∈ T (b)
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Let h(b) ∼ CN (0, 1) and let us makeK observations, i.e., a transmission block ofK symbols (|T (b)| = K).
If we collect these K samples in a vector form it gives us

y =




y(K − 1)
.
.
.

y(0)




= h




x(K − 1)
.
.
.

x(0)




︸ ︷︷ ︸
x

+




z(K − 1)
.
.
.

z(0)




︸ ︷︷ ︸
z

Hence we get for the likelihood function

PY|X(y | x) ∼ CN (0,E[|h|2]xx∗ + σ2
zIK).

Hence for E[|h|2] = 1, the log-likelihood function is

logPY|X(y | x) = − logπ − log |xx∗ + σ2
zIK | − y∗(xx∗ + σ2

zIK)−1y (8.9)

Now,

|xx∗ + σ2
zIK | = (σ2

z)
K | xx∗

σ2
z

+ IK |(a)=

(
x∗x

σ2
z

+ 1

)
(σ2
z)
K

where (a) follows because | I + AB |=| I + BA |.
Assumption: Now if we use a constant modulus transmission, i.e., |x(i)|2 = Ex, which occurs for
example with PSK constellations, we get

|xx∗ + σ2
zIK | = (σ2

z)
K

[
1 +

KEx
σ2
z

]

which is independent of x. Therefore for the constant modulus constellation the maximum likelihood
criterion from (8.9) gives us

x̂ = argmax
x

{
−y∗(xx∗ + σ2

zIK)−1y
}

(8.10)

Now, if we use the matrix inversion lemma, Lemma 5.7.1, we have

[
xx∗ + σ2

zIK
]−1

=
1

σ2
z

IK − 1

σ2
z

x

[
1 +

x∗x

σ2
z

]−1
1

σ2
z

x∗

=
1

σ2
z

{
IK − 1

σ2
z

xx∗

1 + x∗x
σ2

z

}

(b)
=

1

σ2
z

{
IK − 1

σ2
z

xx∗

1 + KEx

σ2
z

}
(8.11)

where (b) follows due to the constant modulus assumption i.e., |x(i)|2 = Ex, ∀i. Using (8.11) in (8.10)
the detection criterion becomes,

x̂ = argmax
x

y∗xx∗y = argmax
x

|y∗x|2 (8.12)

Therefore we choose the input x which has the largest projection (inner product) to the observation
y. This is a useful interpretation that generalizes to several other non-coherent detection schemes. An
illustration of a fast time-varying case for the non-coherent detector is given in Appendix 8.B.
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Now, in Appendix 8.C we derive the error probability behavior of the detector given in (8.12).
As seen in Appendix 8.C, even for the non-coherent case we get an error probability that decays as 1

SNR
at high SNR. Hence at high SNR, the main cause of error is a “bad” channel realization h. This is the
main cause of the striking difference between fading channels and AWGN channels. A natural question
to ask is weather there is a mechanism by which we can improve the performance of transmission over
fading channels? This is what we study in Sections 8.2-8.4.

8.1.3 Error probability behavior

As has been seen in Section 8.1.1-8.1.2, and the detailed calculations in Appendices 8.A and 8.C, we see
that the error probability for both the coherent and the non-coherent detectors behave inversely with
SNR, at high SNR.
As mentioned earlier, this is in contrast to the AWGN channel where the error probability decreases
exponentially with SNR. To get a feel for the difference, consider an AWGN channel with a dmin

2σ = 13.5
dB, then the error probability is

Pe = Q(101· 352 ) ≈ 10−6

where as for a coherent detector we see from (8.8) that

P̄e =
1

2


1 − 1√

1 + 10
−1· 35√

2


 ≈ 0.01

Therefore the error probability is orders of magnitude larger. In fact to get to an error rate of 10−6, for
the fading channel one would need an SNR of over 60 dB! This shows that for reliable communication
one fading channels one would require other tools. These tools are called diversity which we study in
Section 8.1.4.
Diversity order: In both the coherent and non-coherent cases we were interested in the error probability
behavior in the high SNR regime. In order to compare the behavior of different systems in this regime,
we use the notion of diversity order which is defined below.

Definition 8.1.1. A coding scheme which has an average error probability P̄e(SNR) as a function of
SNR that behaves as

lim
SNR→∞

log P̄e(SNR)

log(SNR)
= −d

is said to have a diversity order of d.

In words, a scheme with diversity order d has an average error probability of the order 1
SNRd at high

SNR. We would also use the notation

P̄e(SNR)
·
= SNR−d

to indicate such a relationship where we do not explicitly specify the constants involved.

8.1.4 Diversity

Fading channels imply that there could be a high probability of “link” failure. Therefore a natural
approach is to send over several links each of which fail independent of one another. This is the basic
idea of diversity, where we send information over links such that the probability of failure of all links
is exponentially smaller than the fading of a single one. The main question is how such a mechanism
changes performance and can we build transmission and reception schemes that utilize the presence of
multiple conduits of information transmission.
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There are several ways in which we can obtain diversity. One is over time, so that the channel fade
realization varies independently. For example by transmitting symbols separated by the coherence time
of the channel, the symbols experience independent fades.
A second mechanism is through frequency. In a frequency-selective channel (i.e. ISI channel) the path
gains (fades) of the delayed paths could be (roughly) independent. Therefore this translates for the prop-
erty that the frequency response of the channel is independent, if separated further than the “coherence
bandwidth” of the channel.
A third mechanism is through space, i.e., when the signal is transmitted (and/or received) through mul-
tiple antennas. Since we saw that the response of the electromagnetic propagation depends on the spatial
location, the spatial diversity samples this response at multiple locations by using multiple antennas.
If the antennas are separated by distance larger than the “spatial coherence distance” then one would
expect (almost) independent fading at the different antennas.

8.2 Time Diversity

Here we transmit information spread over a time period larger than the coherence time of the channel.
Typically, we “interleave” the transmitted symbols so that they experience independent fading. An
interleaver just permutes the transmitted symbols.

u(0), u(1), ..., u(N − 1)

{u(k)}
Π

u(3), u(15), ...

{x(k)}

Figure 8.1: Interleaving operation.

For example for a given block sizeN , the interleaver chooses a particular one ofN ! choices of permutation,
and therefore the operation can be represented as x(k) = u(π(k)). The goal is to “uniformly” intersperse
the symbols in the block. If the interleaver is effective, the consecutive information symbols would be
dispersed far enough to experience independent fading. If this occurs, then we get

y(k) = h(k)x(k) + z(k), k = 0, . . . ,D − 1 (8.13)

and {h(k)} are i.i.d., i.e., we have independent fading over D symbols. Hence we are transmitting over D
independent instantiations of the fading and have created time diversity. The question we address next
is how to utilize the time diversity we have created.

8.2.1 Repetition Coding

The simplest way one can utilize the diversity if by repeating the same symbol over all the diversity
paths. For example, in (8.13), we could send the same symbol x(0) for all times k = 1, . . . ,D − 1. Then

y(k) = h(k)x(0) + z(k), k = 0, . . . ,D − 1

This yields,



y(D − 1)

...
y(0)




︸ ︷︷ ︸
y

=



h(D − 1)

...
h(0)




︸ ︷︷ ︸
h

x(0) +



z(D − 1)

...
z(0)




︸ ︷︷ ︸
z

. (8.14)
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Let us examine the probability that x′(0) 6= x(0) is chosen by a coherent detector for (8.14), for a given
channel realization h. If we denote this by P(x(0) → x′(0)|h), we then have

P(x(0) → x′(0)|h) = P
[
||y − hx′(0)||2 < ||y − hx(0)||2h

]

= Q

( ||h||dmin
2σ

)
(8.15)

where dmin is the minimum distance of the constellation. Now, ||h||2 =
∑L−1
l=0 |h(l)|2, and if {h(l)} are

i.i.d. complex Gaussian, i.e.,

h(l) ∼ CN (0, 1)

then ||h||2 distribution can be found to be,

f||h||2(α) =
1

(D − 1)!
αD−1e−α, α ≥ 0

Therefore to find the error probability for repetition coding, we would average (8.15) over the distribution
of ||h||2:

P(x(0) → x′(0)) = E[||h||2] [P(x(0) → x′(0)|h)]

= E[||h||2]Q

(
||h||dmin

2σ

)

≤ E[||h||2]e
−||h||2d2min/8σ

2

=

∫

α

1

(D − 1)!
αD−1e−αe−α

d2
min
8σ2 dα

=
1

(D − 1)!

∫

α

αD−1e
−α

„
1+

d2
min
8σ2

«

dα

=
1

(
1 +

d2min

8σ2

)D

Note that we could have explicitly evaluated the error probability as we did in Appendix 8.A. However,
since we are interested in high SNR behavior we use the Chernoff upper bound as done in (8.7). At high
SNR this upper bound accurately depicts the error probability behavior.

If
d2min

8σ2 = SNR

(
d
′2
min

4

)
then,

P(x(0) → x′(0)) ≤ 1
(
1 + SNR

d
′2
min

4

)D

≤ 4D

SNRD(d
′2
min)D

·
= SNR−D

Hence, by using D diversity paths and sample repetition coding one changes the error probability behavior
(at high SNR) from 1

SNR to 1
SNRD . This is really the value of using diversity paths and this is one of the

best tools available to combat fading in wireless communications.
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8.2.2 Time diversity codes

Suppose we do not restrict ourselves to repetition coding, then we would return to (8.13) to rewrite it as

y(k) = h(k)x(k) + z(k), k = 0, . . . ,D − 1

Now, we wish to find the criteria for choosing {x(k)} to maximize performance (lower error probability).


y(D − 1)

...
y(0)




︸ ︷︷ ︸
y

=



x(D − 1) 0

. . .

0 x(0)




︸ ︷︷ ︸
X



h(D − 1)

...
h(0)




︸ ︷︷ ︸
h

+



z(D − 1)

...
z(0)




︸ ︷︷ ︸
z

(8.16)

which can be written as

y = Xh + z (8.17)

Therefore for a block of transmissions, we can write the probability of a coherent detector erroneously x
′

instead of x for a given realization of the channel h (see also (8.15) for a similar argument) is given by,

P(X → X′|h) = Q

[(
h∗(X −X′)∗(X −X′)h

4σ2

)1/2
]

If h ∼ CN (0, 1) then again we can write the average pairwise error probability as,

P(X → X′) = Eh

[
P(X → X′|h)

]

= EhQ

[(
h∗(X −X′)∗(X −X′)h

4σ2

)1/2
]

(a)

≤ Ehe
−[h∗(X−X′

)∗(X−X′
)h]/8σ2

(b)
=

1∣∣∣I + (X−X′
)∗(X−X′

)
4σ2

∣∣∣

=
1

∏D−1
l=0

(
1 + |x(l)−x′(l)|2

4σ2

)

≤ 1
∏D−1
l=0

|x(l)−x′(l)|2
4σ2

where (a) follows because of (8.3) and (b) follows by use of Lemma 8.1.1.
Now if, {l : x(l) 6= x′(l)} = B, then

P(X → X′) ≤ 1
∏
l∈B

(
1 + |x(l)−x′(l)|2

4σ2

) .
=

C

(SNR)|B|

Therefore the error probability behavior is dictated by B, which is the set over which the constellation
symbols differ over the diversity paths. In order to get maximal decay rate of error probability, we
want |B| = D, i.e., the transmitted symbols must be coded such that the distinct codewords differ on all
diversity paths. Clearly the repetition code is a simple instance of this where distinct transmitted symbols
would obviously differ on all diversity paths. However, the repetition code does so by sacrificing rate of
transmission. Therefore the question is whether one can design codes which have higher transmission
rate but obtain same error performance (at least the decay rate of error probability with SNR) as the
repetition code. We will see that later by using spatial diversity.
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8.3 Frequency Diversity

This is useful in a scenario where the transmission bandwidth is larger than the “coherence bandwidth”
of the channel. This form of diversity is the dual of time diversity in that it utilizes the frequency
variation of the channel (instead of time variations). The frequency variation arises because the multiple
paths of the electromagnetic scattering (propagation) environment could be received at different delays.
Therefore, if the fading on the different delayed paths are independent, one can obtain diversity by
combining the (independent) delayed paths. Therefore in principle, they are identical to the time and
spatial diversity methods. The reason why the delayed paths could experience independent fading is
because, they encounter different scatterers (reflections) and hence the statistical variations (fading)
would most likely be independent for different scatterers.
Hence, if there exists a “delay spread” it leads to an intersymbol interference (ISI) channel which we have
studied in great depth in the earlier part of this class.
There are primarily three ways of exploiting frequency diversity:

1. Time-domain equalization: Here optimal receivers that we have studied for ISI channels as
well as sub-optimal equalizers can be shown to take advantage of frequency diversity.

2. Multicarrier techniques (DMT/OFDM): In wireless channels, if the transmission block is
small enough, then the channel is (approximately) constant over one transmission block. Therefore,
in this block time-invariant model (studied in Section 7.2.4), the DMT/OFDM technique is able to
create parallel channels in the frequency domain. If the (fading) coherence bandwidth is smaller
than the overall transmission bandwidth, i.e., the channel (frequency) coefficients are independent
if separated by a “large-enough” frequencies, (i.e., separated by the coherence bandwidth) we get
frequency diversity.

3. Spread spectrum technique: Here the information is spread across a larger transmission band-
width by using an operation involving pseudo-random noise sequences. Here parts of the channel
spectrum which have high gain could be used to decode transmitted information. We will go into
this in more detail in Chapter 9 in the context of multiple access channels.

Illustration of frequency diversity

The channel frequency selectivity is determined by the multipath delay spread, Td introduced in Section
7.2.3. It is the bandwidth beyond which the channel response (in the frequency domain) are approximately
independent. A measure of this is the coherence bandwidth, i.e.,

Wc =
1

2Td

It can also be related to the correlation between channel responses at two different frequencies, i.e. if

Ψ(∆f) = E[H(f)H∗(f + ∆f)]

the bandwidth of Ψ(·) is the coherence bandwidth of the channel.
Now, consider an OFDM scenario for the block time invariant channel, with N carriers,

Y (l) = H

(
2π

N
l

)
X(l) + Z(l), l = 0, . . . , N − 1

Now, if we have a coherence bandwidth of Wc, then the frequency responses
{
H
(

2π
N l
)}

which are sepa-
rated by larger than this bandwidth are approximately independent. If total transmission bandwidth is
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Ψ(∆f)

Wc = 1
2Td

∆f

Figure 8.2: Coherence bandwidth of ISI channel.

W , and we have N OFDM tones, then the frequency is divided into W
N sized frequency bins. Hence, a

separation by Kc tones would ensure independence, where

Kc =
Wc

W/N
=
NWc

W

Therefore we expect,

EH

(
2π

N
l

)
H∗
(

2π

N
(l +Kc)

)
≈ 0

Thus if we divide the frequency into W
Wc

frequency bins of size Wc each, then we have
(
W
Wc

)
diversity

paths available to us. If we denote D = W
Wc

, then we have created D independent instantiations of the
random frequency response. Therefore we can use a model like (8.14) (or (8.15) for higher rates) to get
an error probability behavior of 1

SNRD (or 1
SNRB for higher rates) just like we did in Section 8.2.

Wc Wc Wc Wc

kc tones

Figure 8.3: An illustration of frequency diversity.

WSSUS model: The argument given above illustrated the idea of frequency diversity but we can have
a more precise development for a given channel model. Consider a block time-invariant model which has
a finite impulse response with ν taps, i.e.,

H(b)(D) = h
(b)
0 + h

(b)
1 D + ...+ h(b)

ν Dν (8.18)

Where the superscript (b) denotes the bth transmission block (see also Section 7.2.4). Now, here is where

a statistical model of the channel is used. We examine the case where the channel taps
{
h

(b)
l

}
are i.i.d.

for a given block b and are also independent across blocks (this latter model comes from the block time-

invariant assumption). Therefore we have i.i.d. h
(b)
l ∼ CN (0, 1), l ∈ [0, ν] and also i.i.d across blocks.
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This model is widely known as the wide-sense stationary uncorrelated scattering model (WSSUS) for a
fading ISI Channel. We will use this model to examine the impact of frequency diversity. Note that

E [H(ω)H∗(ω +WS)] = E|h0|2 + E|h1|2ejWS + ...+ E|hν |2ejWSν

=

ν∑

n=0

ejnWS =
1 − ej(ν+1)WS

1 − ejWS

Therefore for Ws = 2π
ν+1 , we have independence between the frequency responses for the WSSUS model.

Therefore the coherence bandwidth Wc = W
ν+1 , where W is the signal bandwidth. Thus the larger ν

implies a larger frequency diversity for a given transmission bandwidth in the WSSUS model.

8.3.1 OFDM frequency diversity

Now, let us consider using OFDM for the block time-invariant (WSSUS) model given in (8.18). Therefore
if we use N carriers for each block we get, ( see Section 6.2),

Y (n) = H(
2π

N
n)X(n) + Z(n), n = 0, ..., N − 1.

First, let us consider repetition coding as was done in Section 8.2.1. Here we do the repetition in frequency,
i.e., X(n) = X(0), ∀n, yielding




Y (N − 1)
.
.
.

Y (0)




︸ ︷︷ ︸
Y

=




H
(

2π
N (N − 1)

)

.

.

.
H(0)




︸ ︷︷ ︸
H

X(0) +




Z(N − 1)
.
.
.

Z(0)




︸ ︷︷ ︸
Z

Y = HX(0) + Z (8.19)

Notice that (8.19) looks quite similar in form to (8.14).
However we can see from (8.18) that

H =




1 ej
2π
N (N−1) . . . ej

2π
N ν(N−1)

. . .

. . .

. . .
1 1 . . . 1




︸ ︷︷ ︸
F̃




h0

.

.

.
hν




︸ ︷︷ ︸
h

(8.20)

Note that F̃ is truncated DFT matrix and is full rank. Using (8.20) in (8.19), we get

Y = F̃hX(0) + Z

A coherent detector for this will erroneously declare X
′
(0) to be the transmitted symbol instead of X(0)

for a given realization h with a probability of

P

(
X(0) → X

′
(0) | h

)
= Q(

√
[x′(0) − x(0)]2h∗F̃∗F̃h

2σ2
z

) (8.21)
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where σ2
z is the variance of the (white) additive noise {z(n)}. From (8.20) we see that1 F̃∗F̃ = NI.

Therefore we get,

P

(
X(0) → X

′
(0) | h

)
= Q

(√
[x′(0) − x(0)]2h∗h

2σ2
z

)
(8.22)

which is identical in form to (8.15) and hence we get

P̄e(x(0) → x′(0))
.
=

1

SNRν+1
,

giving us a diversity order of ν+1. Therefore the ISI taps play a role similar to the time diversity conduits
given in 8.14.
In a manner similar to Selection 8.1.2, we can develop frequency diversity codes that get a rate larger
then 1

N+ν and the analysis of such codes proceeds along similar lines as Section 8.1.2.

8.3.2 Frequency diversity through equalization

One can also exploit the available frequency diversity through the equalizer structures that we have
studied in Chapter 5. We will consider the block time-invariant model. First let us examine the matched
filter bound which is defined in Section 4.2. This is obtained in our case by sending one symbol every
(ν + 1) time instants, and therefore there is no inter-symbol interference. in this case we get

SNRMFB =
Ex
σ2
z

[∫

ω

|H(ejω)|2dω
]

which is the SNR of a matched filter that collects the energy from all the delayed versions of the trans-
mitted symbol.
However, from the model given in (8.18) we see that

H(ejω) =
ν∑

n=0

hne
jωn = [1, ..., ejων ]h

and therefore we have
∫
|H(ejω)|2dω = h∗h, due to the orthogonality of the Fourier transform bases.

Therefore the SNRMFB is given by

SNRMFB =
Ex
σ2
z

||h||2

and is distributed exactly as in (8.14) and in (8.22) and therefore we expect the detector performance to
give an average error probability

P̄e,MFB
.
=

1

SNRν+1

and hence the single shot transmission also gives us a diversity order of ν + 1 as in OFDM. The main
idea illustrated (using simplified models) in Section 8.2.1 and this Section is that frequency diversity
through ISI can actually be exploited in a manner similar to time diversity. Actually, by using maximum
likelihood sequence detection, if the transmitted sequences satisfy a certain regularity condition, then a
diversity order of ν + 1 can be obtained.
A natural question is the performance of linear equalizers and whether one can get frequency diversity
through them. Let us consider the block time-invariant model, with block size large enough to be able
to write the D-domain formulation as

Y (b)(D) = H(b)(D)X(D) + Z(D)

1this can also be seen because F̃ is a truncated DFT matrix.
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where Sz(D) = σ2
z . Using the results from Section 5.4 for the MMSE-LE, we have

WMMSE−LE(D) =
H∗(D−∗)Ex

H(D)H∗(D−∗)Ex + σ2
z

and

SEE(D) = Ex −
H(D)H∗(D−∗)E2

x

H(D)H∗(D−∗)Ex + σ2
z

=
σ2
zEx

H(D)H∗(D−∗)Ex + σ2
z

=
σ2
z

H(D)H∗(D−∗) +
σ2

z

Ex

Therefore we have

SNRMMSE−LE =
Ex
σ2
z

{∫

ω

[
|H(ejω)|2 +

σ2
z

Ex

]−1

dω

}−1

,

which depends on the random variable
∫
ω

[
|H(ejω)|2 +

σ2
z

Ex

]−1

dω.

This computation in general is difficult, however for large SNR one can show that under suitable regularity
conditions,

SNRMMSE−LE ≥ c||h||2

where c is a constant independent of h. Therefore we obtain

P̄e,MMSE−LE
·
=

1

SNRν+1
.

We did not go through the details of this argument, but one can make this more precise. Therefore, we
see that we can obtain frequency diversity through linear equalization as well.

8.4 Spatial Diversity

In this case one obtains diversity by placing multiple antennas at the transmitter and/or receiver. If the
placement is such that the sample “independent” fading in space, one obtains a similar model for diversity
as in time diversity. The crucial difference is that the spatial diversity is obtained by simultaneously
transmitting and receiving symbols and therefore one can potentially increase transmission rate.

Multiple antennas at base station

Multiple antennas at mobile

Figure 8.4: Spatial diversity: Multiple transmit and receive antennas.
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8.4.1 Receive Diversity

In this case the transmitter is as before, but the reception is done through multiple antennas, i.e.,

yl(k) = hlx(k) + zl(k), l = 1, . . . ,D

where yl(k) is the signal received on lth receive antenna at time instant k, hl is the fading variable/attenuation
on the lth receive antenna, zl(k) is the additive noise on lth receive antenna and x(k) is the symbol trans-
mitted at time instant k. Let us focus on a particular time instant k.

y(k) =



y1(k)

...
yD(k)


 =



h1

...
hD




︸ ︷︷ ︸
h

x(k) +



z1(k)

...
zD(k)




︸ ︷︷ ︸
z(k)

Therefore we get

y(k) = hx(k) + z(k) (8.23)

This model seems identical to equation (8.14) and if the model for fading channel attenuation {h(l)} are
the same, we would get the same performance. Hence, one gets for i.i.d. spatial fading

P̄e(x(k) → x′(k))
.
=

1

(SNR)D

Note that we get same performance as repetition coding but without the rate loss. Another way to
observe the performance of receive diversity is as follows. It can easily be shown that a sufficient statistic
for (8.23) is

ỹ(k) = h∗y(k) =

L∑

l=1

h∗l yl(k) = ||h||2x(k) + h∗z(k)

Hence the receiver combines the signals from each antenna by weighting them according to the channel
attenuation, and this is called a maximal ratio combiner. This also shows that the SNR at the receiver
is ‖ h ‖2 SNR which has a form identical to (8.14) and therefore we get the same average error probability
behavior.
Note that multiple antennas imply multiple radio frequency (RF) circuitry associated with each antenna
and hence increased cost. Typically multiple antennas are available at the base station and hence one could
envisage using them in the above manner to increase performance on “uplink”, i.e. mobile transmitting
to base-station.

8.4.2 Transmit Diversity

If one has multiple antennas at the base-station, a natural question to ask is whether we can utilize
them for transmission to a mobile (i.e. “downlink” transmission). This has been an active research
area for the past decade or so and numerous interesting results have been obtained both for coding and
signal processing schemes as well as bounds for fundamental limits of transmission (information theoretic
bounds). We will illustrate some of the ideas of the topic through a simple example.

Alamouti code: Consider the scenario with 2 transmit antennas and 1 receive antenna.

y(k) = h1(k)x1(k) + h2(k)x2(k) + z(k)

y(k) = [h1(k) h2(k)]

[
x1(k)
x2(k)

]
+ z(k) (8.24)
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Now let us examine a code over 2 consecutive instants of time where we assume that the channel is block
time-invariant, i.e.,

h1(k) = h1(k + 1) = h1, h2(k) = h2(k + 1) = h2

Moreover, let

x1(k) = x1, x1(k + 1) = x2

x2(k) = −x∗2, x2(k + 1) = x∗1

Then over two consecutive instants of time of (8.24) we get,

[y(k), y(k + 1)]︸ ︷︷ ︸
y

= [h1 h2]

[
x1 x2

−x∗2 x∗1

]
+ [z(k), z(k + 1)]︸ ︷︷ ︸

z

(8.25)

Note that,

y(k) = h1x1 − h2x
∗
2 + z(k)

y(k + 1) = h1x2 + h2x
∗
1 + z(k + 1).

Therefore we get,

y∗(k + 1) = (h∗1x
∗
2 + h∗2x1) + z∗(k + 1)

Putting these together we have

[y(k), y∗(k + 1)] = [x1 x
∗
2]

[
h1 h∗2
−h2 h∗1

]
+ [z(k), z∗(k + 1)]. (8.26)

Therefore, using (8.26) we get,

[y(k), y∗(k + 1)] = [x1 x
∗
2]︸ ︷︷ ︸

x̃

[
h1 h∗2
−h2 h∗1

]
+ [z(k), z∗(k + 1)]︸ ︷︷ ︸

z̃

(8.27)

Claim 8.4.1. The matrix

[
h1 h∗2
−h2 h∗1

]
is unitary.

Proof:
[
h1 h∗2
−h2 h∗1

][
h1 h∗2
−h2 h∗1

]∗
=

[
h1 h∗2
−h2 h∗1

][
h∗1 −h∗2
h2 h1

]

=

[
|h1|2 + |h2|2 h1(−h∗2) + (h∗2)(h1)
(−h2)h

∗
1 + (h∗1)(h2) |h1|2 + |h2|2

]

=

[
|h1|2 + |h2|2 0
0 |h1|2 + |h2|2

]

= (|h1|2 + |h2|2)I

�

Notes:

1. The form of the matrix

[
h1 h∗2
−h2 h∗1

]
is unitary and this matrix is the linear algebraic representation

of the quaternionic group. It is a non-commutative multiplicative group.
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2. There are several other forms of the 2 × 2 matrices of similar natures, e.g.,

[
h1 h2

h∗2 −h∗1

]
,

[
−h1 h2

H∗
2 h∗1

]
,

[
h1 h2

−h∗2 h∗1

]
etc. . .

Some of these form multiplicative groups, and others do not.

Now, let us use this property in (8.27)

[ỹ(k), ỹ(k + 1)] =
1

(|h1|2 + |h2|2)1/2
[y(k), y∗(k + 1)]

[
h∗1 −h∗2
h2 h1

]

(a)
=

(
|h1|2 + |h2|2

)1/2
[x1 x

∗
2] +

1

(|h1|2 + |h2|2)1/2
[z(k), z∗(k + 1)]

[
h∗1 −h∗2
h2 h1

]

where (a) follows due to Claim 8.4.1.

Now, since

[
h∗1 −h∗2
h2 h1

]
is orthogonal, the noise after this transformation remains white, and because

of the factor 1
(|h1|2+|h2|2)1/2 , the transformation is unitary. Therefore the noise is statistically identical to

the one before transformation. Hence we get

[ỹ(k), ỹ(k + 1)] = (|h1|2 + |h2|2)1/2[x1 x
∗
2] + [z̃(k) z̃(k + 1)]

which gives,

ỹ(k) = (|h1|2 + |h2|2)1/2x1 + z̃(k)

ỹ(k + 1) = (|h1|2 + |h2|2)1/2x∗2 + z̃(k + 1)

Hence, we can detect x1 and x2 independently and we get error probability behavior as

P(x1 → x′1|h) = Q

( ||h||dmin
2σ

)

P(x2 → x′2|h) = Q

( ||h||dmin
2σ

)

Therefore we get the average error probability at high SNR as,

P̄e(x1 → x′1) = Eh [P(x1 → x′1|h)]
.
=

1

SNR2

P̄e(x2 → x′2)
.
=

1

SNR2

Therefore, by using this coding scheme at the transmitter, one has utilized maximally two diversity paths
which was available.
Notes:

1. The coding scheme achieved similar performance as receive diversity i.e. getting error behavior at
high SNR as P̄e

.
= 1

SNR2 , yielding a diversity order of 2.

2. The decoding scheme shown is actually a maximal likelihood decoder and therefore obtains optimal
performance.
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3. The decoupling of two simultaneously transmitted streams is attained in a simple manner because

of the orthogonality of the matrix

[
h1 h∗2
−h2 h∗1

]
.

4. In general if x1 and x2 each had a constellation size of |S|, the search space for a maximum likelihood
decoder would have been |S|2. Due to the coding scheme one is able to decouple the problem into
2 problems of size |S| each, i.e. linear decoding complexity of O(|S|).

5. The transmission rate is still log |S|, since we transmit |S|2 information symbols in 2 time instant,
i.e.,

R =
1

2
log |S|2 = log |S|.

6. This particularly elegant coding scheme has now become part of next generation wireless network
proposals.

7. There are several general principles that can be gleaned from this example. The idea of coding in-
formation across multiple transmit antennas (i.e. “space”) and over multiple transmission instance
is called “space-time” coding. There is a deeper theory and a set of design criteria that can be
derived for these class of codes which is outside the scope of this chapter.

8.5 Tools for reliable wireless communication

The main idea we learnt in this chapter was that the error probability behavior of fading channels
differ significantly from that of time-invariant channels. This is due to the random fluctuations of the
channel gain and this led to P̄e

.
= 1

SNR . In order to combat this, we needed to use multiple independent
instantiations of the channel and code acrosse them. These diversity techniques form the basis tools for
increasing reliability over wireless channels. In all the techniques we examined, we obtained an error
probability behavior of P̄e

.
= 1

SNRD , by using D instantiations of randomness. This gives a significant
improvement in error probability.
We saw three main diversity mechanisms.

Time diversity: Here we code over time periods longer than the coherence time of the channel and
obtained the D independent channels by this mechanism. Using a single repetition code we could
get a diversity order of D. However, we can improve the transmission rate at the cost of diversity
order.

Frequency diversity: Here we exploited the “independent” variations in the random frequency response
of the ISI channel. Both equalization and multicarrier techniques yielded the maximal diversity
order of (ν + 1), where ν was the order of the WSSUS channel.

Spatial Diversity: We code across multiple transmit antennas and/or receive with multiple antennas.
We saw a simple example of coded transmit diversity a.k.a. space time codes.

Using diversity is the primary tool for combating channel fading. Many modern techniques combine all
three diversity mechanisms for robust performance.

8.6 Problems

Problem 8.1

Assume the channel model
y(k) = α(k)x(k) + z(k)
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Where y(k) is the channel output, α(k) is the flat fading process, x(k) is the channel input and z(k) is
the additive white Gaussian noise of zero mean of power σ2.

1. What is the probability of error for a known value of α?

2. Calculate exactly the average probability of error.

Problem 8.2

Let y ∼ CN (0,M), Q = Q∗ (Q need not be positive definite), where M,Q ∈ CK×K . Prove that the
characteristic function Φ(ω) of y∗Qy is given by

Φ(ω) = E[exp(jωy∗Qy)] =

K∏

n=1

1

1 − jωγn
,

where {γn} are eigen values of the matrix MQ.

Problem 8.3

Consider the transmission of BPSK signal x = {±a}. Let W has distribution CN (0, N0) and H has
distribution CN (0, 1). Let us assume that we transmit over a flat fading channel with coherent detection

Y = HX +W.

1. Argue that r := Re
(
H∗

|H|Y
)

is a sufficient statistics for detection of X . Find the distribution of the

additive noise in r.

2. Find the exact expression for average (over H) probability of error for part(1) in terms of the
SNR = a2/N0.

3. Assume we transmit over the AWGN channel

Y = X +W.

Find the exact expression for the probability of error in terms of SNR.

4. Compare the average error probability for the flat fading and AWGN channel for SNR = {1, 10, 102, 104, 108}.

Problem 8.4

Let the channel be given by


y(D − 1)

...
y(0)




︸ ︷︷ ︸
Y

=



h(D − 1)

...
h(0)




︸ ︷︷ ︸
h

x(0) +



z(D − 1)

...
z(0)




︸ ︷︷ ︸
z

Assume that {h(l)} is perfectly known at the receiver and therefore we can form a coherent detector. If
x(0) was the transmitted symbol, then the probability that x(0) is mistaken for x′(0) is

Px(0) → x′(0)|h = P||y − hx′(0)||2 < ||y − hx(0)||2|h

= Q

( ||h||dmin
2σ

)
,
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where ||h||2 =
∑L−1

l=0 |h(l)|2.
Suppose that h ∼ Cη(0,Kh), where Kh is not necessarily diagonal.

1. Find the bound on average probability of error assuming high SNR.

2. Assume that the matrix Kh is positive definite. Find the diversity order.

Problem 8.5

Suppose there is a transmitter which is sending signals to be received by two receive antennas. However
due to a strange and unfortunate coincidence there is a flag fluttering in the wind quite close to one of
the receive antennas and sometimes completely blocks the received signal.
In the absence of the flag, the received signal is given by a flat fading model, (discrete time model as
done in class).

Yk =

[
y1(k)
y2(k)

]
=

[
h1(k)
h2(k)

]
x(k) +

[
z1(k)
z2(k)

]
(8.28)

where y1(k), y2(k) are the received signals on first and second receive antennas respectively, x(k) is the
transmitted signal and h1(k), h2(k) are respectively the fading attenuation from the transmitter to the
first and second receive antennas. Assume that x(k) is binary, i.e. x(k) ∈ {−√Ex,

√Ex}. The additive
noise z1(k), z2(k) are assumed to be independent circularly symmetric complex Gaussian with variance
(each) of σ2. Assume that h1(k), h2(k) are i.i.d complex Gaussian Cη(0, 1).

1. Over several transmission blocks, compute the upper bound to the error probability and comment
about the behavior of the error probability with respect to SNR for high SNR. Hint : Use the fact
that Q(x) ≤ e−x

2/2.

2. Now let us consider the presence of fluttering flag which could potentially block only the second
receive antenna. The model given in (8.28) now changes to:

Yk =

[
y1(k)
y2(k)

]
=

[
h1(k)

Fkh2(k)

]
x(k) +

[
z1(k)
z2(k)

]

where:

Fk =

{
1 if there is no obstruction from the flag
0 if flag obstructs

Suppose due to the random fluttering, the flag blocks a fraction q of the transmissions, i.e for a
fraction q of the transmission, one receives only the signal from the first antenna.

Conditioned on F , write down the error probabilities, i.e find and expression for Pe(x → x′|F) and
compute its upper bound (see hint in (1)).
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3. Find the overall error probability in the presence of the fluttering. How does the error probability
behave at high SNR, i.e what diversity order does one obtain.

Hint : If the error probability behaves as 1
SNRD at high SNR, the diversity order is D.

Problem 8.6

We have studied time diversity with repetition coding for coherent detection. Let number of diversity
paths D = 2. A repetition coding repeats the BPSK symbol u = ±a over both the diversity paths. In
this problem we study another coding scheme by which we need not sacrifice the rate like in the repetition
coding. Consider instead a coding scheme

x = R

[
u1

u2

]
.

where u1, u2 ∈ {±a} and the matrix R is given by

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

R is a rotation matrix (for some θ ∈ (0, 2π)). Now the received signal is given by:

yl = hlxl + zl, l = 1, 2.

where {hl} are i.i.d and has the distribution CN(0, 1).

1. Suppose that we transmit xA = R

[
a
a

]
and use Re

(
h∗

l yl

|hl|

)
as the sufficient statistics. Use the union

bound to upper bound the probability of error.

2. What should be the condition on θ so that we obtain a diversity order of 2?

Problem 8.7

We have studied the performance of the Alamouti scheme in a system with two transmit and one receive
antenna. Suppose now we have an additional receive antenna. Assume that the channel is block time
invariant for 2-consecutive transmissions. Let the input be BPSK i.e. xi ∈ {±a} and we assume coherent
detection.

1. Denote the received vector (with appropriate conjugation of the components as required in the
Alamouti scheme) at the two receiving antennas over two consecutive transmissions by y ∈ C4. Let

the channel model be y = H

[
x1

x2

]
+ z, where z ∈ C4 and has the distribution CN(0, N0I4). Write

down explicitly y,H.

2. Show that the columns of H are orthogonal. Using this show that projection of y on the normalized

column vectors of H gives sufficient statistics for

[
x1

x2

]
.

3. Write down the ML decision rule and find the upper bound on average probability of error. Find
the diversity gain for this scheme.
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Problem 8.8

1. Show that 1{x−x0≥0} ≤ eγ(x−x0). Using this, prove Pr(x ≥ x0) ≤ E[eγ(x−x0)] for any γ > 0.

2. Use this to prove an upper bound for Pr(||y − hx|| ≥ ||y − hx′|| |h, x) where y = hx+ z. (here you
would get the exponential bound). Optimize w.r.t γ to get the e−h∗(x−x

′)(x−x′)∗h/4σ2 bound.

3. From here, use the distribution of h to get the 1/SNR type of behaviour.

Problem 8.9

Show that the quaternionic group is a non-commutative multiplicative group.

Appendices for Chapter 8

8.A Exact Calculations of Coherent Error Probability

First let us examine the probability distribution of |h|.
Since,

|h|2 = [Re(h)]
2
+ [Im(h)]

2

where Re(h) ∼ N (0, 1
2 ) and Im(h) ∼ N (0, 1

2 ) as h is a circular symmetric Complex Gaussian random
variable. It can be therefore seen2 that if u = |h|2,

fV (u) = e−u (8.29)

Now, using (8.29) in (8.4) we get

P̄e =

∫ ∞

u=0

e−uQ(a
√
u)du

where we have defined a = dmin

2σz
. Therefore we can write

P̄e =

∫ ∞

u=0

e−u
[∫ ∞

√
2a

√
u

1√
2π
e−

v2

2 dv

]
du =

∫ ∞

v=0

1√
2π
e−

v2

2

[∫ v2

a2

0

e−udu

]
dv

=

∫ ∞

v=0

1√
2π
e−

v2

2 (1 − e−
v2

a2 )dv =
1

2
−
∫ ∞

v=0

1√
2π
e−v

2[ 1
2+ 1

a2 ]dv

=
1

2
− γ

∫ ∞

v=0

1√
2πγ

e
− v2

2γ2 dv =
1

2
[1 − γ]

where γ2 = 1
1+ 2

a2
.

Hence

P̄e =
1

2


1 − 1√

1 + ( 2
a2 )


 =

1

2


1 − 1√

1 +
8σ2

z

d2min


 . (8.30)

2Since Re(h) and Im(h) are i.i.d. real Gaussian random variables, [Re(h)]2 and [Im(h)]2 are also i.i.d. with density

function PV (v) = 1√
2πv

e
− v

2σ2 , where v = Re(h) or v = Im(h), and σ2 = E[Re(h)]2 = E[Im(h)]2 = 1
2
. Hence the

characteristic function of [Re(h)]2 is E[ejω[Re(h)]2 ] = 1

(1−j2ωσ2)
1
2

. This allows us to write the characteristic function of

[Re(h)]2 + [Im(h)]2 as 1
1−j2ωσ2 , and hence the inverse Fourier transform of this yields (8.29).
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8.B Non-coherent detection: fast time variation

In order to illustrate rapid time variation we consider extremely small block sizes, i.e., blocks of size one,
which yields

y(k) = h(k)x(k) + z(k)

where {h(k)} are Gaussian with a given covariance. If we want to do maximum-likelihood detection, we
form, PY |X(y|x). Note that here h(k) is also a source of randomness and hence for each k we have,

PY |X(y|x) ∼ CN
(
0,
{
E[|h|2]

}
|x|2 + σ2

z

)
(8.31)

Therefore as one would expect from this relationship the maximum likelihood criterion takes a form that
is substantially different from what we were used to in Section 8.1.1.
Let us form the detector for a sequence of transmitted symbols. Furthermore, let us assume that for the
short interval of the transmission the channel has a given statistical variation. With no loss in generality
let us assume that we transmit a block of K symbols from time 0 to K − 1

y =



y(K − 1)

...
y(0)


 =



h(K − 1) 0

. . .

0 h(0)




︸ ︷︷ ︸
H



x(K − 1)

...
x(0)




︸ ︷︷ ︸
X

+



z(K − 1)

...
z(0)




︸ ︷︷ ︸
Z

=



x(K − 1)

. . .

x(0)




︸ ︷︷ ︸
X



h(K − 1)

...
h(0)




︸ ︷︷ ︸
h

+z (8.32)

For a given X , using the same idea as in (8.31), we get for (8.32)

y ∼ CN (0,XE [hh∗]X ∗ + σ2
zIK)

where Rh = E [hh∗] depends on the time-correlation of the (fading) channel random process. For the
maximum likelihood rule, we have

PY|X(y|x) =
1

π|XRhX ∗ + σ2
zIK | exp

(
−y∗[XRhX ∗ + σ2

zIK ]−1y
)

Therefore the log-likelihood is,

log PY|X(y|x) = − logπ − log |XRhX ∗ + σ2
zIK | − y∗[XRhX ∗ + σ2

zIK ]−1y

Consider the important special case when |x(i)|2 = Ex, i.e. we have a constant modulus constellation
(e.g., PSK).
Hence if |x(i)|2 = Ex then XX ∗ = ExIK , hence

|XRhX ∗ + σ2
zIK | = |XRhX ∗ +

σ2
z

Ex
XX ∗|

= |X (Rh +
σ2
z

Ex
IK)X ∗|

(a)
=

∣∣∣∣
[
Rh +

σ2
z

Ex
IK

]
Ex
∣∣∣∣
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where (a) follows because |x(i)|2 = Ex ∀i.
Hence we get the maximum likelihood rule as,

x̂ = argmax
x

{
−y∗ [σ2

zIK + XRhX ∗]−1
y
}

(8.33)

Now by the matrix inversion lemma, Lemma 5.7.1 we have

[
σ2
zIK + XRhX ∗]−1

=
1

σ2
z

IK − 1

σ2
z

X
(
R−1
h +

XX ∗

σ2
z

)−1
1

σ2
z

X ∗

Therefore using this in (8.33) we get

x̂ = argmax
x

{
y∗X

[
R−1
h +

XX ∗

σ2
z

]−1

X ∗y

}

= argmax
x

{
y∗X

[
R−1
h +

Ex
σ2
z

IK

]−1

X ∗y

}
(8.34)

This projects the received signal onto the space spanned by the codeword and a weighted norm is taken.
This idea of projecting the received signal onto the space spanned by the codewords is actually a useful
and important idea for non-coherent detection.
We can recover from this the result in Section 8.1.2. For the block time-invariant model considered there
we have,

Rh = 11t

where 1t = [1, . . . , 1]. Then, the detection criterion given in (8.33) becomes,

x̂ = arg max
x

{
−y∗ [σ2

zIK + X11tX ∗]−1
y
}

(8.35)

Now,

X1 =



x(N − 1)

...
x(0)


 = x.

Therefore using this in (8.35) we have

[
σ2
zIK + xx∗]−1

=
1

σ2
z

IK − 1

σ2
z

x

(
1 +

x∗x

σ2
z

)−1
1

σ2
z

x∗.

Hence the criterion becomes,

x̂ = arg max
x





y∗xx∗y(
1 + ExK

σ2
z

)
(σ2
z)

2



 .

If |x(i)|2 = Ex we get x∗x = NEx, therefore we have

x̂ = argmax
x



|x∗y|2 1

(σ2
z)

2
(
1 + ExK

σ2
z

)



 = arg max

x
|x∗y|2 ,

which is the same criterion derived in Section 8.1.2.
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8.C Error probability for non-coherent detector

Let us consider the error probability for the non-coherent detector given in 8.1.2. For such a detector, if
x was sent we detect it to be x̂ 6= x if

P {x → x̂} = P

{
1

(σ2
z)

2
|x∗y|2 < 1

(σ2
z)

2
|x̂∗y|2

}

= P

{
1

(σ2
z)

2
y∗ [x̂x̂∗ − xx∗]y > 0

}
(8.36)

Let us define

Q =
1

(σ2
z)

2
{x̂x̂∗ − xx∗}

and notice that since x was transmitted

y ∼ CN (0,xx∗ + σ2
zIK).

So we have the error probability of a Gaussian quadratic form where

P{x → x̂} = P{y∗Qy > 0}.

and Q = Q∗, but need not be positive-semidefinite, i.e., could have negative eigenvalues.

Lemma 8.C.1. If y ∼ CN (0,M) and Q = Q∗, then

P {y∗Qy > 0} =
∑

γi<0

K∏

n=1

(
1

1 − γn

γi

)

where M ∈ CK×K and {γn} are the eigenvalues of MQ.

Proof: The characteristic function of y∗Qy is given by

Φ(ω) = E {exp (jωy∗Qy)} =

K∏

n=1

1

1 − jωγn

where {γn} are the eigenvalues of the matrix MQ.
Therefore, the error probability is

P {x → x̂} = P {y∗Qy > 0} (8.37)

=

∫ ∞

0

[
1

2π

∫ ∞

−∞
Φ(ω)e−jωudω

]
du

=
1

2π

∫ ∞

−∞
Φ(ω)

[∫ ∞

0

e−jωudu

]
dω

=
1

2π

∫ ∞

−∞
Φ(ω)

[
πδ(ω) − 1

jω

]
dω

=
1

2

∫ ∞

−∞
Φ(ω)δ(ω)dω − 1

2π

∫ ∞

−∞

1

jω

K∏

n=1

1

(1 − jωγn)
dω

=
1

2
− 1

2π

∫ ∞

−∞

1

jω

K∏

n=1

(
1

1 − jωγn

)
dω

In order to evaluate this integral we use the residue theorem which is stated for convenience below.
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Theorem 8.C.1. (Residue theorem) Let f(z) be a function which is analytic inside a simple closed
path C and on C, except for a finitely many singular points a1, . . . , am inside C. Then

∫

C
f(z)dz = 2πj

m∑

i=1

Res{f(z)}z=ai

where for a simple pole ai of f(z), Res{f(z)}z=ai
= (z − ai)f(z)|z=ai .

�

In order to use this result we use the integral path on the upper half of the C plane in (8.38). Notice
that,

1

1 − jωγn
=

jγ−1
n

jγ−1
n + ω

Therefore using this and the residue theorem 8.C.1 we get,

1

2
− 1

2π

∫ ∞

−∞

1

jω

K∏

n=1

(
1

1 − jωγn

)
dω =

1

2
−


1

2
−
∑

γi<0

K∏

n=1,n6=i

(
1

1 − γn

γi

)


Therefore, we get the stated result,

P {x → x̂} =
∑

γi<0

K∏

n=1

(
1

1 − γn

γi

)
.

�

Let u1 = 1
σ2

z
x̂∗y, u2 = 1

σ2
z
x∗y. Clearly, u1 and u2 are scalar complex Gaussian random variables.

E|u1|2 =
1

(σ2
z)

2
x̂∗[σ2

zI + xx∗]x̂ = Kρ+
1

(σ2
z)

2
|x̂∗x|2 = Kρ+ |ρKβ|2

E|u2|2 =
1

(σ2
z)

2

{
KExσ2

z + (KEx)2
}

= Kρ[1 +Kρ]

Eu1u
∗
2 =

1

(σ2
z)

2
x̂∗[σ2

zI + xx∗]x = Kρβ +KρβKρ = (Kρβ)[1 + ρK]

where we have defined x̂∗x = ExKβ and ρ = Ex

σ2
z
. Using this in (8.36) we get,

P{x → x̂} = P
{
|u1|2 − |u2|2 > 0

}

= P

{
[u∗1, u

∗
2]

[
1 0
0 −1

][
u1

u2

]
> 0

}
.

Now let us use this in Lemma 8.C.1, we get

M =

[
Kρ(1 +Kρ|β|2), (Kρβ)[1 + ρK]
(Kρβ∗)[1 + ρK], Kρ[1 +Kρ]

]

Also we have

Q =

[
1 0
0 −1

]
.
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Clearly, the conditions of of Lemma 8.C.1 are satisfied and so we need the eigenvalues of MQ. Now we
have,

MQ =

[
Kρ(1 +Kρ|β|2), −(Kρβ)[1 + ρK]
(Kρβ∗)[1 + ρK], −Kρ[1 +Kρ]

]

= Kρ[1 + ρK]

[
1+Kρ|β|2
[1+ρK] , −β
β∗, −1

]

Therefore the eigenvalues of MQ are,

γ1 = Kρ[1 + ρK]λ1

γ2 = Kρ[1 + ρK]λ2

where λ1, λ2 are the eigenvalues of [
1+Kρ|β|2
[1+ρK] , −β
β∗, −1

]

and hence for Γ = 1+Kρ|β|2
1+Kρ , we have

λ1 =
1

2

{
(Γ − 1) −

√
(Γ − 1)2 + 4(Γ − |β|2)

}

λ2 =
1

2

{
(Γ − 1) +

√
(Γ − 1)2 + 4(Γ − |β|2)

}

and observing that 1 − Γ = Kρ(1−|β|2)
1+Kρ and Γ − |β|2 = 1−|β|2

1+Kρ , we get,

λ1 =
1

2(1 +Kρ)

{
−Kρ(1− |β|2) −

√
{Kρ(1 − |β|2)}2

+ 4(1 − |β|2)(1 +Kρ)

}
< 0

λ2 =
1

2(1 +Kρ)

{
−Kρ(1− |β|2) +

√
{Kρ(1 − |β|2)}2

+ 4(1 − |β|2)(1 +Kρ)

}
> 0

Hence we have,

γ1 =
(Kρ)2(1 − |β|2)

2

{
−1−

√
1 +

4(1 +Kρ)

(Kρ)2(1 − |β|2)

}
< 0

γ2 =
(Kρ)2(1 − |β|2)

2

{
−1 +

√
1 +

4(1 +Kρ)

(Kρ)2(1 − |β|2)

}
> 0

Using Lemma 8.C.1, we get

P{x → x̂} =
1

1 − γ2
γ1

=
−γ1

γ2 − γ1

Hence we get at high SNR,

P{x → x̂} ·
=

1

SNR
.

Therefore the high SNR behavior of the error probability is like 1
SNR , which is like the coherent case.
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Chapter 9

Multi-user communication

The wireless propagation medium is (almost by definition!) shared by many simultaneously transmitting
users. For example one has seen that several people use their mobile phones simultaneously in a small
geographical area. Therefore, these users’ signals would overlap and interfere with one another. In
this chapter we study basic communication topologies which arise in wireless networks. We study how
multiple users can share and access common resources. After studying these in Section 9.1, we focus our
attention on multiple access channels in Section 9.3 and 9.4. In Section 9.2 we will study different access
techniques for multiuser channels. In Section 9.3, we set up the model and sufficient statistics for the
multiple access problem. In Section 9.4 we study multi-user detectors that naturally generalize some of
the ideas from Chapter 4 and 5.

9.1 Communication topologies

In order to build a multiuser wireless network the first question is how to share the common “channel”
resources among the different users.

To address this question let us first examine the various configurations that can arise in multiuser net-
works. There are two categories of configurations. One is hierarchical where there is a central access
point and users communicate to the access point. The other configuration could be where the users are
allowed to communicate directly to one another perhaps using other users as relays. Such configurations
are called ad hoc networks and we briefly talk about them in Section 9.1.2.

9.1.1 Hierarchical networks

In most current wireless systems there are two main hierarchical configurations that are used.

Broadcast Base-station to user (one-to-many) broadcast or downlink communication.

Multiple access Users to base-station (many-to-one) multiple access or uplink communication.

These configuration are shown in figures 9.1 and 9.2. In the “downlink” broadcast communication, the
(server) base-station communicates to the users. This can be the case where the base-station sends
information like web-downloads or voice information to the mobile user.

The “uplink” multiple access communication is exactly the reverse of this, i.e., many users send informa-
tion (to be transferred) to the base-station (server). This could occur when the users send a request, or
upload data or are sending a voice message/conversation to the base-station intending it to be forwarded
to its final destination.

193
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Mobile
user

Mobile
user

Wireless
Laptop
user

Base-station

Figure 9.1: Base-station to user (one-to-many) broadcast/downlink communication.

Mobile
user

Wireless
Laptop
user

Mobile
user Base-station

Figure 9.2: Users to base-station (many-to-one) multiple access/uplink communication.

In both cases, the users receive/transmit signals “simultaneously”. Therefore, in order to help distinguish
the signals from the different users, typically the channel resources (time, frequency) are divided among
the users. This idea leads to the main “channel access” techniques used in current systems. These
access schemes are called Time-Division Multiple Access (TDMA), Frequency-Division Multiple Access
(FDMA) and Code-division Multiple Access (CDMA).

9.1.2 Ad hoc wireless networks

In contrast to hierarchical networks where we have a base-station serving a cluster of mobiles (see Figures
9.1 and 9.2) another configuration is where there is no central infrastructure. These networks variously
called ad hoc networks, self organized networks, mesh networks etc. They are primarily used in military
applications where there was a need to have an architecture without clear vulnerabilities. In an ad hoc
network, the mobiles can form any configuration depending on the communication conditions and needs.
The most distinct feature of such network is the use of relays to transmit information from one node to
another. This is illustrated in figure 9.3.

For example, if source node S wants to transmit to destination T it can transmit through several al-
ternate routes depending on the transmission conditions. For example in Figure 9.3, route 1, relays the
information through relay node A, and route 2 sends it through nodes B and C.
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C

route 2

Source S

NodeA Destination T

B

route 1

route 2

route 2route 1

Figure 9.3: Adhoc or mesh wireless networks.

The advantage of ad hoc networks in that they are reconfigurable, i.e., if any nodes fails or the com-
munication conditions (e.g. fading) changes, then the transmission routes can also change. They can
also take advantage of varying communication needs, for example the node S might be the only one who
needs to send information and therefore the network resources can be manoeuvered for this purpose.
This flexibility makes such an architecture attractive. However, this functionality also comes at a cost
of overhead in setting up routes, locating nodes and doing so in a distributed manner since there is no
“central authority”. Therefore, this configuration/architecture is yet to be implemented in commercial
systems through the 802.11 wireless LAN standard does have this as an option (though rarely used!). Ad
hoc networks also have some interesting capacity scaling properties, but this is a topic beyond the scope
of this chapter.

9.2 Access techniques

Access techniques refer to methods by which users establish communication to each other through the
shared medium. This can be studied both in the context of hierarchical networks as well as ad hoc
networks. We will only discuss deterministic access techniques here. However, there are random access
techniques which utilize the resources adaptively depending on the needs.

9.2.1 Time Division Multiple Access (TDMA)

In this, the transmission time is divided into slots and each user is assigned a distinct time slot therefore
getting exclusive use of the channel during this period and there is no interference from other users in
the same “cell”. This is shown in figure 9.4

User 1 User 2 . . . User k-1 User k

Time frame

Time

Figure 9.4: Time division Multiple Access.

All users must have a synchronized clock to know exactly when their transmission begins. Since users
are geographically separated, they also need to account for (small) propagation delays that might occur.
Typically the time-periods are equal in size and therefore the resources are equally divided among the
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users. Some recent proposals use unequals slots or assign more than one slot to a user in order to give
differentiated services to the users. TDMA is implemented in several current wireless systems, both in
the USA, Europe and in Japan. These systems are used for mobile telephony are called IS-136, GSM etc.

9.2.2 Frequency Division Multiple Access (FDMA)

This is the frequency dual of TDMA, where instead of time, frequency is broken up into slots and users
are assigned exclusive use of the small piece of the frequency spectrum. Again, this is used for both
uplink and downlink. Most commercial systems use both TDMA and FDMA to divide the resources.
The frequency is divided and then each part could be further divided using TDMA. A more modern
method for FDMA involves use of OFDM which we have seen in Section 6.2. In this, the users transmit
on a wide bandwidth and they are assigned “carriers” or “tones” of the OFDM scheme. They transmit
(or listen) only on those tones and these tones can also be dynamically allocated. The advantage of
OFDM is the flexibility in assignment and the ability to dynamically change it as well as data rates on
the tones depending on the channel condition of the different users.

9.2.3 Code Division Multiple Access (CDMA)

CDMA is philosophically slightly different from TDMA and FDMA in that the users do interfere with
one another since they are allowed to transmit simultaneously. The idea is to assign a “spreading code”
to each user so as to minimize the interference. There are two flavors of CDMA - frequency hopped
CDMA and direct-sequence CDMA. Both arise from “spread-spectrum” techniques which transmit over
a wide bandwidth and only transmit at a rate much smaller than the transmission bandwidth could have
allowed.

• Frequency-hopped spread spectrum: Here we can imagine a combination of FDMA and
TDMA, where a random assignment of frequency and time slots is given to each user. This is
illustrated in Figure 9.5 in a time frequency grid.
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Figure 9.5: Frequency hopped spread Spectrum.

The users’ “hopping pattern” are basically the frequency bin they transmit in at a certain time.
Therefore, if they are assigned random hopping patterns, they could in principle “collide” i.e. get
assigned same transmission slot. Also note that they transmit over much larger bandwidth overall,
than their data rate requires, i.e., they use many more degrees of freedom than their transmission
needs. This gives it the name spread-spectrum, since the signals spread over a large bandwidth.
This spreading over a wide bandwidth is in order to accommodate other simultaneously transmitting
users. This form of frequency-hopping is also used in some modern TDMA/FDMA systems in order
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to get frequency diversity as well as reduce interference to other geographical cells using the same
frequency spectrum. For example GSM (the European cellular standard) uses such a technique.

• Direct-sequence spread spectrum: In this system, unlike in frequency-hopped spread spectrum,
the users intentionally interfere with one another. The basic structure of a direct sequence spread
spectrum system is shown in Figure 9.6 . The information to be transmitted is modulated by a
pseudo-noise sequence and transmitted over a wide bandwidth.

������������������������������
Waveform or
pulse shape

{Ck}

{Xk}
{Sk}
Information

Channelx

Figure 9.6: Direct sequence spread Spectrum.

Typically, the symbol or information sequence is at a much lower rate than the variation in the
modulating pseudo-noise sequence. Therefore we obtain

xk = cks k = 0, . . . , L− 1.

i.e., a frame of L symbols is generated for every information symbol time creating a spreading of
the information symbol over L times its original bandwidth.

Therefore for a particular block one gets the transmitted symbols (see Figure 9.7)




x
(b)
0
...

x
(b)
L−1


 =




c
(b)
0
...

c
(b)
L−1


 s

(b) (9.1)

This is transmitted at the same time-frame as the original signal, i.e., the bandwidth is L times
the bandwidth of the information sequence {S(b)}.

The “spreading code” of the pseudo-noise sequence {c(b)k } could be the same for every block, i.e. c
(b)
k =

c
(b+1)
k , k = 0, . . . , L − 1 and this is called “short codes”. Or they could vary from block to block and

this called “long codes”. The long codes are used in the Qualcomm IS-95 CDMA system which is used
in several commercial mobile telephony systems. The transmission of the spread symbols over a shared
channel is based on the supposition that the different users get distinct random spreading codes and
therefore look like noise to one another. Another jargon used is that the pseudo-noise sequence occurs at
a period of Tc known as “chip period” and this is chosen to be T/L where T is the period of the original
symbol sequence. Therefore the new symbol period is T/L causing the bandwidth to become L times the

Block b Block b+1

x
(b)
k

= c
(b)
k

s(b) x
(b+1)
k

= c
(b+1)
k

s(b+1)

LTc

chip period Tc symbol period T

LTc

Figure 9.7: Frame format of DS-CDMA.
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original bandwidth. The power per symbol transmitted is reduced by a factor of L and therefore reduce
the interference to the other users. In a multiple access area broadcast configuration, by considering the
other users as undesired noise-like interference, one can see that a simple single user receiver can be built.
We will study more sophisticated receivers that take into account presence of multiple users. Note that,
“spreading gain” refers to the length L of the spreading code.

9.3 Direct-sequence CDMA multiple access channels

We will focus on one hierarchical configuration - the many-to-one communication of the wireless “uplink”
(see Figure 9.2). In the TDMA and FDMA access techniques, the users do not interfere with one
another and therefore the detection techniques discussed in the first part of the class (for single-user
communication) apply directly and there is no need for further discussion. The problem becomes more
interesting for direct sequence CDMA (or spread spectrum) where the users continuously interfere with
one another.

9.3.1 DS-CDMA model

Recall from (9.1) that in Direct-sequence CDMA (DS-CDMA) each user u is assigned a distinct spreading
code for each information block b, i.e., a code sequence

{
c(b)u (0), . . . , c(b)u (L− 1)

}
,

for user u, in block b, of length L. Therefore each user modulates its information sequence s
(b)
u through

its spreading sequence to produce

x(b)
u (l) = c(b)u (l)s(b)u , l = 0, . . . , L− 1

x(b)
u =




x
(b)
u (0)

...

x
(b)
u (L− 1)


 =




c
(b)
u (0)

...

c
(b)
u (L− 1)


 s

(b)
u (9.2)

Given the multiple access configuration (see figure 9.2), each user u transmits to the (central) base-station.

User 1

User 2

Base-station

X
(b)
1

X
(b)
2

User U X
(b)
U

Figure 9.8: DS-CDMA multiple access channel

Each user experiences its own fading channel h
(b)
u (l), l = 0, . . . , L−1. For simplicity we make the following

assumptions.
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Assumption # 1: All users are synchronized both at block and at chip level, i.e. their transmission frames
coincide exactly.
Assumption # 2: The power of each user is adjusted such that the channel fading (or attenuation) is
exactly compensated.

This assumption implies that we can consider a unit gain channel for each user. This can be accom-
plished by user “power control” where the users change their transmit power according to feedback given
by the base-station. Such a mechanism is commonly used in commercial DS-CDMA systems to reduce
the received power disparity among the users.
Assumption # 3: The delay spread in the channel is small in comparison to the symbol period T and
therefore the channel does not give rise to intersymbol interference. This assumption is mainly for simplic-
ity and can be easily taken care of with more sophisticated receivers. In order to illustrate the concepts
we will not deal with this issue right now.

Under these assumptions we can write the received signal at the base-station as (see figure 9.2 and 9.8)

y(b)(t) =

U∑

u=1

s(b)u ϕu(t) + z(b)(t), t ∈ ((b− 1)T, bT )

ϕ(b)
u (t) =

L−1∑

l=0

c(b)u (l)ψ(t− lTc), t ∈ ((b− 1)T, bT ) (9.3)

where z(b)(t) is additive (Gaussian) receiver noise.

The basis expansion ϕu(t) for each user is in terms of a waveform at the “chip” level, i.e, ψ(t) shifted at
“chip” period Tc. The symbol period is T = LTc, where L is the spreading gain. The waveform ϕu(t)
serves as a signature waveform for user u.

9.3.2 Multiuser matched filter

The continuous time waveform equation (9.3) is the same type of relationship as we encountered in the
single-user case. Therefore, the optimal detector for this can be found by considering this as a larger

dimensional single-user problem, i.e. s(b) = [s
(b)
1 , . . . , s

(b)
U ] as the input symbol expressed in the basis

function ϕ(b)(t) = [ϕ
(b)
1 (t), . . . , ϕ

(b)
U (t)]. Then as shown in Section 4.2.1 we have seen that the optimum

receiver is a bank of matched filters as shown in Figure 9.9.

Therefore we can write the output of the matched as,

y
(b)
1 =

∫ bT

(b−1)T

y(b)(t)ϕ
(b)∗
1 (t)dt =

U∑

u=1

s(b)u < ϕ(b)
u , ϕ

(b)
1 > +< z(b), ϕ

(b)
1 >︸ ︷︷ ︸

Z
(b)
1

...

y
(b)
U =

∫ bT

(b−1)T

y(b)(t)ϕ
(b)∗
U (t)dt =

U∑

u=1

s(b)u < ϕ(b)
u , ϕ

(b)
U > +< z(b), ϕ

(b)
U >︸ ︷︷ ︸

z
(b)
U

Hence, we see that



200 CHAPTER 9. MULTI-USER COMMUNICATION

bT

bT

bT

y(b)(t)

ϕ
(b)∗
1 (−t)

ϕ
(b)∗
2 (−t)

ϕ
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U

(−t)

y
(b)
2

y
(b)
U

y
(b)
1

Set of sufficient
statistics for {s(b)

1 , ..., s
(b)
U }

Figure 9.9: Multiuser matched filter.

y
(b)
1 =

U∑

u=1

s(b)u ρ
(b)
u,1 + z

(b)
1

...

y
(b)
U =

U∑

u=1

s(b)u ρ
(b)
u,U + z

(b)
U

where

ρu,l =< ϕ(b)
u , ϕ

(b)
l >=

∫ bT

(b−1)T

ϕ(b)
u (t)ϕ

(b)∗
l (t)dt

Note that as proved in Section 4.2.1, these form a set of sufficient statistics to detect the symbols {s(b)}
where s(b) = [s

(b)
1 , ..., s

(b)
V ].

Hence for the received signal block t ∈ [(b− 1)T, bT ] we get

y(b) =




y
(b)
1
...

y
(b)
u


 =




ρ
(b)
1,1 . . . ρ

(b)
U,1

...
...

ρ
(b)
1,U . . . ρ

(b)
U,U




︸ ︷︷ ︸
R(b)




s
(b)
1
...

s
(b)
U




︸ ︷︷ ︸
s(b)

+




Z
(b)
1
...

Z
(b)
U




︸ ︷︷ ︸
z(b)

This can be compactly written as,
y(b) = R(b)s(b) + z(b) (9.4)

This relationship is the starting point for multiuser detection. Note that E
[
z(b)z(b)∗] = R(b)σ2, if z(b)(t)

is AWGN with variance σ2.
Notes:



9.4. LINEAR MULTIUSER DETECTION 201

1. The form and structure of the receiver is very similar to the single user case. The difference is
that there are U information sequences to be recovered (one for every user). The conversion of the
waveform to discrete-time through collecting sufficient statistics is identical to the simple-user case
and we do not dwell on this issue further.

This is an important point that should not be neglected. As in the single-user presentation we start
from the discrete-time version here as well.

2. In the relationship (9.4), we can add more details such as the channel attenuations {h(b)
u (l)}, de-

layed symbols causing inter-symbol interference as well as asynchronism between users. However,
conceptually all these are handled in a similar manner and therefore for simplicity of exposition,
these are ignored.

3. If short codes are employed, c(b) would be independent of the block index b. However for long
codes, this dependence exists and therefore the model in (9.4) applies to both cases.

4. The linear relationship in (9.4) is reminiscent of the single-user ISI channel relationship. Therefore
one would expect schemes to detect s(b) would also be similar. In fact all multiuser detections

have an analogous ISI detector structure. Here we consider [s
(b)
1 , . . . , s

(b)
U ] as a “sequence” of vector

information symbols.

5. In the absence of ISI or asynchronism, we can do symbol-by-symbol detection, i.e., we detect

s(b) = [s
(b)
1 , . . . , s

(b)
U ] by considering only y(b) and therefore for brevity of notation we will drop the

index b.

6. The optimal detector would have complexity O(|S|U ) where S is the size of the constellation (com-
mon for each user for simplicity). All the principles of optimal detection we developed for the single

user case apply here by considering the symbol to be detected as




s
(b)
1
...

s
(b)
U


 and therefore we will

not repeat it here (e.g. MAP, ML, etc.).

7. Where there is a large number of users U , the complexity grows exponentially in U and therefore we
examine sub-optimal detectors. The reason is almost identical to the cause for looking at suboptimal
equalizers of lower complexity for ISI channels. In fact the mathematical model given in (9.4) is
identical in form to that in the ISI model we had developed for the finite block case.

9.4 Linear Multiuser Detection

Motivated by the last comment in Section 9.2.2, we examine sub-optimal linear detectors for the DS-
CDMA multiple access channel. We assume that the symbols are i.i.d. and therefore we can do symbol-
by-symbol detection rather than sequences detection.
Let us rewrite (9.4) here without the cumbersome additional block index b. This is because we know
that ”symbol-by-symbol” detection is optimal for this case and we develop linear ”symbol-by-symbol”
detections.

y = Rs + z (9.5)

The model is similar to the finite block ISI model and we considered two types of linear detections of lower
complexity, i.e., the zero-forcing and the MMSE receivers. In the multiuser case as well, the analogous
detectors are called the “decorrelating receivers” and the “MMSE linear detector”.
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9.4.1 Decorrelating receiver

In analogy with the ISI case, we want to recover a particular symbol su from the interfering symbols in
(9.5). Therefore in the zero-forcing case we invert the ”channel”. In this case the role of the channel is
taken by the cross-correlation matrix R.

R−1y = s + R−1z

and then we can find the symbol for each user u as,

ŝu = D[(R−1y)u]

where D is a single-user detector for the given Gaussian noise (see also Figure 9.10).

R−1

D

D
(R−1y)1

(R−1y)U

ŝ1

ŝU

y

Figure 9.10: Decorrelating multiuser detector

This receiver has the same attributes as the zero forcing detector equalizer, i.e., it is conceptually simple
and ignores the background noise. Therefore it could cause noise enhancement especially if R is close to
being singular. Therefore, we can take the next step of accounting for the presence of noise and develop
the MMSE linear multiuser detector.

9.4.2 MMSE linear multiuser detector

We want to find a linear transformation M such that output is “close” to the information symbols, i.e.,
My is close to s.
The meaning of “close” is make precise by considering the MMSE metric and therefore we pose the
problem as

min
M∈C

U×U
E
[
||s−My||2

]

Now, by using orthogonality principle, we get

E [(s−My)y∗] = 0,

This yields

E [sy∗] = ME [yy∗]

M = E [sy∗] [E [yy∗]]−1 (9.6)

Now

E [sy∗] = E [ss∗]R∗ = EsIR
∗

E [yy∗] = RE [ss∗]R∗ + E [zz∗]

= EsRR∗ + σ2R (9.7)
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where we have assumed equal power Es for each user and independent symbols, i.e. E [ss∗] = EsI.
Moreover since the noise z is the output of the matched filter (see Figure 9.11) and equation (9.4), the
noise has covariance σ2R = E [zz∗].
Using (9.7) in (9.6) we get,

M = EsR
∗(EsRR∗ + σ2R)−1

Since R is a cross-correlation matrix of the signature waveforms, (9.4), it is symmetric, i.e., R∗ = R and
therefore

M =

(
R +

σ2

Es
I

)−1

in the MMSE-optimal linear multiuser detector. The MMSE-linear multiuser detector is depicted in
Figure 9.11.

y(t)

ϕ∗
1(−t)

ϕ∗
U

(−t)

bT

bT

y
(b)
1

y
(b)
U

“

R + σ2

ES
R

”−1

ŝ
(b)
1

ŝ
(b)
U

Figure 9.11: Receiver for linear multiuser detection.

Therefore even if R is singular, M is well defined and does not cause noise enhancement. Moreover just
as in the linear equalizers if we let σ2/Es → 0 the MMSE linear detector reduces to the decorrelating
receiver.
Notes:

1. The main utility of multiuser detection is the resistance to the “near-far” problem. Here the users
could have very disparate received power and the strong user could ”drown” out the weak user.
All the forms of multiuser detections do exhibit resistance to this problem. We have not explicitly
exhibited them since we assumed equal received power for all users. However a simple modification

to (9.4) would take care of this. If each user u has received power A
(b)
u , then

y(b) =




ρ
(b)
1,1 . . . ρ

(b)
U,1

...
...

ρ
(b)
1,U . . . ρ

(b)
U,U




︸ ︷︷ ︸
R(b)



A1 0

. . .

0 AU




︸ ︷︷ ︸
A(b)




s
(b)
1
...

s
(b)
U




︸ ︷︷ ︸
s(b)

+




z
(b)
1
...

z
(b)
U




︸ ︷︷ ︸
z(b)

.

In more compact form,
y(b) = R(b)A(b)s(b) + z(b)

Then the (zero-forcing) decorrelating receiver remains

A(b)ŝ(b) = R−1y(b) = A(b)s(b) + R−1z(b)
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and the MMSE linear multiuser detector becomes

M = ESAR
(
RA2R + σ2R

)−1
= A−1

(
R +

σ2

ES
A−2

)−1

where for simplicity A is assumed to be real. Therefore both receivers take into account the
disparate received power and boost the weak user in order not to be drowned out by the stronger
user.

2. One can also develop decision-driven multiuser detectors analogous to the DFE studied earlier.
These are called successive cancellation receivers and have a rich history. Here the decisions of
some users are used to eliminate them and help decoding the other users. A crucial issue here is
the order in which the users are decoded. This topic is beyond the scope of this chapter.

3. Detector structures for asynchronous CDMA channels can be developed by realizing that asynchro-
nism leads to inter-symbol interference between successive symbols of the different users. Almost
the same principles can be applied to develop receivers for this case. Again the details are beyond
the scope of this chapter.

9.5 Epilogue for multiuser wireless communications

We mainly studied one configuration (illustrated in figure 9.2) among several in wireless networks. The
topic of multiuser wireless communication is still an active research topic and the more advanced topolo-
gies are beyond the scope of this class.

The broadcast (downlink) configuration (illustrated in figure 9.1) is of particular importance and we did
not cover it in much detail in this class. Here the crucial difference from multiple access channels is that
each user has access to only its received signal and therefore cannot do joint detection, i.e., cooperate
with other users. This crucial difference makes the broadcast channel much more challenging and there
are several open questions on this topic.

Finally ad hoc networks have become increasingly important in the recent past and have been a source
of several important new developments. This topic is again outside the scope of this chapter and is still
a developing research story.

9.6 Problems

Problem 9.1

Let us examine “symbol-by-symbol” synchronus multiuser receiver performance over the following chan-
nel:

y = RAs + z

where y is the received signal, R is the channel cross correlation matrix, A is the power assignment
matrix, s are the transmitted symbols and z is Gaussian additive noise with covariance matrix σ2R.

1. Find the SINR for the decorrelating receiver. Identify the source of the noise-enhancement.

2. Find the SINR for the MMSE linear multiuser detector. Compare this to the MMSE linear equalizer.
What happens when R is close to being singular?
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Problem 9.2

Consider transmission using Direct-sequence CDMA (DS-CDMA) using block invariant code sequences
for each user. Then the output during a block period is given by

y(t) =

U∑

u=1

suφu(t) + z(t), t ∈ ((b− 1)T, bT ),

φu(t) =
L−1∑

l=0

cu(l)ψ (t− lTc) , t ∈ ((b− 1)T, bT ).

Assume that shifted versions of ψ(t) by some integral multiple of Tc are orthogonal to each other, i.e.,

〈ψ (t−mTc) , ψ (t− nTc)〉 =

{
1 m = n,
0 otherwise.

Show that the entries of correlation matrix R are given by the dot product of the code-sequences i.e.,

Rij =
L−1∑

l=0

ci(l)c
∗
j (l).

Problem 9.3

In this problem we study the near-far problem: users 1 and 2 are transmitting and we want to detect
user 1 using conventional detection (single user detection). If the user 2 is sufficiently powerful then it
can cause arbitrary performance degradation in the detection of user 1. To this end, consider a two-user,
synchronous DS-CDMA system with signature sequences given by

s1(t) =

{
1 0 ≤ t ≤ 1,
0 otherwise.

s2(t) =





A 0 ≤ t ≤ 0.5,
−AB 0.5 < t ≤ 1,
0 otherwise.

The parameters take values A ≥ 0 and 0 ≤ B ≤ 1. The received waveform at time t can be written as

r(t) =

2∑

k=1

∞∑

i=−∞

√
Ekbk(i)sk(t− i) + n(t)

where n(t) is the white Gaussian noise with power spectral density σ2, and bk(i) = ±1 with equal
probability. A conventional detector is used, which detects the bk(0) bit as

b̂k(0) = sgn(rk), where rk =

∫ 1

0

r(t)sk(t)dt.

1. Determine expressions for the probability of bit error for user 1 and 2 respectively.

2. For user 1, what is the form of the bit error expression for A→ 0, B < 1.

3. For user 1, what is the form of the bit error expression for A → ∞, B < 1. What does this say
about the conventional detection?

4. For user 1, what is the form of the bit error expression for B = 1. Compare with the result in
part(3) and explain.
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Problem 9.4

Suppose we have two users u = 1, 2, transmitting information {x1(k)} and {x2(k)}. Consider a simple
multiple access channel where the received signal (discrete time) is

y(k) = x1(k) + x2(k) + z(k)

where {z(k)} is additive white complex Gaussian noise with variance σ2, is i.i.d. and independent of
{x1(k)} and {x2(k)}. You may assume that x1 and x2 are independent with identical variance Ex.

1. Suppose we use blocks of length two for transmission and the users use the following transmission
strategy,

x1(k) = s1 , x1(k + 1) = s1
x2(k) = −s2 , x2(k + 1) = s2

}
(9.8)

Express the received signal, [y(k), y(k + 1)] in terms of the transmitted symbols, i.e. specialize

y(k) = x1(k) + x2(k) + z(k)

y(k + 1) = x1(k + 1) + x2(k + 1) + z(k + 1)

to the transmission strategy in (9.8), prove that

y = Rs + z.

and find the form of R.

2. Find

ỹ = R∗y

and comment about its implications to detecting s1 and s2. Is this equivalent to the decorrelating
detector?

3. Find the MMSE multiuser detector M such that

E||My − s||2 is minimized.

Explicitly calculate M and comment about its relationship to the receiver in (2).

4. What is the error performance of the receivers in (2) and (3) in the presence of i.i.d. noise Cη(0, σ2)?

5. What is the transmission rate for each of the users in the model given in (9.8)?

6. More generally if we develop a transmission strategy for U users, such that

y = Rs + z

where y, z ∈ CU×U , s =



s1
...
sU


 ∈ CU and R∗R = UI. Develop the decorrelating and the MMSE

linear multiuser detector for this case. You may assume E[ss∗] = EsI, E[zz∗] = σ2I and that s
and z are independent. Can you comment about the relationship of this strategy with respect to
TDMA or FDMA?
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Problem 9.5

Consider a three-user synchronous CDMA channel with equal power users A1 = A2 = A3 = 1.

1. Find a crosscorrelation matrix R such that:

|([R + σ2I]−1R)13|
([R + σ2I]−1R)11

> |ρ13|

Without loss of generality, one can consider that detR = 0, ρ13 = 0, ρ12 = ρ23 and ρ11 = 1. What
can one conclude?

2. For the crosscorrelation matrix you selected above, verify that:

([R + σ2I]−1R)212
([R + σ2I]−1R)211

+
([R + σ2I]−1R)213
([R + σ2I]−1R)211

< ρ2
12 + ρ2

13

What can one conclude?

Problem 9.6

[ Multiple Access Channel and Transmit Code] Consider a two user multiple access channel
where each user has two transmit antennas and the receiver has two antennas (see Figure 9.6). Let
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���������������

Figure 9.12: Multiple access channel for problem 4.

u(k) =

[
u1(k)
u2(k)

]
, v(k) =

[
v1(k)
v2(k)

]
be the transmit signal from each user. The receiver gets a linear

combination of the transmit signals,

y1(k) = e1u1(k) + e2u2(k) + f1v1(k) + f2v2(k) + z1(k),

y2(k) = h1u1(k) + h2u2(k) + g1v1(k) + g2v2(k) + z2(k),

where zi(k) ∼ Cη(0, σ2
z) and {zi(k)} is i.i.d circularly symmetric Gaussian random variables. Now,

suppose the users use an Alamouti code, i.e., for user 1 the transmit signal is

u1(k) = a1, u2(k) = a2,

u1(k + 1) = −a∗2, u2(k + 1) = a∗1,
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and for user 2, it is
v1(k) = b1, v2(k) = b2,

v1(k + 1) = −b∗2, v2(k + 1) = b∗1.

Therefore we get

[
y1(k) y1(k + 1)

]
=

[
e1 e2

] [a1 −a∗2
a2 a∗1

]
+
[
f1 f2

] [b1 −b∗2
b2 b∗1

]
+
[
z1(k) z1(k + 1)

]
(9.9)

[
y2(k) y2(k + 1)

]
=

[
h1 h2

] [a1 −a∗2
a2 a∗1

]
+
[
g1 g2

] [b1 −b∗2
b2 b∗1

]
+
[
z2(k) z2(k + 1)

]
. (9.10)

(a) Prove that (9.9) can be equivalently rewritten as

Ỹ1 =
[
ỹ1(k) ỹ1(k + 1)

]
=
[
a1 a2

] [e1 −e∗2
e2 e∗1

]
+
[
b1 b2

] [f1 −f∗
2

f2 f∗
1

]
+
[
z̃1(k) z̃1(k + 1)

]

and (9.10) can be rewritten as

Ỹ2 =
[
ỹ2(k) ỹ2(k + 1)

]
=
[
a1 a2

] [h1 −h∗2
h2 h∗1

]
+
[
b1 b2

] [g1 −g∗2
g2 g∗1

]
+
[
z̃2(k) z̃2(k + 1)

]
,

where z̃1(k), z̃1(k+1), z̃2(k), z̃2(k+1) are i.i.d circularly symmetric complex Gaussian random vari-
ables with distribution Cη(0, σ2

z). Explicitly write out how
[
ỹ1(k) ỹ1(k + 1)

]
,
[
ỹ2(k) ỹ2(k + 1)

]

are related to
[
y1(k) y1(k + 1)

]
,
[
y2(k) y2(k + 1)

]
respectively.

(b) Let

E =

[
e1 −e∗2
e2 e∗1

]
, F =

[
f1 −f∗

2

f2 f∗
1

]
, G =

[
g1 −g∗2
g2 g∗1

]
, H =

[
h1 −h∗2
h2 h∗1

]
,

a =
[
a1 a2

]
, b =

[
b1 b2

]
, Z̃1 =

[
z̃1(k) z̃1(k + 1)

]
, Z̃2 =

[
z̃2(k) z̃2(k + 1)

]
.

Then the equations (9.9,9.10) can be written as

[
Ỹ1 Ỹ2

]
=
[
a b

] [E H
F G

]
+
[
Z̃1 Z̃2

]
.

Prove that

W =

[
I2 −E−1H

−G−1F I2

]

decouples the signals from user 1 and 2, i.e.,

[
Y̆1 Y̆2

]
=
[
Ỹ1 Ỹ2

]
W =

[
a b

] [H̃ 0

0 G̃

]
+
[
Z̆1 Z̆2

]
, (9.11)

where Z̆1, Z̆2 are still Gaussian.

(c) Prove that H̃ and G̃ are of the form

H̃ =

[
h̃1 −h̃∗2
h̃2 h̃∗1

]
, G̃ =

[
g̃1 −g̃∗2
g̃2 g̃∗1

]
.

Hint: You do not need to explicitly write out the expressions for h̃1, h̃2, g̃1, g̃2.
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(d) In (9.11) it is seen that
Y̆1 = aH̃ + Z̆1,

Y̆2 = bG̃ + Z̆2.

Show that
Y̆1H̃

∗ = ||h̃||2
[
a1 a2

]
+ Z̆1H̃

∗,

Y̆2G̃
∗ = ||g̃||2

[
b1 b2

]
+ Z̆2G̃

∗,

where h̃ =
[
h̃1 h̃2

]
, g̃ =

[
g̃1 g̃2

]
. This completes the decoupling of the individual streams of the

multiple access channel.

(e) If h1, h2, g1, g2, e1, e2, f1, f2 are i.i.d and have distribution Cη(0, 1), can you guess the diversity order
for detecting a1, a2, b1, b2?

Problem 9.7

[Relay Diversity] In a wireless network let us assume that there are three nodes, where the source
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Figure 9.13: Communication using relay.

(S) wants to transmit information to the destination (T ) and can obtain help from a relay (R). Assume
that the channels are block time-invariant over a transmission block of size T . We use the following
transmission protocol over a block of time of length T . Let {s(k)} ∈ {a,−a} be a binary information

')(+* ',(-*

.0/214365 *.0/214365-7

8:9<; 14=>3�?:@ 9 3 A 9<; 14=>3�?B@ 9 3

Figure 9.14: Transmission protocol.

sequence that source S wants to convey to the destination T . Then, for the first phase the relay receives

yR(k) and the destination receives y
(1)
T (k), with

yR(k) = fs(k) + zR(k), (9.12)

y
(1)
T (k) = hs(k) + zT (k), (9.13)
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where zR(k), zT (k) ∼ Cη(0, σ2) are i.i.d, circularly symmetric complex Gaussian noise. We also assume
a fading channel, f, g, h ∼ Cη(0, 1) and are independent of each other. Assume that g, h are known at
T , f is known at R, but they are unknown at S (except for part (c))
In the second phase for parts (a), (b),

y
(2)
T (k) = gu(k) + zT (k)

where u(k) is the signal transmitted by the relay and g ∼ Cη(0, 1).

(a) Suppose the relay was absent, i.e., u(k) = 0, then give an expression (or bound) on the average error
probability of {s(k)} averaged over the channel realizations h. What is the diversity order, i.e.,

lim
SNR→∞

− log(P̄e(SNR))

log(SNR)

for the detection of {s(k)}.
(b) Suppose that the relay R attempts to decode {s(k)} in phase 1 and transmits u(k) = ŝR(k) in phase

2. That is, it sends the decoded sequence to T . Assume now that there is an oracle which tells
the destination T if relay R has decoded correctly or not. Note that the oracle just lets T know
if ŝR(k) = s(k) but not its value. Now, T can use the received sequence from both phase 1 and
phase 2 in order to decode {s(k)}. Find expressions (or bounds) for the error probability for this
decoder averaged over the channel realizations which achieve the best diversity order at T . What
is the best diversity order that can be achieved at T for detecting {s(k)}? Hint: Develop a receiver
strategy that uses the information given by the oracle. You do not need very detailed calculations
for obtaining error probability bounds.

(c) Suppose now that we have a new protocol. Phase 1 is as before, where S transmits and both R and
T receive the signal as in (9.12) and (9.13) respectively. At the end of phase 1, there is a feedback
channel from R to S which informs S about the realization of channel f . Now the protocol S and R
follow is given by: if |f |2 ≤ c(SNR) (where c(SNR) is a function of SNR), then in phase 2, S repeats
the same information it transmitted in phase 1 and the relay R remains silent, i.e., {s(k)} from
phase 1 is repeated and u(k) = 0 in phase 2. If |f |2 > c(SNR), then the protocol is as in part (b),
i.e., S remains silent and R sends the decoded information u(k) = ŝR(k). Let c(SNR) = 1

SNR1−ε

for an arbitrarily small ε > 0, Assume that an oracle informs the receiver T whether in phase 2, S
or R is transmitting. If in phase 2, S is transmitting, the receiver T forms the decision variable,

ỹT =
[
h∗ h∗

]
[
y
(1)
T
y
(2)
T

]

where y
(1)
T , y

(2)
T are the received signals in phase 1 and phase 2 respectively. On the other hand if

in phase 2, the relay R is transmitting, receiver T forms the decision variable

ỹT =
[
h∗ g∗

]
[
y
(1)
T
y
(2)
T

]

where again y
(1)
T , y

(2)
T are the received signals in phase 1 and phase 2 respectively. The decision

rule in both situations is that T chooses ŝT = +a if <(ỹT ) ≥ 0 and ŝT = −a otherwise. Analyze
the performance of this receive strategy i.e., find the diversity order that can be achieved by T for
{s(k)}. Note that we are looking for diversity order and so we do not necessarily need a detailed
analysis to find the diversity order. Hint: Condition on appropriate error events at the relay and
use error probability bounds. You can also use properties given in the hints in the first page.



Part IV

Connections to Information Theory
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Chapter 10

Reliable transmission for ISI
channels

A focus of this class has been transmission and reception over LTI channels. Even in the wireless trans-
mission, the channels were considered to be block-time-invariant. Therefore, we examine the fundamental
limits of transmission over such channels and compare the structures we studied to that which informa-
tion theory predicts. In order to do that, we first study the capacity of ISI channels in Section 10.1. Then
in Section 10.2 and 10.3 we study canonical properties of OFDM and the MMSE-DFE as information
theoretic structures.

10.1 Capacity of ISI channels

The complete and rigorous derivation of the capacity of a (bandlimited) frequency selective (time-
invariant) channel is beyond the scope and goal of this class. Here we give a heuristic development
of the capacity expression with the intention to connect it to the transmission and receiver structures
that we have studied in this class.

t ∈ (−T/2, T/2)

y(t)

t ∈ (−T/2, T/2)
h(t)

x(t)

z(t) AWGN

LTI channel

+

Figure 10.1: Model for frequency selective channels.

We represent the input x(t) in terms of a Fourier series (where x(t) is time-limited to (−T/2, T/2)
interval).

x(t) =

+∞∑

i=−∞
xiφi(t)

where {φi} are the Fourier series basis functions.

x(t) ∗ h(t) =

∫ ∑

i

xiφi(τ)h(t − τ)dτ =
∑

i

xi

∫
φi(τ)h(t − τ)dτ

213
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Let

θi(t) =

∫
φi(τ)h(t − τ)dτ

Then
x(t) ∗ h(t) =

∑

i

xiθi(t)

y(t) = x(t) ∗ h(t) + z(t) =
∑

i

xiθi(t) + z(t)

When T becomes large, the Fourier series basis {φi} tend towards the Fourier basis, which are the
eigenbasis for linear time-invariant channels. Therefore we can write

θi(t) ≈ H

(
2π

T
i

)
gT (t)

where gT (t) becomes the Dirac delta function when T → ∞. Similarly, we can expand the noise in the
frequency domain and by doing so we obtain:

yi ≈ xiH

(
2π

T
i

)
+ zi (10.1)

where {yi} is the Fourier series coefficients of y(t) and {zi} that of z(t). This is a very imprecise and
heuristic development and a precise development is clearly out of the scope of this class. Since the
relationship in (10.1) is output of parallel additive Gaussian noise channels, mutual information is,

I({yi}; {xi}) =
1

2
log

|HRxH
t + Rz|

|Rz|
≤ 1

2

∑

i

log

(∣∣∣∣H
(

2π

T
i

)∣∣∣∣
2

E
[
|xi|2

]

E [|zi|2]
+ 1

)
(10.2)

where |.| denotes the determinant and we have assumed that E [zizj ] = E
[
|zi|2

]
δi−j , i.e. white Gaussian

noise. Now, if we impose the input power constraint,

1

T

∫ T/2

−T/2
|x(t)|2dt ≤ P

this translates (due to orthonormal expansion) to

∑

i

x2
i ≤ PT

Now, the capacity therefore is maximization of the mutual information.

CT = max
Px:

P
x2

i≤PT

1

T

∑

i

1

2
log

(∣∣∣∣H
(

2π

T
i

)∣∣∣∣
2

E
[
|xi|2

]

E [|zi|2]
+ 1

)

Since we can choose independent {xi}, we can make the inequality in (10.2) into equality as we have
done.

Now as T → ∞, 1
T E
[
|xi|2

]
= ST

(
2π
T i
)
→ S(f) the power spectral density of the input, and

E[|z2i |]
T → σ2.

Also 1
T

∑
x2
i →

∫
S(f)df and hence we get

lim
T→∞

CT = max
S(f):

R
S(f)df≤P

1

2

∫
log

(
1 + |H(f)|2S(f)

σ2

)
df
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This is the expression for capacity that we will work with. Next the goal is to find the optimal input
power spectrum.

C = max
S(f):

R
S(f)df≤P

1

2

∫
log

(
1 +

|H(f)|2
σ2

S(f)

)
df (10.3)

Now, to find the maximizing input spectrum S(f), we can do so by calculus of variations. However we
can also do so by taking formal derivatives.

max
1

2

∫
log

(
1 +

|H(f)|2
σ2

S(f)

)
df

such that ∫
S(f)df ≤ P

Since C increases with S(f), the last inequality can be replaced with equality. Let,

I =
1

2

∫
log

(
1 +

|H(f)|2
σ2

S(f)

)
df − λ

∫
S(f)df

∂I
∂S(f)

=
1/2

1 + |H(f)|2
σ2 S(f)

|H(f)|2
σ2

− λ

The Kuhn-Tucker conditions imply that

∂I
∂S(f)

= 0 if S(f) > 0

∂I
∂S(f)

< 0 if S(f) = 0

Hence for {f : S(f) > 0} we have
1/2|H(f)|2/σ2

1 + |H(f)|2
σ2 S(f)

= λ

or
1

2λ
=

σ2

|H(f)|2 + S(f), f ∈ {f : S(f) > 0}

Let 1
2λ = ν, thus we get the optimal input spectrum S∗(f) as

S∗(f) = ν − σ2

|H(f)|2 f ∈ {f : S(f) > 0}

Using the Kuhn-Tucker conditions, we can write

S∗(f) =

(
ν − σ2

|H(f)|2
)+

∀f (10.4)

where (x)+ =

{
x ifx ≥ 0
0 else

We can find ν by satisfying the constraint

∫
S∗(f)df = P, i.e.

∫ (
ν − σ2

|H(f)|2
)+

df = P
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Hence the capacity of the ISI channel is,

C =
1

2

∫
log

(
1 + S∗(f)

|H(f)|2
σ2

)
df

=
1

2

∫

f :
“
ν− σ2

|H(f)|2

”
>0

log

(
ν|H(f)|2

σ2

)
df

=
1

2

∫
log

(
1 +

(
ν|H(f)|2

σ2
− 1

))
df

The optimal input spectrum given in (10.4) has an interesting interpretation: Consider the channel in
figure 10.2

f

|H(f)|2
σ2

Figure 10.2: Channel spectrum.

f

ν

σ2

|H(f)|2

Figure 10.3: Illustration of waterfilling.

The inverted channel is illustrated in Figure 10.3 The relationship in (10.4) implies that S(f) > 0 only

if ν − σ2

|H(f)|2 > 0. Therefore in Figure 10.2 , we have shown the regions where this occurs for a given ν.

The corresponding input spectrum S(f) is shown in Figure 10.4 . An interpretation of this is by thinking
of pouring a volume P of water into the crevices of figure 10.3 . The “water” naturally occupies the
lowest parts of the spectral valleys and when a total volume P of water is exhausted will have a level ν
in the spectral valleys. Therefore, the interpretation (given by Gallager) is called “water-filling” input
spectrum for the optimal capacity achieving input distribution.

Notes:
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f

S(f)

Figure 10.4: Transmit spectrum.

1. The main insight to drawn from the result is that the transmission scheme should focus its power on
the “sweet spots” of the channel where gains are the largest. The concavity of the log function (giv-
ing diminishing “returns”) implies that the power is transmitted only in the best channel response
frequency, but descends down by spreading the input power to lower channel gains |H(f)|2.

2. Most of the transmission schemes that we discussed in ISI channels had a “flat” input spectrum,
i.e. SX(f) = P/W , where W was the transmission bandwidth. Clearly this is not optimal and
we will examine the performance of the ISI transmission an receiver structures if we take this into
account.

3. A canonical decomposition was through the Fourier basis, creating parallel channels. This decom-
position was used in one transmission/reception structure we studied, i.e. OFDM. There we did
not consider changing the input spectrum, but given this insight we will re-examine that problem

4. The ISI channel capacity pre-suppose that the channel response is known at the transmitter. For
wire line channels this is realistic since the channel remains constant for a long period and therefore
the response can be fed back to the transmitter. However, for wireless channels, such an assumption
might be unrealistic. This is a topic outside the scope of this class.

5. The “single carrier” (equalization receiver) structure extensively discussed in the class can also
be modified to have a non-uniform input power spectrum. In fact such a structure has been
implemented in the V-34 modem for telephone lines.

Next, we compare some of the transmission and reception structures discussed in Chapter 5 and 6 to the
capacity of the ISI channel.

10.2 Coded OFDM

Recall from Section 6.2 that in OFDM the cyclic prefix allowed us to relate the input (in the frequency
domain) to the output (again in the frequency domain) as

Y (l) = P (l)X(l) + Z(l), , l = 0, . . . , N − 1

where {P (l)} was the frequency domain pulse response

P (l) =

ν∑

n=0

pne
−j 2π

N ln, l = 0, . . . , N − 1
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×
X(0)

X(N − 1) Y (N − 1)

Y (0)

Z(N − 1)

Z(0)P (0)

P (N − 1)

× +

+

Figure 10.5: Parallel channels in OFDM.

and {Z(l)} was the noise (in the frequency domain) and {X(l)} was the input in the frequency domain.
This relationship can be illustrated as shown in Figure 10.5.

Now, one can concatenate an outer code along with the frequency domain input and code over a sequence
of transmission blocks. That is, one can have codes {Cl} for each of the N parallel channels and code
such that the inputs come from the corresponding symbols from each block. This is illustrated in figure
10.6 which shows the transformation from a uncoded OFDM system to a coded system.

Block 1 Block 2 Block Nc

M0 MN−1

Message set Message set

. . .

. . .

. . .

X
(1)
(0) . . . X

(1)
(N−1)

. . . . . .X
(2)
(0)

X
(2)
(N−1)

X
(Nc)
(0) X

(Nc)
(N−1)

C0 CN−1

Figure 10.6: A coded OFDM transmissions scheme.

If |Ml| = 2NcRl , where the rate on subchannel l is Rl, the code Cl sends out Nc consecutive symbols
which have been coded from the message from set Ml. The symbols from each code form a sequence
{X(k)(l)}Nc−1

k=0 of length Nc which is the length of the code. Each symbol is placed in the appropriate
frequency sub-carrier of the OFDM. By doing this, for a large enough Nc information theory tells us that
the Rl achievable is
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Rl =
1

2
log

(
1 +Ql

|P (l)|2
σ2

)

where P (l) is the frequency response of the channel and

Ql = lim
NC→∞

1

Nc

Nc−1∑

k=0

|X(k)(l)|2, l = 0, . . . , N − 1

is the power assigned to subcarrier l.
Therefore the overall rate achievable for OFDM is

R =

N−1∑

l=0

Rl =
1

2

N−1∑

l=0

log

(
1 +Ql

|P (l)|2
σ2

)
(10.5)

with the constraint that
∑N−1
l=0 Ql ≤ Ptot where Ptot is the transmit power. Note that as N → ∞, we get

R∗ = lim
N→∞

R =
1

2

∫
log

(
1 +Q(f)

|P (f)|2
σ2

)
df

with
∫
Q(f)df ≤ Ptot.

This looks strikingly similar to the ISI channel capacity expression discussed in (10.3). In fact with the
appropriate power allocation we can make the two identical. This gives a hint that OFDM structure is
canonical in terms of information theory.

10.2.1 Achievable rate for coded OFDM

Now, let us return to the realm of finite number of subcarriersN . From equation (10.5) the achievable rate
of OFDM depends on the power allocated to the various subcarriers, i.e. {Ql}N−1

l=0 . We now can maximize

the rate by choosing an appropriate power allocation subject to the constraint that
∑N−1

l=0 Ql ≤ Ptot.

maximize
1

2

N−1∑

l=0

log

(
1 +Ql

|P (l)|2
σ2

)

such that

N−1∑

l=0

Ql ≤ Ptot

Clearly this is a problem we have seen (and solved!) before, which led us to the water filling input
spectrum. We now solve the discrete version of this problem and give an explicit algorithm that calculates
the optimal power distribution {Q}. As before, let us solve the problem using Kuhn-Tucker conditions.
Define the Lagrangian,

J =
1

2

N−1∑

l=0

log

(
1 +Ql

|P (l)|2
σ2

)
− λ

N−1∑

l=0

Ql.

This yields,
∂J
∂Ql

=
1/2

1 +Ql
|P (l)|2
σ2

|P (l)|2
σ2

− λ.

Using the Kuhn-Tucker conditions, we have for optimality

∂J
∂Ql

= 0 if Ql > 0

∂J
∂Ql

< 0 if Ql = 0
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Thus, for {l : Ql > 0} we get,

1/2
σ2

|P (l)|2 +Ql
= λ

and hence

Ql = ν − σ2

|P (l)|2 l ∈ {l : Ql > 0}

where ν = 1/2λ. Now using Kuhn-Tucker conditions we can easily verify that the optimal power distri-
bution {Q∗

l } can be written as

Q∗
l =

(
ν − σ2

|P (l)|2
)+

∀l ∈ {0, . . . , N − 1} (10.6)

where (x)+ =

{
x ifx ≥ 0
0 else

and ν is chosen such that
∑N−1

l=0

(
ν − σ2

|P (l)|2
)+

≤ Ptot.

The “waterfilling” algorithm computes ν and therefore gives us a method to calculate the optimal power
distribution. The algorithm is derived in Section 9.2.2.

10.2.2 Waterfilling algorithm

Step 1

If Ql > 0 ∀l, then finding ν becomes easy

N−1∑

l=0

[
ν − σ2

|P (l)|2
]

= Ptot

This yields,

Nν = Ptot +

N−1∑

l=0

σ2

|P (l)|2

or ν =
1

N

[
Ptot +

1

N

N−1∑

l=0

σ2

|P (l)|2

]
(10.7)

However, for such a choice of ν, we have

Ql = ν − σ2

|P (l)|2

=
1

N
Ptot +

1

N

N−1∑

l=0

σ2

|P (l)|2 − σ2

|P (l)|2 (10.8)

There is no guarantee that the Ql that arises from a choice of ν given in equation (10.7) would be
non-negative in (10.8) in general.
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Step 2

If we know the set of “active” subchannels A = {l : Ql > 0}, then again finding ν becomes easy.

∑

l∈A

(
ν − σ2

|P (l)|2
)

= Ptot

This yields,

ν =
1

|A|Ptot +
1

|A|
∑

l∈A

σ2

|P (l)|2

and Ql =

{
1

|A|Ptot + 1
|A|
∑

k∈A
σ2

|P (k)|2 − σ2

|P (l)2| l ∈ A
0 otherwise

However, one does not know the active set A.

Step 3

In order to find the correct active set we can start by assuming A = {0, . . . , N − 1}, i.e. the entire set
of subcarriers. Then from (10.7) we can find the appropriate ν. But (10.8) would tell us which Ql are
negative. If there is Ql < 0, then we drop the “worst” channel from the active list i.e.,

l1 = argmax
l

σ2

|P (l)|2

and consider the active list as A = {0, . . . , N − 1} \ l1, where the notation means the set difference.
Given this order preference in the choice of active subchannels we reduce the number of candidate active

sets from N ! to N by ordering
{

σ2

|P (l)|2
}

in increasing order. We can index the candidate active sets by

choice (in increasing order) of the values
{

σ2

|P (l)|2
}
. By doing this one can find the optimal active set.

The main step in this is the observation that if a particular subchannel l′ is active, then all subchannels
such that

σ2

|P (l)|2 ≤ σ2

|P (l′)|2

are also active. This can be seen from the relationship in (10.6) and we next give a formal statement and
proof of this claim.

Claim 10.2.1. If the optimal active set A∗ contains subchannel l′, then it must also contain elements l̃
when

σ2

|P (l̃)|2
<

σ2

|P (l′)|2 (10.9)

Proof: Suppose, A∗ is the optimal active set and it contains element l′ and does not contain an element
l̃ which is such that

σ2

|P (l̃)|2
<

σ2

|P (l′)|2

Now, we prove the assertion by contradiction. Since l′ ∈ A∗ and l̃ /∈ A∗ ⇒ Ql′ > 0 , Ql̃ = 0. And the
optimal rate is

R∗ =
1

2

∑

l∈A∗

log

(
1 +Ql

|P (l)|2
σ2

)
(10.10)
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Now consider a different power allocation {Q̂l} where all the allocation is the same except we choose for
small enough ε > 0,

Q̂l′ = Ql′ − ε and Q̂l̃ = ε > 0

For this allocation

R̂ =
1

2

∑

l∈A∗\l′
log

(
1 +Ql

|P (l)|2
σ2

)

+
1

2
log

(
1 + (Ql′ − ε)

|P (l′)|2
σ2

)

+
1

2
log

(
1 + ε

|P (l̃)|2
σ2

)
(10.11)

Using (10.10) and (10.11) we get

R∗ − R̂ =
1

2
log

(
1 +Ql′

|P (l′)|2
σ2

)

−1

2
log

(
1 + (Ql′ − ε)

|P (l′)|2
σ2

)

−1

2
log

(
1 + ε

|P (l̃)|2
σ2

)

(a)

≤ 1

2
log

(
1 +Ql′

|P (l̃)|2
σ2

)

−1

2
log

(
1 + (Ql′ − ε)

|P (l′)|2
σ2

)

−1

2
log

(
1 + ε

|P (l′)|2
σ2

)
(10.12)

where (a) follows because log is an increasing function and |P (l̃)|2
σ2 > |P (l′)|2

σ2 due to assumption (10.10).
Continuing with (10.12) we get

R∗ − R̂ ≤ 1

2
log

(
1 +Ql′

|P (l′)|2
σ2

)

−1

2
log

(
1 + ε

|P (l′)|2
σ2

)
− 1

2
log

(
1 + (Ql′ − ε)

|P (l′)|2
σ2

)

=
1

2
log

(
σ2 +Ql′ |P (l′)|2
σ2 + ε|P (l′)|2

)
− 1

2
log

(
1 + (Ql′ − ε)

|P (l′)|2
σ2

)

=
1

2
log

(
1 +

(Ql′ − ε)|P (l′)|2
σ2 + ε|P (l′)|2

)
− 1

2
log

(
1 + (Ql′ − ε)

|P (l′)|2
σ2

)

< 0

Hence R∗ < R̂ and therefore A∗ cannot be the optimal active set assignment. Therefore we have a
contradiction and hence the claim is proved.

�

Therefore, we need to consider only N candidate active sets instead of N ! and therefore giving a O(N)
steps water filling algorithm.
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10.2.3 Algorithm Analysis

1. Sort
{

σ2

|P (l)|2
}

in ascending order, i.e.

σ2

|P (l1)|2
≤ σ2

|P (l2)|2
≤ . . . ≤ σ2

|P (lN )|2

2. Let A = {l1, l2, . . . , lN}, p = N

3. Compute

ν =
1

|A|Ptot +
1

|A|
∑

k∈A

σ2

|P (k)|2

4. If ∃Qk < 0, then let A = A \ lp and p = p− 1. Goto step 3.
Else optimal power allocation found.

Notes

1. This algorithm terminates in at most N steps.

2. The sorting takes O(N logN) complexity and the computation of ν takes O(N) complexity. Hence
we have O(N logN) algorithm for computing the optimal power allocation.

3. We devised this algorithm based on claim 10.2.1 where we showed that the ordering of
{

σ2

|P (l)|2
}

determined the active set. Therefore we choose the complete set as A first and then eliminate the
worst channel, one-by-one till we get the correct A∗.

4. Ties in this algorithm can be resolved arbitrarily since the final rate does not get affected.

5. The algorithm does not take into account particular alphabets/constellations one might use for the
transmission. Other algorithms that utilize this have been found. They are outside the scope of
this class.

10.3 An information-theoretic approach to MMSE-DFE

Fact 1 If (x,y) are jointly Gaussian then Px|y(x|y) is also Gaussian with mean E [x|y] and covariance

E
[
{x − E [x|y]} {x− E [x|y]}∗

]
= R⊥

x|y which is the error covariance of a linear estimator of x
from y . �

Fact 2 For a Gaussian random vector x ∼ Cη(0,Rxx) the entropy is

Hx = log
[
(πe)N |Rxx|

]

where N is the dimension of x and |Rxx| is the determinant of Rxx

Fact 3 If (x,y) are jointly Gaussian, then the conditional entropy Hx|y is

Hx|y = log
[
(πe)N |R⊥

x|y|
]

where R⊥
x|y is the error covariance of linear estimator of x from y.



224 CHAPTER 10. RELIABLE TRANSMISSION FOR ISI CHANNELS

Now,

R⊥
x|y = Rxx −RxyR

−1
yy Ryx

where

Rxy = E [xy∗] , Ryx = E [yx∗] , Ryy = E [yy∗]

For a stationary Gaussian process, the chain rule of entropy allows computation of its entropy based on
prediction. For a sequence x = {xk, xk−1, . . . , x0} ,

Hx = Hxk|[xk−1,...,x0] +Hxk−1|[xk−2,...,x0] + . . .

+Hx1|x0
+Hx0

=

k∑

n=0

Hxn|[xn−1,...,x0]

where we have defined Hx0|x−1

∆
= Hx0 .

Definition 10.3.1. For a stationary process {xk}, the entropy rate Hx(D) is,

Hx(D) = lim
k→∞

1

k + 1
H([xk, . . . , x0]) = lim

k→∞

1

k + 1

k∑

n=0

H(xn|[xn−1, . . . , x0])

For a stationary sequence this quantity converges to

Hx(D) = lim
k→∞

H(xk|xk−1, . . .)

This is related to the estimation error associated with predicting xk from its past, i.e.

Hx(D) = log
[
πeσ2

x|past

]

where σ2
x|past is the MMSE error of predicting xk (the “present”) from the entire history of the sequence.

Given input {xk} and output {yk}

I(x(D); y(D)) = lim
k→∞

1

k + 1
I(xk0 ,y

k
0)

where xk0 = {x0, . . . , xl}, yk0 = {y0, . . . , yk} and I(x;y) is the mutual information between x and y. For
an inter-symbol interference (ISI) channel, we have seen from before that

I(x(D); y(D)) =
1

2π

∫ π

−π
log

[
Sy(w)

Su(w)

]
dw

where Sy(w) and Sz(w) are the power spectral densities of the processes {yk} and the noise {zk} respec-
tively. Now

I(x(D); y(D)) = Hx(D) −Hx(D)|y(D)

= Hxk|xk−1... −Hxk|y∞−∞,xk−1,... (10.13)

Therefore the mutual information can be written as,

I(x(D); y(D)) = I(xk ; y
∞
−∞|xk−1

−∞)
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10.3.1 Relationship of mutual information to MMSE-DFE

From 10.13 we see that

I(x(D); y(D)) = Hxk|xk−1
−∞

−Hxk|y∞−∞,x
k−1
−∞

= log(πe)σ2
xk |xk−1

−∞
− log(πe)σ2

xk|y∞−∞,x
k−1
−∞

(10.14)

But,

σ2
xk|xk−1

−∞
= γx = MMSE associated with predicting xk from its past

σ2
xk|y∞−∞,x

k−1
−∞

= σ2
MMSE−DFE = The variance of error in perfect past decisions, DFE.

Inserting this into 10.14 we get,

I(x(D); y(D)) = log
γx

σ2
MMSE−DFE

= logSNRMMSE−DFE

= log [1 + SNRMMSE−DFE,U ]

This results in what is knows as the ”CDEF result” (after the result of Cioffi-Dudevoir-Eyuboglu-Forney
done in 1995).

Lemma 10.3.1 (CDEF result). The unbiaised SNR of a MMSE-DFE is related to the mutual information
for a linear ISI channel with additive Gaussian noise in exactly the same formula as the SNR of an ISI
free channel is related to the mutual information of that channel. Assuming that the input and output
are jointly (stationary) Gaussian and the MMSE-DFE exists.

10.3.2 Consequences of CDEF result

1. This result seems to show that with the perfect past decisions assumption, the MMSE-DFE is a
canonical structure, i.e. it can achieve the capacity of the ISI channel.

2. In the development of the MMSE-DFE, we assumed i.i.d. inputs, which meant a ”flat” input
spectrum Sx(ω). The development we had on the capacity of the ISI channels indicates that this
might not be optimal. Hence the modification we need to make the MMSE-DFE canonical, is input
spectral shaping.

3. There are several other caveats and we will next do a more careful derivation of the result to
illuminate these caveats.

Caveats of CDEF results

To do this we establish first a lemma.

Lemma 10.3.2. Let x = {xk}, y = {yk} be jointly Gaussian zero mean random processes, then

I(x;y) = I(x;πy(x))

where πy(x) is the orthogonal projection operator of y onto x, i.e., from Gaussian processes,

πy(x) = E [x|y]
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Recall from linear prediction, of process {xk}, i.e., predicting xk from its infinite past,

x̂k =

∞∑

m=1

amxk−m ⇒ X̂(D) = A(D)X(D)

with A(D) being strictly causal. A(D) = 1 −A′(D) and we found that

A′(D) =
1

L(D)
where

Sx(D) = γxL(D)L∗(D−∗)

where L(D) is monic, minimum and stable.
Now, using the chain rule of mutual information,

I(xk , y
∞
−∞, x

k−1
−∞) = I(xk;x

k−1
−∞) + I(xk ; y

∞
−∞|xk−1

−∞)

Hence, using (10.14) we get

I(X(D);Y (D)) = I(xk; y
∞
−∞, x

k−1
−∞) − I(xk ;x

k−1
−∞)

Therefore, unless we have a white input, i.e. I(xk ;x
k−1
−∞) = 0, the two quantities I(xk ; y

∞
−∞, x

k−1
−∞) and

I(X(D);Y (D)) are distinct and in fact,

I(X(D);Y (D)) ≤ I(xk; y
∞
−∞, x

k−1
−∞)

with equality iff the input is white.
However, as we have seen in the waterfilling solution to achieving ISI channel capacity, the optimal
sequence {xk} need not to be white and therefore the above quantities are distinct. It can be shown that

I(xk; y
∞
−∞, x

k−1
−∞) = I(xk ; rk) + I(ek; e

k−1
−∞)

= I(xk ; rk + êk) (10.15)

where
rk = E

[
xk|y∞−∞

]
, ek = xk − x̃k

Pictorially this is depicted in Figure 10.7.
In Figure 10.7, we use, I(ek; e

k−1
−∞) = I(ek; êk), where êk = E

[
ek|ek−1

−∞
]
, by using the lemma. Moreover

for
ek = xk − rk,

it has a spectral factorization
Se(D) = γeLe(D)L∗

e(D
−∗)

yielding a linear predictor filter,

A′
e(D) =

1

Le(D)

Ê(D) = [1 −A′
e(D)]E(D) = [1 −A′

e(D)][X(D) −R(D)]

= X(D) −R(D) −A′
e(D)X(D) +A′

e(D)R(D)

⇒ R(D) + Ê(D) = X(D)[1 −A′
e(D)] +A′(D)R(D)

Using this we can modify figure (10.7) as,
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xk
P (D)

zk

yk
W (D)

rk

rk + êk

êkek
−+

1 − A
′
e(D)

Figure 10.7: Depiction of MMSE-DFE with perfect decision feedback.

Now figure 10.8 almost looks like the MMSE-DFE with perfect past decisions, since A′
e(D)− 1 is strictly

causal. However, from (10.15) it is clear that it represents I(xk ; y
∞
−∞, x

k−1
−∞) which in general is larger

than the ISI channel capacity. Therefore we really need to look at

I(xk ; y
∞
−∞, x

k−1
−∞) − I(xk;x

k−1
−∞) = I(X(D);Y (D))

to find the capacity of the ISI channel and relate it to the DFE case. This caveat shows that there is no
artificial boost and that one has to look at the channel symbol-by-symbol wise rather than sequence-wise.

Main message:

1. If one interprets the CDEF result correctly, we see that the DFE combined with input spectral
shaping and sophisticated coding can actually be a canonical transmission/reception scheme.

2. There are several caveats, one is that of perfect decision feedback.

3. The other is to view the channel symbol-wise and not sequence-wise.

Let us relate the SNRMMSE−DFE to the CDEF result. Now, if we use Salz formula for σ2
MMSE−DFE ,

σ2
MMSE−DFE =

N0/2

||p||2 exp

(
− T

2π

∫ π/T

−π/T
ln

(
Q(e−jωT ) +

1

SNRMFB

)
dω

)
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xk
P (D)

zk

yk

rk + êk

+
−

A
′
e(D)W (D)

A
′
e(D) − 1

Figure 10.8: Modified form of Figure 10.7.

Using the Salz formula in the CDEF result we get

I(X(D);Y (D)) = log


 γx
N0/2
||p||2

exp

(
T

2π

∫ π/T

−π/T
log

{
Q(e−jωT ) +

1

SNRMFB

})
dω




= log

( ||p||2γx
N0/2

)
+

T

2π

∫ π/T

−π/T
log

[
Q(e−jωT ) +

1

SNRMFB

]
dω

= logSNRMFB +
T

2π

∫ π/T

−π/T
log

1

SNRMFB
dω

+
T

2π

∫ π/T

−π/T
log
[
Q(e−jωT )SNRMFB + 1

]
dω

=
T

2π

∫ π/T

−π/T
log
[
1 +Q(e−jωT )SNRMFB

]
dω

This result for i.i.d. inputs and we can improve the rates by input spectral shaping. The V.34 modem
does this with precoding to get close to the predicted channel capacity.

10.4 Problems

Problem 10.1

Consider a set of parallel independent AWGN channels:

1. Show that the mutual information for the set of channels is the sum of the mutual information
quantities for the set.

2. If the set of parallel channels has a total energy constraint that is equal to the sum of the energy
constraints, what energy En, n = 1 · · ·N should be allocated to each of the channels to maximize the
mutual information. You may presume the subchannel gains are given as gn (so that the individual
SNRs would be then Engn).
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3. Find the overall SNR for a single AWGN that is equivalent to the set of channels in terms of mutual
information.

Problem 10.2

In this problem we study the water filling algorithm for the oversampled version of the coded OFDM
transmission. Recall that for an over sampling factor L the parallel channel relationship is given by

Yk(l) = DlXk(l) + Zk(l), l = 0, . . . , N − 1,

where Yk(l),Dl,Zk(l) ∈ CL. For more detail refer to section 6.2.2 of the reader. In this case the rate for
lth parallel channel is given by

Rl =
1

2
ln

(
1 +Ql

||Dl||2
σ2

)
,

where

Ql = lim
Nc→∞

1

Nc

Nc∑

k=1

|X(k)(l)|2, l = 0, 1, . . . , N − 1

is the power assigned to subcarrier l. Now consider a particular case with L = 2 and channel memory
ν = 1 with

[p0 p1] =

[
1 1.81
0 1

]

and let the number of subcarriers be 4.

1. Find the solution to the maximization problem

maximize
3∑

l=0

Rl

such that
3∑

l=0

Ql ≤ P

with P = 0.01 and σ2 = 0.1.

2. Perform the water filling algorithm and point out the active sets in each step. Find the values of
{Ql}.



230 CHAPTER 10. RELIABLE TRANSMISSION FOR ISI CHANNELS



Part V

Appendix

231





Appendix A

Mathematical Preliminaries

A.1 The Q function

The Q function is defined as:

Q(x)
4
=

1√
2π

∫ ∞

x

e−
ξ2

2 dξ.

Hence, if Z ∼ N (0, 1) (meaning that Z is a Normally distributed zero-mean random variable of unit
variance) then Pr{Z ≥ x} = Q(x) .

If Z ∼ N (m,σ2) , then the probability Pr{Z ≥ x} can be written using the Q function by noticing that
{Z ≥ x} is equivalent to {Z−m

σ ≥ x−m
σ } . Hence Pr{Z ≥ x} = Q(x−mσ ) .

We now describe some of the key properties of Q(x) .

(a) If Z ∼ N (0, 1) , FZ(z) = Pr{Z ≤ z} = 1 −Q(z) .

(b) Q(0) = 1/2 , Q(−∞) = 1 , Q(∞) = 0 .

(c) Q(−x) +Q(x) = 1 .

(d) 1√
2πα

e−
α2

2 (1 − 1
α2 ) < Q(α) < 1√

2πα
e−

α2

2 , α > 0 .

(e) An alternative expression with fixed integration limits is Q(x) = 1
π

∫ π
2

0
e−

x2

2 sin2 θ dθ . It holds for
x ≥ 0 .

(f) Q(α) ≤ 1
2e

−α2

2 , α ≥ 0.
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A.2 Fourier Transform

A.2.1 Definition

H(f) =

∫ ∞

−∞
h(t)e−2πjftdt

h(t) =

∫ ∞

−∞
H(f)e2πjftdf

A.2.2 Properties of the Fourier Transform

x(t) ∗ y(t) ⇐⇒ X(f)Y (f)

h(t)ej2πf0t ⇐⇒ H(f − f0)

h∗(−t) ⇐⇒ H∗(f)

h(t− s) ⇐⇒ H(f)e−2πjfs

h(t/a) ⇐⇒ aH(fa)

sinc(t) =
sin(πt)

πt
⇐⇒ rect(f) =

{
1, |f | ≤ 1

2
0, |f | > 1

2∫ ∞

−∞
h(τ)g(t− τ)dτ ⇐⇒ H(f)G(f)

∫ ∞

−∞
h(τ)g∗(τ − t)dτ ⇐⇒ H(f)G∗(f)

∫ ∞

−∞
h(t)g∗(t)dt ⇐⇒

∫ ∞

−∞
H(f)G∗(f)df

A.2.3 Basic Properties of the sinc Function

Using the above relations we get:

sinc(
t

τ
) ⇐⇒

{
τ, |f | ≤ 1

2τ
0, |f | > 1

2τ

sinc(
t

τ
− n) ⇐⇒

{
τe−2πjnτf , |f | ≤ 1

2τ
0, |f | > 1

2τ
∫ ∞

−∞
sinc(

t

τ
− n)sinc(

t

τ
−m)dt =

∫ 1
2τ

− 1
2τ

τ2e−2πj(n−m)τfdf =

{
0, m 6= n
τ, m = n

From the last equality we conclude that sinc( tτ ) is orthogonal to all of its shifts (by multiples of τ ).

Further, we see that the functions
√

1
τ sinc(

t
τ − n), n ∈ Z , form an orthonormal set. One can also show

that this set is complete for the class of square integrable functions which are low-pass limited to 1
2τ .
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A.3 Z-Transform

A.3.1 Definition

Assume we have a discrete time (real or complex valued) signal xn , n ∈ Z . Its associated z-transform,
call it X(z) (if it exists), is defined by

X(z) =

+∞∑

n=−∞
x(n)z−n

The region of convergence, known as the ROC, is important to understand because it defines the region
where the z-transform exists. The ROC for a given x[n] is defined as the range of z for which the z-

transform converges. By the Cauchy criterion, a power series
∑∞

k=0 u(k) converges if limk→∞ |u(k)| 1
k <

1 . One can write
+∞∑

n=−∞
x(n)z−n =

+∞∑

n=1

x(−n)zn +

+∞∑

n=0

x(n)z−n

and it follows by the Cauchy criterion that the first series converges if |z| < limk→∞
1

|x(−k)|
1
k

= Rx+ and

the second converges if |z| > limk→∞ |x(k)| 1
k = Rx− Then the region of convergence is an annular region

such that Rx− < |z| < Rx+

A.3.2 Basic Properties

x∗−n ⇐⇒ X∗(1/z∗)

xn−m ⇐⇒ X(z)z−m∑

k

xkyn−k ⇐⇒ X(z)Y (z)

∑

k

xky
∗
n−k ⇐⇒ X(z)Y ∗(1/z∗)

We say that a sequence xn is causal if xn = 0 for n < 0 and we say that it is anticausal if xn = 0 for
n > 0 . For a causal sequence the ROC is of the form |z| > R whereas for an anticausal it is of the form
|z| < R . We say that a sequence is stable if

∑
n |xn| <∞ . The ROC of a stable sequence must contain

the unit circle. If X(z) , the z-transform of xn , is rational then it implies that for a stable and causal
system all the poles of X(z) must be within the unit circle. Finally, we say that a sequence xn with
rational z-transform X(z) is minimum phase, if all its poles and zeros are within the unit circle. Such a

sequence has the property that for all N ≥ 0 it maximizes the quantity
∑N

n=0 |xn|2 over all sequences
which have the same |H(z)| .

A.4 Energy and power constraints

The signal x(t) is said to have finite energy if

Ex 4
=

∫
|x(t)|2dt <∞

and it is said to have finite power if

Px 4
= lim
T→∞

1

T

∫ T
2

−T
2

|x(t)|2dt <∞
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For signals of the first type, we define the autocorrelation function of x(t) as

φx(τ)
4
=

∫
x(t)x(t − τ)∗dt

For signals of the second type, we define the time-averaged autocorrelation function

φx(τ)
4
= lim
T→∞

1

T

∫ T
2

−T
2

x(t)x(t − τ)∗dt

Let F [.] denote the Fourier transform operator, such that X(f) = F [x] =
∫∞
−∞ x(t)e−j2πftdt . For a

finite-energy signals x(t) , |X(f)|2 = F [φx] is called energy spectral density (ESD). In fact because of
Parseval identity, ∫

|X(f)|2df = φx(0) = Ex

For finite-power signals x(t) , we define the power spectral density (PSD) Sx(f)
4
= F [φx] . In fact,∫

Sx(f)df = φx(0) = Px .

The output of a LTI system with impulse response h(t) to the input x(t) is given by the convolution
integral

y(t) = h(t) ∗ x(t) 4
=

∫
h(τ)x(t − τ)dτ

In the frequency domain, we have Y (f) = H(f)X(f) , where H(f) = F(h) is the system transfer
function. The ESD (resp. PSD) of y(t) and x(t) are related by: |Y (f)|2 = |H(f)|2|X(f)|2 (resp.
Sy(f) = |H(f)|2Sx(f) ), where |H(f)|2 is the system energy (resp. power) transfer function. In the time
domain, we have

φy(τ) = φh(τ) ∗ φx(τ)

A.5 Random Processes

A random process x(t) can be seen either as a sequence of random variables x(t1), x(t2), ..., x(tn) indexed
by the ”time” index t = t1, t2, ... , or as a collection of signals x(t;ω) , where ω is a random experiment
taking on values in a certain event space Ω . The full statistical characterization of a random process
x(t) is given by the collection of all joint probability cumulative distribution functions (cdf)

Pr(x(t1) ≤ x1, x(t2) ≤ x2, ..., x(tn) ≤ xn)

for all n = 1, 2, ... and for all instant t1, t2, ..., tn .

Complex random variables and processes are characterized by the joint statistics of its real and imaginary
parts. For example, a random variable X = X1+jX2 is characterized by the joint cdf Pr(X1 ≤ x1, X2 ≤
x2) . A complex random variable is said to be circularly-symmetric if its real and imaginary parts satisfy

cov(X1, X2) = 0, var(X1) = var(X2)

The first and second order statistics of x(t) are given by its mean

µx(t) = E[x(t)]

and by its autocorrelation function

φx(t1, t2) = E[x(t1)x(t2)
∗]

For two random processes x(t) and y(t) , defined on a joint probability space, we define the cross-
correlation function

φxy(t1, t2) = E[x(t1)y(t2)
∗]
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A.6 Wide sense stationary processes

A random process x(t) is said to be wide-sense stationary (WSS) if

(a) µx(t) = µx is constant with t

(b) φx(t1, t2) depends only on the difference τ = t1 − t2 (we can use the notation φx(τ)
4
= φx(t+ τ, t) ).

Two random processes x(t) and y(t) are said to be jointly WSS if both x(t) and y(t) are individually
WSS and if their cross-correlation function φxy(t1, t2) depends only on the difference t1 − t2 .

For WSS processes, we have

Sx(f) = F [φx] =

∫
φx(t)e

−j2πftdt

and for jointly WSS processes, the cross-spectrum is given by Sxy(f) = F [φxy(τ)] .

The output of a LTI system with impulse response h(t) to the WSS input x(t) is the WSS process given
by

y(t) = h(t) ∗ x(t) 4
=

∫
h(τ)x(t − τ)dτ

The two processes x(t) and y(t) are jointly WSS. The mean and autocorrelation of y(t) and the cross-
correlation between x(t) and y(t) are given by

µy = µx

∫
h(t)dt

φy(τ) = φh(τ) ∗ φx(τ)
φxy(τ) = h(−τ)∗ ∗ φx(τ)

In the frequency domain we have
µy = µxH(0)

Sy(f) = |H(f)|2Sx(f)

Sxy(f) = H∗(f)Sx(f)

Since φyx(τ) = φxy(−τ)∗ , we have Syx(f) = Sxy(f)∗ , that yields Syx(f) = H(f)Sx(f) , since Sx(f) is
real.

A.7 Gram-Schmidt orthonormalisation

Let V be an inner product space and let A = a1, ..., am be a set of elements of V . The following
Gram-Schmidt procedure then allows us to find an orthonormal basis for A . Let this basis be ψ1, ..., ψn ,
n ≤ m , so that

ai =

n∑

j=1

〈ai, ψj〉ψj , i ∈ [n]
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This basis is recursively defined by (ignoring cases of dependent vectors)

ψ1 =
a1√

〈a1, a1〉

ψ2 =
a2 − 〈a2, ψ1〉ψ1√〈

(a2 − 〈a2, ψ1〉ψ1), (a2 − 〈a2, ψ1〉ψ1)
〉

... . . .

ψn =
am −∑m−1

j=1 〈am, ψj〉ψj√〈
(am −∑m−1

j=1 〈am, ψj〉ψj), (am −∑m−1
j=1 〈am, ψj〉ψj)

〉

In general, the basis obtained by the above algorithm depends on the order in which the elements ai are
considered. Different ordering yield different bases for the same vector space.

A.8 The Sampling Theorem

Let s(t) be a function in L2 that is lowpass limited to B . Then s(t) is specified by its values at a
sequence of points spaced at T = 1

2B intervals by the interpolation formula:

s(t) =

∞∑

n=−∞
s(nT ) sinc(

t

T
− n)

where sinc(t) = sin(πt)
πt .

The sinc pulse does not have unit energy. Hence we define (its normalized version) ψ(t) = 1√
T

sinc ( tT ) .

The set {ψ(t− iT )}∞i=−∞ forms an orthonormal set. Hence we can write:

s(t) =
∞∑

i=−∞
siψ(t− iT )

where si = s(nT )
√
T . This highlights the way the sampling theorem should be seen, namely as a

particular instance of an orthonormal expansion. In this expansion the basis is formed by time translated
sinc pulses. Implicit in the sampling theorem is the fact that the set {ψ(t − iT )}∞i=−∞ is a complete
orthonormal basis for the set of waveforms that are lowpass limited to B = 1

2T .

A.9 Nyquist Criterion

We are looking for functions ψ(t − T ) (like the sinc function constructed above) with the property:∫∞
−∞ ψ(t− nT )ψ∗(t)dt = δn

We now look for the condition under which a real-valued function ψ(t) ensures that ψ(t), ψ(t−T ), ψ(t−
2T ), . . . forms an orthonormal sequence.

Define

g(f) =
∑

k∈N

ψF (f +
k

T
)ψ∗

F (f +
k

T
).
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where ψF(f) = Fψ(t) Now

δn =

∫ ∞

−∞
ψF (t− nT )ψ∗

F(t)dt

(Parseval)
=

∫ ∞

−∞
ψF (f)ψ∗

F (f)e−j2πnTfdf

=

∞∑

−∞

∫ (2m+1)/2T

(2m−1)/2T

ψF (f)ψ∗
F (f)e−j2πnTfdf

=

∞∑

−∞

∫ 1/2T

−1/2T

ψF (f +m/T )ψ∗
F(f +m/T )e−j2πnTfdf

=

∫ 1
2T

− 1
2T

g(f)e−j2πnTfdf.

The last expression is T times the n -th Fourier series coefficient of g(f) . Since only the coefficient with
n = 0 is nonzero, the function g(f) must be constant. Specifically, g(f) ≡ T, f ∈ [− 1

2T ,
1

2T ] .

Then, one can state :

A waveform ψ(t) is orthonormal to each shift ψ(t− nT ) if and only if

∞∑

k=−∞
|ψF (f +

k

T
)|2 = T for f ∈ [− 1

2T
,

1

2T
]

T

f
1
T

|ψF (f)|2 + |ψF (f − 1/T )|2 = T

A.10 Choleski Decomposition

Given a Hermitian positive definite matrix A , the Cholesky decomposition is a diagonal matrix D and
an upper triangular matrix U with ones on the main diagonal such that

A = U∗DU .

A.11 Problems

Problem A.1

Prove the following bounds on Q -function for α > 0 :

1√
2πα

e−
α2

2 (1 − 1

α2
) < Q(α) <

1√
2πα

e−
α2

2 .
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Hint: e−
y2

2 = e−
y2

2 y 1
y and integrate by parts.

Problem A.2

Prove the following properties of fourier transform:

• frequency shift - h(t)ej2πf0t ⇐⇒ H(f − f0) .

• time shift - h(t− s) ⇐⇒ H(f)e−2πjfs .

• lateral inversion - h∗(−t) ⇐⇒ H∗(f) .

• time scaling - h
(
t
a

)
⇐⇒ |a|H(fa) .

Problem A.3

Given 0 < a < b , find the temporal sequence x(n) of

X(z) =
2 − (a+ b)z−1

(1 − az−1)(1 − bz−1)
,

when

(a) the ROC is |z| > b .

(b) the ROC is a < |z| < b .

Problem A.4

(a) A random process {Z(t)} is given by

Z(t) = sin(2πf0t+ Θ),

where Θ is uniformaly distributed on [−π, π] . Find its power spectral density.

(b) Let {X(t)} be a WSS process with autocorrelation function φX(τ) = e−|τ | . Find E

[
(X(0) +X(2))

2
]
.

(c) Let W (t) = Ybtc , where {Yi}∞−∞ are independent zero-mean, unit-variance Gaussian random vari-
ables. Is {W (t)} a WSS process?

Problem A.5

A zero-mean WSS process x(t) with autocorrelation function φX(τ) = e−|τ | is passed through a LTI
filter with impulse response h(t) = e−t . Show that x(t) and y(t) are jointly WSS. Find φY (τ) and
φXY (τ) .
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Problem A.6

In this exercise we continue our review of what happens when stationary stochastic processes are filtered.
Let X(t) and U(t) denote two stochastic processes and let Y (t) and V (t) be the result of passing X(t)
respectively U(t) through linear time invariant filters with impulse response h(t) and g(t) , respectively.
For any pair (X,U) of stochastic processes define the cross-correlation as

RXU (t1, t2) = E[X(t1)U
∗(t2)],

We say that the pair (X,U) is jointly wide sense stationary if each of them is wide sense stationary and
if RXU (t1, t2) is a function of the time difference only. In this case we define a cross-power spectrum as
the Fourier transform of the cross-correlation function.

Show that if (X,U) are jointly wide sense stationary then so are (Y, V ) and that

SY V (f) = SXU (f)H(f)G∗(f).

Problem A.7

Show that the cross-correlation function RXU (τ) has symmetry

RXU (τ) = R∗
UX (−τ)

Problem A.8

(a) Let Xr and Xi be statistically independent zero-mean Gaussian random variables with identical
variances. Show that a (rotational) transformation of the form

Yr + jYi = (Xr + jXi)e
jφ

results in another pair (Yr, Yi) of Gaussian random variables that have the same joint PDF as the
pair (Xr, Xi) .

(b) Note that [
Yr
Yi

]
= A

[
Xr

Xi

]

where A is a 2 × 2 matrix. As a generalization of the transformation considered in (1), what
property must the linear transformation A satisfy if the PDFs for X and Y , where Y = AX , X =
(X1, X2, · · · , Xn) and Y = (Y1, Y2, · · · , Yn) are identical? Here also we assume that (X1, · · · , Xn)
are zero-mean statistically independent Gaussian random variables with same variance.

Problem A.9

[Transformation of Gaussian Random Variables] Let Z = (Z1, . . . , Zn) denote a jointly Gaussian vector
with independent components with zero mean and each with variance σ2 , i.e., we have

fZ(z) =
1

(2πσ2)n/2
e−

‖z‖2

2σ2

Let {ψ1, . . . , ψn} be any basis for R
n , i.e., an orthonormal set and let W = (W1, . . . ,Wn) denote a

random vector whose components are the projections of Z onto this basis, i.e, Wi = 〈Z,ψi〉 . Show that
W has the same distribution as Z , i.e., W is a jointly Gaussian vector with independent components
with zero mean and each with variance σ2 .
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Problem A.10

Let Z(t) be a real-valued Gaussian process with double-sided power spectral density equal to N0

2 . Let
ψ1(t) and ψ2(t) be two orthonormal functions and for k = 0, 1 define the random variables Zk =∫∞
−∞ Z(t)ψk(t)dt . What is the distribution of (Z1, Z2) ?


